
*:96 Internet application layer
protocols and standards

Compendium 2:
Allowed during the exam

Last revision: 1 Apr 2003

FTP
RFC 959: File Transfer Protocol (FTP) ..253-287

Cookies
RFC 2109: HTTP State Management Mechanism ..288-298

Usenet News Message Format
RFC 1036: Standard for Interchange of USENET Messages..299-308

HTTP
RFC 2068: Hypertext Transfer Protocol HTTP 1.1 ..309-389

NNTP
RFC 977: Network News Transfer Protocol (NNTP)..390-403

URL
RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax425-444

Port Numbers
IANA Register of Port Numbers...445-460

Media Types
IANA Register of Media Types...461-468

The documents are not ordered in a suitable order for reading them,
 see compendium 0 page14-17

Network Working Group J. Postel
Request for Comments: 959 J. Reynolds
 ISI
Obsoletes RFC: 765 (IEN 149) October 1985

 FILE TRANSFER PROTOCOL (FTP)

Status of this Memo

 This memo is the official specification of the File Transfer
 Protocol (FTP). Distribution of this memo is unlimited.

 The following new optional commands are included in this edition of
 the specification:

 CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU
 (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD
 (Print Directory), and SYST (System).

 Note that this specification is compatible with the previous edition.

1. INTRODUCTION

 The objectives of FTP are 1) to promote sharing of files (computer
 programs and/or data), 2) to encourage indirect or implicit (via
 programs) use of remote computers, 3) to shield a user from
 variations in file storage systems among hosts, and 4) to transfer
 data reliably and efficiently. FTP, though usable directly by a user
 at a terminal, is designed mainly for use by programs.

 The attempt in this specification is to satisfy the diverse needs of
 users of maxi-hosts, mini-hosts, personal workstations, and TACs,
 with a simple, and easily implemented protocol design.

 This paper assumes knowledge of the Transmission Control Protocol
 (TCP) [2] and the Telnet Protocol [3]. These documents are contained
 in the ARPA-Internet protocol handbook [1].

2. OVERVIEW

 In this section, the history, the terminology, and the FTP model are
 discussed. The terms defined in this section are only those that
 have special significance in FTP. Some of the terminology is very
 specific to the FTP model; some readers may wish to turn to the
 section on the FTP model while reviewing the terminology.

Postel & Reynolds [Page 1]

RFC 959 October 1985
File Transfer Protocol

 2.1. HISTORY

 FTP has had a long evolution over the years. Appendix III is a
 chronological compilation of Request for Comments documents
 relating to FTP. These include the first proposed file transfer
 mechanisms in 1971 that were developed for implementation on hosts
 at M.I.T. (RFC 114), plus comments and discussion in RFC 141.

 RFC 172 provided a user-level oriented protocol for file transfer
 between host computers (including terminal IMPs). A revision of
 this as RFC 265, restated FTP for additional review, while RFC 281
 suggested further changes. The use of a "Set Data Type"
 transaction was proposed in RFC 294 in January 1982.

 RFC 354 obsoleted RFCs 264 and 265. The File Transfer Protocol
 was now defined as a protocol for file transfer between HOSTs on
 the ARPANET, with the primary function of FTP defined as
 transfering files efficiently and reliably among hosts and
 allowing the convenient use of remote file storage capabilities.
 RFC 385 further commented on errors, emphasis points, and
 additions to the protocol, while RFC 414 provided a status report
 on the working server and user FTPs. RFC 430, issued in 1973,
 (among other RFCs too numerous to mention) presented further
 comments on FTP. Finally, an "official" FTP document was
 published as RFC 454.

 By July 1973, considerable changes from the last versions of FTP
 were made, but the general structure remained the same. RFC 542
 was published as a new "official" specification to reflect these
 changes. However, many implementations based on the older
 specification were not updated.

 In 1974, RFCs 607 and 614 continued comments on FTP. RFC 624
 proposed further design changes and minor modifications. In 1975,
 RFC 686 entitled, "Leaving Well Enough Alone", discussed the
 differences between all of the early and later versions of FTP.
 RFC 691 presented a minor revision of RFC 686, regarding the
 subject of print files.

 Motivated by the transition from the NCP to the TCP as the
 underlying protocol, a phoenix was born out of all of the above
 efforts in RFC 765 as the specification of FTP for use on TCP.

 This current edition of the FTP specification is intended to
 correct some minor documentation errors, to improve the
 explanation of some protocol features, and to add some new
 optional commands.

Postel & Reynolds [Page 2]

C
om

pendium
 2 page 253

RFC 959 October 1985
File Transfer Protocol

 In particular, the following new optional commands are included in
 this edition of the specification:

 CDUP - Change to Parent Directory

 SMNT - Structure Mount

 STOU - Store Unique

 RMD - Remove Directory

 MKD - Make Directory

 PWD - Print Directory

 SYST - System

 This specification is compatible with the previous edition. A
 program implemented in conformance to the previous specification
 should automatically be in conformance to this specification.

 2.2. TERMINOLOGY

 ASCII

 The ASCII character set is as defined in the ARPA-Internet
 Protocol Handbook. In FTP, ASCII characters are defined to be
 the lower half of an eight-bit code set (i.e., the most
 significant bit is zero).

 access controls

 Access controls define users' access privileges to the use of a
 system, and to the files in that system. Access controls are
 necessary to prevent unauthorized or accidental use of files.
 It is the prerogative of a server-FTP process to invoke access
 controls.

 byte size

 There are two byte sizes of interest in FTP: the logical byte
 size of the file, and the transfer byte size used for the
 transmission of the data. The transfer byte size is always 8
 bits. The transfer byte size is not necessarily the byte size
 in which data is to be stored in a system, nor the logical byte
 size for interpretation of the structure of the data.

Postel & Reynolds [Page 3]

RFC 959 October 1985
File Transfer Protocol

 control connection

 The communication path between the USER-PI and SERVER-PI for
 the exchange of commands and replies. This connection follows
 the Telnet Protocol.

 data connection

 A full duplex connection over which data is transferred, in a
 specified mode and type. The data transferred may be a part of
 a file, an entire file or a number of files. The path may be
 between a server-DTP and a user-DTP, or between two
 server-DTPs.

 data port

 The passive data transfer process "listens" on the data port
 for a connection from the active transfer process in order to
 open the data connection.

 DTP

 The data transfer process establishes and manages the data
 connection. The DTP can be passive or active.

 End-of-Line

 The end-of-line sequence defines the separation of printing
 lines. The sequence is Carriage Return, followed by Line Feed.

 EOF

 The end-of-file condition that defines the end of a file being
 transferred.

 EOR

 The end-of-record condition that defines the end of a record
 being transferred.

 error recovery

 A procedure that allows a user to recover from certain errors
 such as failure of either host system or transfer process. In
 FTP, error recovery may involve restarting a file transfer at a
 given checkpoint.

Postel & Reynolds [Page 4]

C
om

pendium
 2 page 254

RFC 959 October 1985
File Transfer Protocol

 FTP commands

 A set of commands that comprise the control information flowing
 from the user-FTP to the server-FTP process.

 file

 An ordered set of computer data (including programs), of
 arbitrary length, uniquely identified by a pathname.

 mode

 The mode in which data is to be transferred via the data
 connection. The mode defines the data format during transfer
 including EOR and EOF. The transfer modes defined in FTP are
 described in the Section on Transmission Modes.

 NVT

 The Network Virtual Terminal as defined in the Telnet Protocol.

 NVFS

 The Network Virtual File System. A concept which defines a
 standard network file system with standard commands and
 pathname conventions.

 page

 A file may be structured as a set of independent parts called
 pages. FTP supports the transmission of discontinuous files as
 independent indexed pages.

 pathname

 Pathname is defined to be the character string which must be
 input to a file system by a user in order to identify a file.
 Pathname normally contains device and/or directory names, and
 file name specification. FTP does not yet specify a standard
 pathname convention. Each user must follow the file naming
 conventions of the file systems involved in the transfer.

 PI

 The protocol interpreter. The user and server sides of the
 protocol have distinct roles implemented in a user-PI and a
 server-PI.

Postel & Reynolds [Page 5]

RFC 959 October 1985
File Transfer Protocol

 record

 A sequential file may be structured as a number of contiguous
 parts called records. Record structures are supported by FTP
 but a file need not have record structure.

 reply

 A reply is an acknowledgment (positive or negative) sent from
 server to user via the control connection in response to FTP
 commands. The general form of a reply is a completion code
 (including error codes) followed by a text string. The codes
 are for use by programs and the text is usually intended for
 human users.

 server-DTP

 The data transfer process, in its normal "active" state,
 establishes the data connection with the "listening" data port.
 It sets up parameters for transfer and storage, and transfers
 data on command from its PI. The DTP can be placed in a
 "passive" state to listen for, rather than initiate a
 connection on the data port.

 server-FTP process

 A process or set of processes which perform the function of
 file transfer in cooperation with a user-FTP process and,
 possibly, another server. The functions consist of a protocol
 interpreter (PI) and a data transfer process (DTP).

 server-PI

 The server protocol interpreter "listens" on Port L for a
 connection from a user-PI and establishes a control
 communication connection. It receives standard FTP commands
 from the user-PI, sends replies, and governs the server-DTP.

 type

 The data representation type used for data transfer and
 storage. Type implies certain transformations between the time
 of data storage and data transfer. The representation types
 defined in FTP are described in the Section on Establishing
 Data Connections.

Postel & Reynolds [Page 6]

C
om

pendium
 2 page 255

RFC 959 October 1985
File Transfer Protocol

 user

 A person or a process on behalf of a person wishing to obtain
 file transfer service. The human user may interact directly
 with a server-FTP process, but use of a user-FTP process is
 preferred since the protocol design is weighted towards
 automata.

 user-DTP

 The data transfer process "listens" on the data port for a
 connection from a server-FTP process. If two servers are
 transferring data between them, the user-DTP is inactive.

 user-FTP process

 A set of functions including a protocol interpreter, a data
 transfer process and a user interface which together perform
 the function of file transfer in cooperation with one or more
 server-FTP processes. The user interface allows a local
 language to be used in the command-reply dialogue with the
 user.

 user-PI

 The user protocol interpreter initiates the control connection
 from its port U to the server-FTP process, initiates FTP
 commands, and governs the user-DTP if that process is part of
 the file transfer.

Postel & Reynolds [Page 7]

RFC 959 October 1985
File Transfer Protocol

 2.3. THE FTP MODEL

 With the above definitions in mind, the following model (shown in
 Figure 1) may be diagrammed for an FTP service.

 |/---------\|
 || User || --------
 ||Interface|<--->| User |
 |\----^----/| --------
 ---------- | | |
 |/------\| FTP Commands |/----V----\| | | | | | |
 ||Server|<---------------->| User ||
 || PI || FTP Replies || PI ||
 |\--^---/| |\----^----/|
 | | | | | |
 -------- |/--V---\| Data |/----V----\| --------
 | File |<--->|Server|<---------------->| User |<--->| File |
 |System| || DTP || Connection || DTP || |System|
 -------- |\------/| |\---------/| --------
 ---------- -------------

 Server-FTP USER-FTP

 NOTES: 1. The data connection may be used in either direction.
 2. The data connection need not exist all of the time.

 Figure 1 Model for FTP Use

 In the model described in Figure 1, the user-protocol interpreter
 initiates the control connection. The control connection follows
 the Telnet protocol. At the initiation of the user, standard FTP
 commands are generated by the user-PI and transmitted to the
 server process via the control connection. (The user may
 establish a direct control connection to the server-FTP, from a
 TAC terminal for example, and generate standard FTP commands
 independently, bypassing the user-FTP process.) Standard replies
 are sent from the server-PI to the user-PI over the control
 connection in response to the commands.

 The FTP commands specify the parameters for the data connection
 (data port, transfer mode, representation type, and structure) and
 the nature of file system operation (store, retrieve, append,
 delete, etc.). The user-DTP or its designate should "listen" on
 the specified data port, and the server initiate the data
 connection and data transfer in accordance with the specified
 parameters. It should be noted that the data port need not be in

Postel & Reynolds [Page 8]

C
om

pendium
 2 page 256

RFC 959 October 1985
File Transfer Protocol

 the same host that initiates the FTP commands via the control
 connection, but the user or the user-FTP process must ensure a
 "listen" on the specified data port. It ought to also be noted
 that the data connection may be used for simultaneous sending and
 receiving.

 In another situation a user might wish to transfer files between
 two hosts, neither of which is a local host. The user sets up
 control connections to the two servers and then arranges for a
 data connection between them. In this manner, control information
 is passed to the user-PI but data is transferred between the
 server data transfer processes. Following is a model of this
 server-server interaction.

 Control ------------ Control
 ---------->| User-FTP |<-----------
 | | User-PI | |
 | | "C" | |
 V ------------ V
 -------------- --------------
 | Server-FTP | Data Connection | Server-FTP |
 | "A" |<---------------------->| "B" |
 -------------- Port (A) Port (B) --------------

 Figure 2

 The protocol requires that the control connections be open while
 data transfer is in progress. It is the responsibility of the
 user to request the closing of the control connections when
 finished using the FTP service, while it is the server who takes
 the action. The server may abort data transfer if the control
 connections are closed without command.

 The Relationship between FTP and Telnet:

 The FTP uses the Telnet protocol on the control connection.
 This can be achieved in two ways: first, the user-PI or the
 server-PI may implement the rules of the Telnet Protocol
 directly in their own procedures; or, second, the user-PI or
 the server-PI may make use of the existing Telnet module in the
 system.

 Ease of implementaion, sharing code, and modular programming
 argue for the second approach. Efficiency and independence

Postel & Reynolds [Page 9]

RFC 959 October 1985
File Transfer Protocol

 argue for the first approach. In practice, FTP relies on very
 little of the Telnet Protocol, so the first approach does not
 necessarily involve a large amount of code.

3. DATA TRANSFER FUNCTIONS

 Files are transferred only via the data connection. The control
 connection is used for the transfer of commands, which describe the
 functions to be performed, and the replies to these commands (see the
 Section on FTP Replies). Several commands are concerned with the
 transfer of data between hosts. These data transfer commands include
 the MODE command which specify how the bits of the data are to be
 transmitted, and the STRUcture and TYPE commands, which are used to
 define the way in which the data are to be represented. The
 transmission and representation are basically independent but the
 "Stream" transmission mode is dependent on the file structure
 attribute and if "Compressed" transmission mode is used, the nature
 of the filler byte depends on the representation type.

 3.1. DATA REPRESENTATION AND STORAGE

 Data is transferred from a storage device in the sending host to a
 storage device in the receiving host. Often it is necessary to
 perform certain transformations on the data because data storage
 representations in the two systems are different. For example,
 NVT-ASCII has different data storage representations in different
 systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit
 ASCII characters, left-justified in a 36-bit word. IBM Mainframe's
 store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII
 as four 9-bit characters in a 36-bit word. It is desirable to
 convert characters into the standard NVT-ASCII representation when
 transmitting text between dissimilar systems. The sending and
 receiving sites would have to perform the necessary
 transformations between the standard representation and their
 internal representations.

 A different problem in representation arises when transmitting
 binary data (not character codes) between host systems with
 different word lengths. It is not always clear how the sender
 should send data, and the receiver store it. For example, when
 transmitting 32-bit bytes from a 32-bit word-length system to a
 36-bit word-length system, it may be desirable (for reasons of
 efficiency and usefulness) to store the 32-bit bytes
 right-justified in a 36-bit word in the latter system. In any
 case, the user should have the option of specifying data
 representation and transformation functions. It should be noted

Postel & Reynolds [Page 10]

C
om

pendium
 2 page 257

RFC 959 October 1985
File Transfer Protocol

 that FTP provides for very limited data type representations.
 Transformations desired beyond this limited capability should be
 performed by the user directly.

 3.1.1. DATA TYPES

 Data representations are handled in FTP by a user specifying a
 representation type. This type may implicitly (as in ASCII or
 EBCDIC) or explicitly (as in Local byte) define a byte size for
 interpretation which is referred to as the "logical byte size."
 Note that this has nothing to do with the byte size used for
 transmission over the data connection, called the "transfer
 byte size", and the two should not be confused. For example,
 NVT-ASCII has a logical byte size of 8 bits. If the type is
 Local byte, then the TYPE command has an obligatory second
 parameter specifying the logical byte size. The transfer byte
 size is always 8 bits.

 3.1.1.1. ASCII TYPE

 This is the default type and must be accepted by all FTP
 implementations. It is intended primarily for the transfer
 of text files, except when both hosts would find the EBCDIC
 type more convenient.

 The sender converts the data from an internal character
 representation to the standard 8-bit NVT-ASCII
 representation (see the Telnet specification). The receiver
 will convert the data from the standard form to his own
 internal form.

 In accordance with the NVT standard, the <CRLF> sequence
 should be used where necessary to denote the end of a line
 of text. (See the discussion of file structure at the end
 of the Section on Data Representation and Storage.)

 Using the standard NVT-ASCII representation means that data
 must be interpreted as 8-bit bytes.

 The Format parameter for ASCII and EBCDIC types is discussed
 below.

Postel & Reynolds [Page 11]

RFC 959 October 1985
File Transfer Protocol

 3.1.1.2. EBCDIC TYPE

 This type is intended for efficient transfer between hosts
 which use EBCDIC for their internal character
 representation.

 For transmission, the data are represented as 8-bit EBCDIC
 characters. The character code is the only difference
 between the functional specifications of EBCDIC and ASCII
 types.

 End-of-line (as opposed to end-of-record--see the discussion
 of structure) will probably be rarely used with EBCDIC type
 for purposes of denoting structure, but where it is
 necessary the <NL> character should be used.

 3.1.1.3. IMAGE TYPE

 The data are sent as contiguous bits which, for transfer,
 are packed into the 8-bit transfer bytes. The receiving
 site must store the data as contiguous bits. The structure
 of the storage system might necessitate the padding of the
 file (or of each record, for a record-structured file) to
 some convenient boundary (byte, word or block). This
 padding, which must be all zeros, may occur only at the end
 of the file (or at the end of each record) and there must be
 a way of identifying the padding bits so that they may be
 stripped off if the file is retrieved. The padding
 transformation should be well publicized to enable a user to
 process a file at the storage site.

 Image type is intended for the efficient storage and
 retrieval of files and for the transfer of binary data. It
 is recommended that this type be accepted by all FTP
 implementations.

 3.1.1.4. LOCAL TYPE

 The data is transferred in logical bytes of the size
 specified by the obligatory second parameter, Byte size.
 The value of Byte size must be a decimal integer; there is
 no default value. The logical byte size is not necessarily
 the same as the transfer byte size. If there is a
 difference in byte sizes, then the logical bytes should be
 packed contiguously, disregarding transfer byte boundaries
 and with any necessary padding at the end.

Postel & Reynolds [Page 12]

C
om

pendium
 2 page 258

RFC 959 October 1985
File Transfer Protocol

 When the data reaches the receiving host, it will be
 transformed in a manner dependent on the logical byte size
 and the particular host. This transformation must be
 invertible (i.e., an identical file can be retrieved if the
 same parameters are used) and should be well publicized by
 the FTP implementors.

 For example, a user sending 36-bit floating-point numbers to
 a host with a 32-bit word could send that data as Local byte
 with a logical byte size of 36. The receiving host would
 then be expected to store the logical bytes so that they
 could be easily manipulated; in this example putting the
 36-bit logical bytes into 64-bit double words should
 suffice.

 In another example, a pair of hosts with a 36-bit word size
 may send data to one another in words by using TYPE L 36.
 The data would be sent in the 8-bit transmission bytes
 packed so that 9 transmission bytes carried two host words.

 3.1.1.5. FORMAT CONTROL

 The types ASCII and EBCDIC also take a second (optional)
 parameter; this is to indicate what kind of vertical format
 control, if any, is associated with a file. The following
 data representation types are defined in FTP:

 A character file may be transferred to a host for one of
 three purposes: for printing, for storage and later
 retrieval, or for processing. If a file is sent for
 printing, the receiving host must know how the vertical
 format control is represented. In the second case, it must
 be possible to store a file at a host and then retrieve it
 later in exactly the same form. Finally, it should be
 possible to move a file from one host to another and process
 the file at the second host without undue trouble. A single
 ASCII or EBCDIC format does not satisfy all these
 conditions. Therefore, these types have a second parameter
 specifying one of the following three formats:

 3.1.1.5.1. NON PRINT

 This is the default format to be used if the second
 (format) parameter is omitted. Non-print format must be
 accepted by all FTP implementations.

Postel & Reynolds [Page 13]

RFC 959 October 1985
File Transfer Protocol

 The file need contain no vertical format information. If
 it is passed to a printer process, this process may
 assume standard values for spacing and margins.

 Normally, this format will be used with files destined
 for processing or just storage.

 3.1.1.5.2. TELNET FORMAT CONTROLS

 The file contains ASCII/EBCDIC vertical format controls
 (i.e., <CR>, <LF>, <NL>, <VT>, <FF>) which the printer
 process will interpret appropriately. <CRLF>, in exactly
 this sequence, also denotes end-of-line.

 3.1.1.5.2. CARRIAGE CONTROL (ASA)

 The file contains ASA (FORTRAN) vertical format control
 characters. (See RFC 740 Appendix C; and Communications
 of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a
 line or a record formatted according to the ASA Standard,
 the first character is not to be printed. Instead, it
 should be used to determine the vertical movement of the
 paper which should take place before the rest of the
 record is printed.

 The ASA Standard specifies the following control
 characters:

 Character Vertical Spacing

 blank Move paper up one line
 0 Move paper up two lines
 1 Move paper to top of next page
 + No movement, i.e., overprint

 Clearly there must be some way for a printer process to
 distinguish the end of the structural entity. If a file
 has record structure (see below) this is no problem;
 records will be explicitly marked during transfer and
 storage. If the file has no record structure, the <CRLF>
 end-of-line sequence is used to separate printing lines,
 but these format effectors are overridden by the ASA
 controls.

Postel & Reynolds [Page 14]

C
om

pendium
 2 page 259

RFC 959 October 1985
File Transfer Protocol

 3.1.2. DATA STRUCTURES

 In addition to different representation types, FTP allows the
 structure of a file to be specified. Three file structures are
 defined in FTP:

 file-structure, where there is no internal structure and
 the file is considered to be a
 continuous sequence of data bytes,

 record-structure, where the file is made up of sequential
 records,

 and page-structure, where the file is made up of independent
 indexed pages.

 File-structure is the default to be assumed if the STRUcture
 command has not been used but both file and record structures
 must be accepted for "text" files (i.e., files with TYPE ASCII
 or EBCDIC) by all FTP implementations. The structure of a file
 will affect both the transfer mode of a file (see the Section
 on Transmission Modes) and the interpretation and storage of
 the file.

 The "natural" structure of a file will depend on which host
 stores the file. A source-code file will usually be stored on
 an IBM Mainframe in fixed length records but on a DEC TOPS-20
 as a stream of characters partitioned into lines, for example
 by <CRLF>. If the transfer of files between such disparate
 sites is to be useful, there must be some way for one site to
 recognize the other's assumptions about the file.

 With some sites being naturally file-oriented and others
 naturally record-oriented there may be problems if a file with
 one structure is sent to a host oriented to the other. If a
 text file is sent with record-structure to a host which is file
 oriented, then that host should apply an internal
 transformation to the file based on the record structure.
 Obviously, this transformation should be useful, but it must
 also be invertible so that an identical file may be retrieved
 using record structure.

 In the case of a file being sent with file-structure to a
 record-oriented host, there exists the question of what
 criteria the host should use to divide the file into records
 which can be processed locally. If this division is necessary,
 the FTP implementation should use the end-of-line sequence,

Postel & Reynolds [Page 15]

RFC 959 October 1985
File Transfer Protocol

 <CRLF> for ASCII, or <NL> for EBCDIC text files, as the
 delimiter. If an FTP implementation adopts this technique, it
 must be prepared to reverse the transformation if the file is
 retrieved with file-structure.

 3.1.2.1. FILE STRUCTURE

 File structure is the default to be assumed if the STRUcture
 command has not been used.

 In file-structure there is no internal structure and the
 file is considered to be a continuous sequence of data
 bytes.

 3.1.2.2. RECORD STRUCTURE

 Record structures must be accepted for "text" files (i.e.,
 files with TYPE ASCII or EBCDIC) by all FTP implementations.

 In record-structure the file is made up of sequential
 records.

 3.1.2.3. PAGE STRUCTURE

 To transmit files that are discontinuous, FTP defines a page
 structure. Files of this type are sometimes known as
 "random access files" or even as "holey files". In these
 files there is sometimes other information associated with
 the file as a whole (e.g., a file descriptor), or with a
 section of the file (e.g., page access controls), or both.
 In FTP, the sections of the file are called pages.

 To provide for various page sizes and associated
 information, each page is sent with a page header. The page
 header has the following defined fields:

 Header Length

 The number of logical bytes in the page header
 including this byte. The minimum header length is 4.

 Page Index

 The logical page number of this section of the file.
 This is not the transmission sequence number of this
 page, but the index used to identify this page of the
 file.

Postel & Reynolds [Page 16]

C
om

pendium
 2 page 260

RFC 959 October 1985
File Transfer Protocol

 Data Length

 The number of logical bytes in the page data. The
 minimum data length is 0.

 Page Type

 The type of page this is. The following page types
 are defined:

 0 = Last Page

 This is used to indicate the end of a paged
 structured transmission. The header length must
 be 4, and the data length must be 0.

 1 = Simple Page

 This is the normal type for simple paged files
 with no page level associated control
 information. The header length must be 4.

 2 = Descriptor Page

 This type is used to transmit the descriptive
 information for the file as a whole.

 3 = Access Controlled Page

 This type includes an additional header field
 for paged files with page level access control
 information. The header length must be 5.

 Optional Fields

 Further header fields may be used to supply per page
 control information, for example, per page access
 control.

 All fields are one logical byte in length. The logical byte
 size is specified by the TYPE command. See Appendix I for
 further details and a specific case at the page structure.

 A note of caution about parameters: a file must be stored and
 retrieved with the same parameters if the retrieved version is to

Postel & Reynolds [Page 17]

RFC 959 October 1985
File Transfer Protocol

 be identical to the version originally transmitted. Conversely,
 FTP implementations must return a file identical to the original
 if the parameters used to store and retrieve a file are the same.

 3.2. ESTABLISHING DATA CONNECTIONS

 The mechanics of transferring data consists of setting up the data
 connection to the appropriate ports and choosing the parameters
 for transfer. Both the user and the server-DTPs have a default
 data port. The user-process default data port is the same as the
 control connection port (i.e., U). The server-process default
 data port is the port adjacent to the control connection port
 (i.e., L-1).

 The transfer byte size is 8-bit bytes. This byte size is relevant
 only for the actual transfer of the data; it has no bearing on
 representation of the data within a host's file system.

 The passive data transfer process (this may be a user-DTP or a
 second server-DTP) shall "listen" on the data port prior to
 sending a transfer request command. The FTP request command
 determines the direction of the data transfer. The server, upon
 receiving the transfer request, will initiate the data connection
 to the port. When the connection is established, the data
 transfer begins between DTP's, and the server-PI sends a
 confirming reply to the user-PI.

 Every FTP implementation must support the use of the default data
 ports, and only the USER-PI can initiate a change to non-default
 ports.

 It is possible for the user to specify an alternate data port by
 use of the PORT command. The user may want a file dumped on a TAC
 line printer or retrieved from a third party host. In the latter
 case, the user-PI sets up control connections with both
 server-PI's. One server is then told (by an FTP command) to
 "listen" for a connection which the other will initiate. The
 user-PI sends one server-PI a PORT command indicating the data
 port of the other. Finally, both are sent the appropriate
 transfer commands. The exact sequence of commands and replies
 sent between the user-controller and the servers is defined in the
 Section on FTP Replies.

 In general, it is the server's responsibility to maintain the data
 connection--to initiate it and to close it. The exception to this

Postel & Reynolds [Page 18]

C
om

pendium
 2 page 261

RFC 959 October 1985
File Transfer Protocol

 is when the user-DTP is sending the data in a transfer mode that
 requires the connection to be closed to indicate EOF. The server
 MUST close the data connection under the following conditions:

 1. The server has completed sending data in a transfer mode
 that requires a close to indicate EOF.

 2. The server receives an ABORT command from the user.

 3. The port specification is changed by a command from the
 user.

 4. The control connection is closed legally or otherwise.

 5. An irrecoverable error condition occurs.

 Otherwise the close is a server option, the exercise of which the
 server must indicate to the user-process by either a 250 or 226
 reply only.

 3.3. DATA CONNECTION MANAGEMENT

 Default Data Connection Ports: All FTP implementations must
 support use of the default data connection ports, and only the
 User-PI may initiate the use of non-default ports.

 Negotiating Non-Default Data Ports: The User-PI may specify a
 non-default user side data port with the PORT command. The
 User-PI may request the server side to identify a non-default
 server side data port with the PASV command. Since a connection
 is defined by the pair of addresses, either of these actions is
 enough to get a different data connection, still it is permitted
 to do both commands to use new ports on both ends of the data
 connection.

 Reuse of the Data Connection: When using the stream mode of data
 transfer the end of the file must be indicated by closing the
 connection. This causes a problem if multiple files are to be
 transfered in the session, due to need for TCP to hold the
 connection record for a time out period to guarantee the reliable
 communication. Thus the connection can not be reopened at once.

 There are two solutions to this problem. The first is to
 negotiate a non-default port. The second is to use another
 transfer mode.

 A comment on transfer modes. The stream transfer mode is

Postel & Reynolds [Page 19]

RFC 959 October 1985
File Transfer Protocol

 inherently unreliable, since one can not determine if the
 connection closed prematurely or not. The other transfer modes
 (Block, Compressed) do not close the connection to indicate the
 end of file. They have enough FTP encoding that the data
 connection can be parsed to determine the end of the file.
 Thus using these modes one can leave the data connection open
 for multiple file transfers.

 3.4. TRANSMISSION MODES

 The next consideration in transferring data is choosing the
 appropriate transmission mode. There are three modes: one which
 formats the data and allows for restart procedures; one which also
 compresses the data for efficient transfer; and one which passes
 the data with little or no processing. In this last case the mode
 interacts with the structure attribute to determine the type of
 processing. In the compressed mode, the representation type
 determines the filler byte.

 All data transfers must be completed with an end-of-file (EOF)
 which may be explicitly stated or implied by the closing of the
 data connection. For files with record structure, all the
 end-of-record markers (EOR) are explicit, including the final one.
 For files transmitted in page structure a "last-page" page type is
 used.

 NOTE: In the rest of this section, byte means "transfer byte"
 except where explicitly stated otherwise.

 For the purpose of standardized transfer, the sending host will
 translate its internal end of line or end of record denotation
 into the representation prescribed by the transfer mode and file
 structure, and the receiving host will perform the inverse
 translation to its internal denotation. An IBM Mainframe record
 count field may not be recognized at another host, so the
 end-of-record information may be transferred as a two byte control
 code in Stream mode or as a flagged bit in a Block or Compressed
 mode descriptor. End-of-line in an ASCII or EBCDIC file with no
 record structure should be indicated by <CRLF> or <NL>,
 respectively. Since these transformations imply extra work for
 some systems, identical systems transferring non-record structured
 text files might wish to use a binary representation and stream
 mode for the transfer.

Postel & Reynolds [Page 20]

C
om

pendium
 2 page 262

RFC 959 October 1985
File Transfer Protocol

 The following transmission modes are defined in FTP:

 3.4.1. STREAM MODE

 The data is transmitted as a stream of bytes. There is no
 restriction on the representation type used; record structures
 are allowed.

 In a record structured file EOR and EOF will each be indicated
 by a two-byte control code. The first byte of the control code
 will be all ones, the escape character. The second byte will
 have the low order bit on and zeros elsewhere for EOR and the
 second low order bit on for EOF; that is, the byte will have
 value 1 for EOR and value 2 for EOF. EOR and EOF may be
 indicated together on the last byte transmitted by turning both
 low order bits on (i.e., the value 3). If a byte of all ones
 was intended to be sent as data, it should be repeated in the
 second byte of the control code.

 If the structure is a file structure, the EOF is indicated by
 the sending host closing the data connection and all bytes are
 data bytes.

 3.4.2. BLOCK MODE

 The file is transmitted as a series of data blocks preceded by
 one or more header bytes. The header bytes contain a count
 field, and descriptor code. The count field indicates the
 total length of the data block in bytes, thus marking the
 beginning of the next data block (there are no filler bits).
 The descriptor code defines: last block in the file (EOF) last
 block in the record (EOR), restart marker (see the Section on
 Error Recovery and Restart) or suspect data (i.e., the data
 being transferred is suspected of errors and is not reliable).
 This last code is NOT intended for error control within FTP.
 It is motivated by the desire of sites exchanging certain types
 of data (e.g., seismic or weather data) to send and receive all
 the data despite local errors (such as "magnetic tape read
 errors"), but to indicate in the transmission that certain
 portions are suspect). Record structures are allowed in this
 mode, and any representation type may be used.

 The header consists of the three bytes. Of the 24 bits of
 header information, the 16 low order bits shall represent byte
 count, and the 8 high order bits shall represent descriptor
 codes as shown below.

Postel & Reynolds [Page 21]

RFC 959 October 1985
File Transfer Protocol

 Block Header

 +----------------+----------------+----------------+
 | Descriptor | Byte Count |
 | 8 bits | 16 bits |
 +----------------+----------------+----------------+

 The descriptor codes are indicated by bit flags in the
 descriptor byte. Four codes have been assigned, where each
 code number is the decimal value of the corresponding bit in
 the byte.

 Code Meaning

 128 End of data block is EOR
 64 End of data block is EOF
 32 Suspected errors in data block
 16 Data block is a restart marker

 With this encoding, more than one descriptor coded condition
 may exist for a particular block. As many bits as necessary
 may be flagged.

 The restart marker is embedded in the data stream as an
 integral number of 8-bit bytes representing printable
 characters in the language being used over the control
 connection (e.g., default--NVT-ASCII). <SP> (Space, in the
 appropriate language) must not be used WITHIN a restart marker.

 For example, to transmit a six-character marker, the following
 would be sent:

 +--------+--------+--------+
 |Descrptr| Byte count |
 |code= 16| = 6 |
 +--------+--------+--------+

 +--------+--------+--------+
 | Marker | Marker | Marker |
 | 8 bits | 8 bits | 8 bits |
 +--------+--------+--------+

 +--------+--------+--------+
 | Marker | Marker | Marker |
 | 8 bits | 8 bits | 8 bits |
 +--------+--------+--------+

Postel & Reynolds [Page 22]

C
om

pendium
 2 page 263

RFC 959 October 1985
File Transfer Protocol

 3.4.3. COMPRESSED MODE

 There are three kinds of information to be sent: regular data,
 sent in a byte string; compressed data, consisting of
 replications or filler; and control information, sent in a
 two-byte escape sequence. If n>0 bytes (up to 127) of regular
 data are sent, these n bytes are preceded by a byte with the
 left-most bit set to 0 and the right-most 7 bits containing the
 number n.

 Byte string:

 1 7 8 8
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0| n | | d(1) | ... | d(n) |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ^ ^
 |---n bytes---|
 of data

 String of n data bytes d(1),..., d(n)
 Count n must be positive.

 To compress a string of n replications of the data byte d, the
 following 2 bytes are sent:

 Replicated Byte:

 2 6 8
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |1 0| n | | d |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 A string of n filler bytes can be compressed into a single
 byte, where the filler byte varies with the representation
 type. If the type is ASCII or EBCDIC the filler byte is <SP>
 (Space, ASCII code 32, EBCDIC code 64). If the type is Image
 or Local byte the filler is a zero byte.

 Filler String:

 2 6
 +-+-+-+-+-+-+-+-+
 |1 1| n |
 +-+-+-+-+-+-+-+-+

 The escape sequence is a double byte, the first of which is the

Postel & Reynolds [Page 23]

RFC 959 October 1985
File Transfer Protocol

 escape byte (all zeros) and the second of which contains
 descriptor codes as defined in Block mode. The descriptor
 codes have the same meaning as in Block mode and apply to the
 succeeding string of bytes.

 Compressed mode is useful for obtaining increased bandwidth on
 very large network transmissions at a little extra CPU cost.
 It can be most effectively used to reduce the size of printer
 files such as those generated by RJE hosts.

 3.5. ERROR RECOVERY AND RESTART

 There is no provision for detecting bits lost or scrambled in data
 transfer; this level of error control is handled by the TCP.
 However, a restart procedure is provided to protect users from
 gross system failures (including failures of a host, an
 FTP-process, or the underlying network).

 The restart procedure is defined only for the block and compressed
 modes of data transfer. It requires the sender of data to insert
 a special marker code in the data stream with some marker
 information. The marker information has meaning only to the
 sender, but must consist of printable characters in the default or
 negotiated language of the control connection (ASCII or EBCDIC).
 The marker could represent a bit-count, a record-count, or any
 other information by which a system may identify a data
 checkpoint. The receiver of data, if it implements the restart
 procedure, would then mark the corresponding position of this
 marker in the receiving system, and return this information to the
 user.

 In the event of a system failure, the user can restart the data
 transfer by identifying the marker point with the FTP restart
 procedure. The following example illustrates the use of the
 restart procedure.

 The sender of the data inserts an appropriate marker block in the
 data stream at a convenient point. The receiving host marks the
 corresponding data point in its file system and conveys the last
 known sender and receiver marker information to the user, either
 directly or over the control connection in a 110 reply (depending
 on who is the sender). In the event of a system failure, the user
 or controller process restarts the server at the last server
 marker by sending a restart command with server's marker code as
 its argument. The restart command is transmitted over the control

Postel & Reynolds [Page 24]

C
om

pendium
 2 page 264

RFC 959 October 1985
File Transfer Protocol

 connection and is immediately followed by the command (such as
 RETR, STOR or LIST) which was being executed when the system
 failure occurred.

4. FILE TRANSFER FUNCTIONS

 The communication channel from the user-PI to the server-PI is
 established as a TCP connection from the user to the standard server
 port. The user protocol interpreter is responsible for sending FTP
 commands and interpreting the replies received; the server-PI
 interprets commands, sends replies and directs its DTP to set up the
 data connection and transfer the data. If the second party to the
 data transfer (the passive transfer process) is the user-DTP, then it
 is governed through the internal protocol of the user-FTP host; if it
 is a second server-DTP, then it is governed by its PI on command from
 the user-PI. The FTP replies are discussed in the next section. In
 the description of a few of the commands in this section, it is
 helpful to be explicit about the possible replies.

 4.1. FTP COMMANDS

 4.1.1. ACCESS CONTROL COMMANDS

 The following commands specify access control identifiers
 (command codes are shown in parentheses).

 USER NAME (USER)

 The argument field is a Telnet string identifying the user.
 The user identification is that which is required by the
 server for access to its file system. This command will
 normally be the first command transmitted by the user after
 the control connections are made (some servers may require
 this). Additional identification information in the form of
 a password and/or an account command may also be required by
 some servers. Servers may allow a new USER command to be
 entered at any point in order to change the access control
 and/or accounting information. This has the effect of
 flushing any user, password, and account information already
 supplied and beginning the login sequence again. All
 transfer parameters are unchanged and any file transfer in
 progress is completed under the old access control
 parameters.

Postel & Reynolds [Page 25]

RFC 959 October 1985
File Transfer Protocol

 PASSWORD (PASS)

 The argument field is a Telnet string specifying the user's
 password. This command must be immediately preceded by the
 user name command, and, for some sites, completes the user's
 identification for access control. Since password
 information is quite sensitive, it is desirable in general
 to "mask" it or suppress typeout. It appears that the
 server has no foolproof way to achieve this. It is
 therefore the responsibility of the user-FTP process to hide
 the sensitive password information.

 ACCOUNT (ACCT)

 The argument field is a Telnet string identifying the user's
 account. The command is not necessarily related to the USER
 command, as some sites may require an account for login and
 others only for specific access, such as storing files. In
 the latter case the command may arrive at any time.

 There are reply codes to differentiate these cases for the
 automation: when account information is required for login,
 the response to a successful PASSword command is reply code
 332. On the other hand, if account information is NOT
 required for login, the reply to a successful PASSword
 command is 230; and if the account information is needed for
 a command issued later in the dialogue, the server should
 return a 332 or 532 reply depending on whether it stores
 (pending receipt of the ACCounT command) or discards the
 command, respectively.

 CHANGE WORKING DIRECTORY (CWD)

 This command allows the user to work with a different
 directory or dataset for file storage or retrieval without
 altering his login or accounting information. Transfer
 parameters are similarly unchanged. The argument is a
 pathname specifying a directory or other system dependent
 file group designator.

 CHANGE TO PARENT DIRECTORY (CDUP)

 This command is a special case of CWD, and is included to
 simplify the implementation of programs for transferring
 directory trees between operating systems having different

Postel & Reynolds [Page 26]

C
om

pendium
 2 page 265

RFC 959 October 1985
File Transfer Protocol

 syntaxes for naming the parent directory. The reply codes
 shall be identical to the reply codes of CWD. See
 Appendix II for further details.

 STRUCTURE MOUNT (SMNT)

 This command allows the user to mount a different file
 system data structure without altering his login or
 accounting information. Transfer parameters are similarly
 unchanged. The argument is a pathname specifying a
 directory or other system dependent file group designator.

 REINITIALIZE (REIN)

 This command terminates a USER, flushing all I/O and account
 information, except to allow any transfer in progress to be
 completed. All parameters are reset to the default settings
 and the control connection is left open. This is identical
 to the state in which a user finds himself immediately after
 the control connection is opened. A USER command may be
 expected to follow.

 LOGOUT (QUIT)

 This command terminates a USER and if file transfer is not
 in progress, the server closes the control connection. If
 file transfer is in progress, the connection will remain
 open for result response and the server will then close it.
 If the user-process is transferring files for several USERs
 but does not wish to close and then reopen connections for
 each, then the REIN command should be used instead of QUIT.

 An unexpected close on the control connection will cause the
 server to take the effective action of an abort (ABOR) and a
 logout (QUIT).

 4.1.2. TRANSFER PARAMETER COMMANDS

 All data transfer parameters have default values, and the
 commands specifying data transfer parameters are required only
 if the default parameter values are to be changed. The default
 value is the last specified value, or if no value has been
 specified, the standard default value is as stated here. This
 implies that the server must "remember" the applicable default
 values. The commands may be in any order except that they must
 precede the FTP service request. The following commands
 specify data transfer parameters:

Postel & Reynolds [Page 27]

RFC 959 October 1985
File Transfer Protocol

 DATA PORT (PORT)

 The argument is a HOST-PORT specification for the data port
 to be used in data connection. There are defaults for both
 the user and server data ports, and under normal
 circumstances this command and its reply are not needed. If
 this command is used, the argument is the concatenation of a
 32-bit internet host address and a 16-bit TCP port address.
 This address information is broken into 8-bit fields and the
 value of each field is transmitted as a decimal number (in
 character string representation). The fields are separated
 by commas. A port command would be:

 PORT h1,h2,h3,h4,p1,p2

 where h1 is the high order 8 bits of the internet host
 address.

 PASSIVE (PASV)

 This command requests the server-DTP to "listen" on a data
 port (which is not its default data port) and to wait for a
 connection rather than initiate one upon receipt of a
 transfer command. The response to this command includes the
 host and port address this server is listening on.

 REPRESENTATION TYPE (TYPE)

 The argument specifies the representation type as described
 in the Section on Data Representation and Storage. Several
 types take a second parameter. The first parameter is
 denoted by a single Telnet character, as is the second
 Format parameter for ASCII and EBCDIC; the second parameter
 for local byte is a decimal integer to indicate Bytesize.
 The parameters are separated by a <SP> (Space, ASCII code
 32).

 The following codes are assigned for type:

 \ /
 A - ASCII | | N - Non-print
 |-><-| T - Telnet format effectors
 E - EBCDIC| | C - Carriage Control (ASA)
 / \
 I - Image

 L <byte size> - Local byte Byte size

Postel & Reynolds [Page 28]

C
om

pendium
 2 page 266

RFC 959 October 1985
File Transfer Protocol

 The default representation type is ASCII Non-print. If the
 Format parameter is changed, and later just the first
 argument is changed, Format then returns to the Non-print
 default.

 FILE STRUCTURE (STRU)

 The argument is a single Telnet character code specifying
 file structure described in the Section on Data
 Representation and Storage.

 The following codes are assigned for structure:

 F - File (no record structure)
 R - Record structure
 P - Page structure

 The default structure is File.

 TRANSFER MODE (MODE)

 The argument is a single Telnet character code specifying
 the data transfer modes described in the Section on
 Transmission Modes.

 The following codes are assigned for transfer modes:

 S - Stream
 B - Block
 C - Compressed

 The default transfer mode is Stream.

 4.1.3. FTP SERVICE COMMANDS

 The FTP service commands define the file transfer or the file
 system function requested by the user. The argument of an FTP
 service command will normally be a pathname. The syntax of
 pathnames must conform to server site conventions (with
 standard defaults applicable), and the language conventions of
 the control connection. The suggested default handling is to
 use the last specified device, directory or file name, or the
 standard default defined for local users. The commands may be
 in any order except that a "rename from" command must be
 followed by a "rename to" command and the restart command must
 be followed by the interrupted service command (e.g., STOR or
 RETR). The data, when transferred in response to FTP service

Postel & Reynolds [Page 29]

RFC 959 October 1985
File Transfer Protocol

 commands, shall always be sent over the data connection, except
 for certain informative replies. The following commands
 specify FTP service requests:

 RETRIEVE (RETR)

 This command causes the server-DTP to transfer a copy of the
 file, specified in the pathname, to the server- or user-DTP
 at the other end of the data connection. The status and
 contents of the file at the server site shall be unaffected.

 STORE (STOR)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data as
 a file at the server site. If the file specified in the
 pathname exists at the server site, then its contents shall
 be replaced by the data being transferred. A new file is
 created at the server site if the file specified in the
 pathname does not already exist.

 STORE UNIQUE (STOU)

 This command behaves like STOR except that the resultant
 file is to be created in the current directory under a name
 unique to that directory. The 250 Transfer Started response
 must include the name generated.

 APPEND (with create) (APPE)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data in
 a file at the server site. If the file specified in the
 pathname exists at the server site, then the data shall be
 appended to that file; otherwise the file specified in the
 pathname shall be created at the server site.

 ALLOCATE (ALLO)

 This command may be required by some servers to reserve
 sufficient storage to accommodate the new file to be
 transferred. The argument shall be a decimal integer
 representing the number of bytes (using the logical byte
 size) of storage to be reserved for the file. For files
 sent with record or page structure a maximum record or page
 size (in logical bytes) might also be necessary; this is
 indicated by a decimal integer in a second argument field of

Postel & Reynolds [Page 30]

C
om

pendium
 2 page 267

RFC 959 October 1985
File Transfer Protocol

 the command. This second argument is optional, but when
 present should be separated from the first by the three
 Telnet characters <SP> R <SP>. This command shall be
 followed by a STORe or APPEnd command. The ALLO command
 should be treated as a NOOP (no operation) by those servers
 which do not require that the maximum size of the file be
 declared beforehand, and those servers interested in only
 the maximum record or page size should accept a dummy value
 in the first argument and ignore it.

 RESTART (REST)

 The argument field represents the server marker at which
 file transfer is to be restarted. This command does not
 cause file transfer but skips over the file to the specified
 data checkpoint. This command shall be immediately followed
 by the appropriate FTP service command which shall cause
 file transfer to resume.

 RENAME FROM (RNFR)

 This command specifies the old pathname of the file which is
 to be renamed. This command must be immediately followed by
 a "rename to" command specifying the new file pathname.

 RENAME TO (RNTO)

 This command specifies the new pathname of the file
 specified in the immediately preceding "rename from"
 command. Together the two commands cause a file to be
 renamed.

 ABORT (ABOR)

 This command tells the server to abort the previous FTP
 service command and any associated transfer of data. The
 abort command may require "special action", as discussed in
 the Section on FTP Commands, to force recognition by the
 server. No action is to be taken if the previous command
 has been completed (including data transfer). The control
 connection is not to be closed by the server, but the data
 connection must be closed.

 There are two cases for the server upon receipt of this
 command: (1) the FTP service command was already completed,
 or (2) the FTP service command is still in progress.

Postel & Reynolds [Page 31]

RFC 959 October 1985
File Transfer Protocol

 In the first case, the server closes the data connection
 (if it is open) and responds with a 226 reply, indicating
 that the abort command was successfully processed.

 In the second case, the server aborts the FTP service in
 progress and closes the data connection, returning a 426
 reply to indicate that the service request terminated
 abnormally. The server then sends a 226 reply,
 indicating that the abort command was successfully
 processed.

 DELETE (DELE)

 This command causes the file specified in the pathname to be
 deleted at the server site. If an extra level of protection
 is desired (such as the query, "Do you really wish to
 delete?"), it should be provided by the user-FTP process.

 REMOVE DIRECTORY (RMD)

 This command causes the directory specified in the pathname
 to be removed as a directory (if the pathname is absolute)
 or as a subdirectory of the current working directory (if
 the pathname is relative). See Appendix II.

 MAKE DIRECTORY (MKD)

 This command causes the directory specified in the pathname
 to be created as a directory (if the pathname is absolute)
 or as a subdirectory of the current working directory (if
 the pathname is relative). See Appendix II.

 PRINT WORKING DIRECTORY (PWD)

 This command causes the name of the current working
 directory to be returned in the reply. See Appendix II.

 LIST (LIST)

 This command causes a list to be sent from the server to the
 passive DTP. If the pathname specifies a directory or other
 group of files, the server should transfer a list of files
 in the specified directory. If the pathname specifies a
 file then the server should send current information on the
 file. A null argument implies the user's current working or
 default directory. The data transfer is over the data
 connection in type ASCII or type EBCDIC. (The user must

Postel & Reynolds [Page 32]

C
om

pendium
 2 page 268

RFC 959 October 1985
File Transfer Protocol

 ensure that the TYPE is appropriately ASCII or EBCDIC).
 Since the information on a file may vary widely from system
 to system, this information may be hard to use automatically
 in a program, but may be quite useful to a human user.

 NAME LIST (NLST)

 This command causes a directory listing to be sent from
 server to user site. The pathname should specify a
 directory or other system-specific file group descriptor; a
 null argument implies the current directory. The server
 will return a stream of names of files and no other
 information. The data will be transferred in ASCII or
 EBCDIC type over the data connection as valid pathname
 strings separated by <CRLF> or <NL>. (Again the user must
 ensure that the TYPE is correct.) This command is intended
 to return information that can be used by a program to
 further process the files automatically. For example, in
 the implementation of a "multiple get" function.

 SITE PARAMETERS (SITE)

 This command is used by the server to provide services
 specific to his system that are essential to file transfer
 but not sufficiently universal to be included as commands in
 the protocol. The nature of these services and the
 specification of their syntax can be stated in a reply to
 the HELP SITE command.

 SYSTEM (SYST)

 This command is used to find out the type of operating
 system at the server. The reply shall have as its first
 word one of the system names listed in the current version
 of the Assigned Numbers document [4].

 STATUS (STAT)

 This command shall cause a status response to be sent over
 the control connection in the form of a reply. The command
 may be sent during a file transfer (along with the Telnet IP
 and Synch signals--see the Section on FTP Commands) in which
 case the server will respond with the status of the
 operation in progress, or it may be sent between file
 transfers. In the latter case, the command may have an
 argument field. If the argument is a pathname, the command
 is analogous to the "list" command except that data shall be

Postel & Reynolds [Page 33]

RFC 959 October 1985
File Transfer Protocol

 transferred over the control connection. If a partial
 pathname is given, the server may respond with a list of
 file names or attributes associated with that specification.
 If no argument is given, the server should return general
 status information about the server FTP process. This
 should include current values of all transfer parameters and
 the status of connections.

 HELP (HELP)

 This command shall cause the server to send helpful
 information regarding its implementation status over the
 control connection to the user. The command may take an
 argument (e.g., any command name) and return more specific
 information as a response. The reply is type 211 or 214.
 It is suggested that HELP be allowed before entering a USER
 command. The server may use this reply to specify
 site-dependent parameters, e.g., in response to HELP SITE.

 NOOP (NOOP)

 This command does not affect any parameters or previously
 entered commands. It specifies no action other than that the
 server send an OK reply.

 The File Transfer Protocol follows the specifications of the Telnet
 protocol for all communications over the control connection. Since
 the language used for Telnet communication may be a negotiated
 option, all references in the next two sections will be to the
 "Telnet language" and the corresponding "Telnet end-of-line code".
 Currently, one may take these to mean NVT-ASCII and <CRLF>. No other
 specifications of the Telnet protocol will be cited.

 FTP commands are "Telnet strings" terminated by the "Telnet end of
 line code". The command codes themselves are alphabetic characters
 terminated by the character <SP> (Space) if parameters follow and
 Telnet-EOL otherwise. The command codes and the semantics of
 commands are described in this section; the detailed syntax of
 commands is specified in the Section on Commands, the reply sequences
 are discussed in the Section on Sequencing of Commands and Replies,
 and scenarios illustrating the use of commands are provided in the
 Section on Typical FTP Scenarios.

 FTP commands may be partitioned as those specifying access-control
 identifiers, data transfer parameters, or FTP service requests.
 Certain commands (such as ABOR, STAT, QUIT) may be sent over the
 control connection while a data transfer is in progress. Some

Postel & Reynolds [Page 34]

C
om

pendium
 2 page 269

RFC 959 October 1985
File Transfer Protocol

 servers may not be able to monitor the control and data connections
 simultaneously, in which case some special action will be necessary
 to get the server's attention. The following ordered format is
 tentatively recommended:

 1. User system inserts the Telnet "Interrupt Process" (IP) signal
 in the Telnet stream.

 2. User system sends the Telnet "Synch" signal.

 3. User system inserts the command (e.g., ABOR) in the Telnet
 stream.

 4. Server PI, after receiving "IP", scans the Telnet stream for
 EXACTLY ONE FTP command.

 (For other servers this may not be necessary but the actions listed
 above should have no unusual effect.)

 4.2. FTP REPLIES

 Replies to File Transfer Protocol commands are devised to ensure
 the synchronization of requests and actions in the process of file
 transfer, and to guarantee that the user process always knows the
 state of the Server. Every command must generate at least one
 reply, although there may be more than one; in the latter case,
 the multiple replies must be easily distinguished. In addition,
 some commands occur in sequential groups, such as USER, PASS and
 ACCT, or RNFR and RNTO. The replies show the existence of an
 intermediate state if all preceding commands have been successful.
 A failure at any point in the sequence necessitates the repetition
 of the entire sequence from the beginning.

 The details of the command-reply sequence are made explicit in
 a set of state diagrams below.

 An FTP reply consists of a three digit number (transmitted as
 three alphanumeric characters) followed by some text. The number
 is intended for use by automata to determine what state to enter
 next; the text is intended for the human user. It is intended
 that the three digits contain enough encoded information that the
 user-process (the User-PI) will not need to examine the text and
 may either discard it or pass it on to the user, as appropriate.
 In particular, the text may be server-dependent, so there are
 likely to be varying texts for each reply code.

 A reply is defined to contain the 3-digit code, followed by Space

Postel & Reynolds [Page 35]

RFC 959 October 1985
File Transfer Protocol

 <SP>, followed by one line of text (where some maximum line length
 has been specified), and terminated by the Telnet end-of-line
 code. There will be cases however, where the text is longer than
 a single line. In these cases the complete text must be bracketed
 so the User-process knows when it may stop reading the reply (i.e.
 stop processing input on the control connection) and go do other
 things. This requires a special format on the first line to
 indicate that more than one line is coming, and another on the
 last line to designate it as the last. At least one of these must
 contain the appropriate reply code to indicate the state of the
 transaction. To satisfy all factions, it was decided that both
 the first and last line codes should be the same.

 Thus the format for multi-line replies is that the first line
 will begin with the exact required reply code, followed
 immediately by a Hyphen, "-" (also known as Minus), followed by
 text. The last line will begin with the same code, followed
 immediately by Space <SP>, optionally some text, and the Telnet
 end-of-line code.

 For example:
 123-First line
 Second line
 234 A line beginning with numbers
 123 The last line

 The user-process then simply needs to search for the second
 occurrence of the same reply code, followed by <SP> (Space), at
 the beginning of a line, and ignore all intermediary lines. If
 an intermediary line begins with a 3-digit number, the Server
 must pad the front to avoid confusion.

 This scheme allows standard system routines to be used for
 reply information (such as for the STAT reply), with
 "artificial" first and last lines tacked on. In rare cases
 where these routines are able to generate three digits and a
 Space at the beginning of any line, the beginning of each
 text line should be offset by some neutral text, like Space.

 This scheme assumes that multi-line replies may not be nested.

 The three digits of the reply each have a special significance.
 This is intended to allow a range of very simple to very
 sophisticated responses by the user-process. The first digit
 denotes whether the response is good, bad or incomplete.
 (Referring to the state diagram), an unsophisticated user-process
 will be able to determine its next action (proceed as planned,

Postel & Reynolds [Page 36]

C
om

pendium
 2 page 270

RFC 959 October 1985
File Transfer Protocol

 redo, retrench, etc.) by simply examining this first digit. A
 user-process that wants to know approximately what kind of error
 occurred (e.g. file system error, command syntax error) may
 examine the second digit, reserving the third digit for the finest
 gradation of information (e.g., RNTO command without a preceding
 RNFR).

 There are five values for the first digit of the reply code:

 1yz Positive Preliminary reply

 The requested action is being initiated; expect another
 reply before proceeding with a new command. (The
 user-process sending another command before the
 completion reply would be in violation of protocol; but
 server-FTP processes should queue any commands that
 arrive while a preceding command is in progress.) This
 type of reply can be used to indicate that the command
 was accepted and the user-process may now pay attention
 to the data connections, for implementations where
 simultaneous monitoring is difficult. The server-FTP
 process may send at most, one 1yz reply per command.

 2yz Positive Completion reply

 The requested action has been successfully completed. A
 new request may be initiated.

 3yz Positive Intermediate reply

 The command has been accepted, but the requested action
 is being held in abeyance, pending receipt of further
 information. The user should send another command
 specifying this information. This reply is used in
 command sequence groups.

 4yz Transient Negative Completion reply

 The command was not accepted and the requested action did
 not take place, but the error condition is temporary and
 the action may be requested again. The user should
 return to the beginning of the command sequence, if any.
 It is difficult to assign a meaning to "transient",
 particularly when two distinct sites (Server- and
 User-processes) have to agree on the interpretation.
 Each reply in the 4yz category might have a slightly
 different time value, but the intent is that the

Postel & Reynolds [Page 37]

RFC 959 October 1985
File Transfer Protocol

 user-process is encouraged to try again. A rule of thumb
 in determining if a reply fits into the 4yz or the 5yz
 (Permanent Negative) category is that replies are 4yz if
 the commands can be repeated without any change in
 command form or in properties of the User or Server
 (e.g., the command is spelled the same with the same
 arguments used; the user does not change his file access
 or user name; the server does not put up a new
 implementation.)

 5yz Permanent Negative Completion reply

 The command was not accepted and the requested action did
 not take place. The User-process is discouraged from
 repeating the exact request (in the same sequence). Even
 some "permanent" error conditions can be corrected, so
 the human user may want to direct his User-process to
 reinitiate the command sequence by direct action at some
 point in the future (e.g., after the spelling has been
 changed, or the user has altered his directory status.)

 The following function groupings are encoded in the second
 digit:

 x0z Syntax - These replies refer to syntax errors,
 syntactically correct commands that don't fit any
 functional category, unimplemented or superfluous
 commands.

 x1z Information - These are replies to requests for
 information, such as status or help.

 x2z Connections - Replies referring to the control and
 data connections.

 x3z Authentication and accounting - Replies for the login
 process and accounting procedures.

 x4z Unspecified as yet.

 x5z File system - These replies indicate the status of the
 Server file system vis-a-vis the requested transfer or
 other file system action.

 The third digit gives a finer gradation of meaning in each of
 the function categories, specified by the second digit. The
 list of replies below will illustrate this. Note that the text

Postel & Reynolds [Page 38]

C
om

pendium
 2 page 271

RFC 959 October 1985
File Transfer Protocol

 associated with each reply is recommended, rather than
 mandatory, and may even change according to the command with
 which it is associated. The reply codes, on the other hand,
 must strictly follow the specifications in the last section;
 that is, Server implementations should not invent new codes for
 situations that are only slightly different from the ones
 described here, but rather should adapt codes already defined.

 A command such as TYPE or ALLO whose successful execution
 does not offer the user-process any new information will
 cause a 200 reply to be returned. If the command is not
 implemented by a particular Server-FTP process because it
 has no relevance to that computer system, for example ALLO
 at a TOPS20 site, a Positive Completion reply is still
 desired so that the simple User-process knows it can proceed
 with its course of action. A 202 reply is used in this case
 with, for example, the reply text: "No storage allocation
 necessary." If, on the other hand, the command requests a
 non-site-specific action and is unimplemented, the response
 is 502. A refinement of that is the 504 reply for a command
 that is implemented, but that requests an unimplemented
 parameter.

 4.2.1 Reply Codes by Function Groups

 200 Command okay.
 500 Syntax error, command unrecognized.
 This may include errors such as command line too long.
 501 Syntax error in parameters or arguments.
 202 Command not implemented, superfluous at this site.
 502 Command not implemented.
 503 Bad sequence of commands.
 504 Command not implemented for that parameter.

Postel & Reynolds [Page 39]

RFC 959 October 1985
File Transfer Protocol

 110 Restart marker reply.
 In this case, the text is exact and not left to the
 particular implementation; it must read:
 MARK yyyy = mmmm
 Where yyyy is User-process data stream marker, and mmmm
 server's equivalent marker (note the spaces between markers
 and "=").
 211 System status, or system help reply.
 212 Directory status.
 213 File status.
 214 Help message.
 On how to use the server or the meaning of a particular
 non-standard command. This reply is useful only to the
 human user.
 215 NAME system type.
 Where NAME is an official system name from the list in the
 Assigned Numbers document.

 120 Service ready in nnn minutes.
 220 Service ready for new user.
 221 Service closing control connection.
 Logged out if appropriate.
 421 Service not available, closing control connection.
 This may be a reply to any command if the service knows it
 must shut down.
 125 Data connection already open; transfer starting.
 225 Data connection open; no transfer in progress.
 425 Can't open data connection.
 226 Closing data connection.
 Requested file action successful (for example, file
 transfer or file abort).
 426 Connection closed; transfer aborted.
 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

 230 User logged in, proceed.
 530 Not logged in.
 331 User name okay, need password.
 332 Need account for login.
 532 Need account for storing files.

Postel & Reynolds [Page 40]

C
om

pendium
 2 page 272

RFC 959 October 1985
File Transfer Protocol

 150 File status okay; about to open data connection.
 250 Requested file action okay, completed.
 257 "PATHNAME" created.
 350 Requested file action pending further information.
 450 Requested file action not taken.
 File unavailable (e.g., file busy).
 550 Requested action not taken.
 File unavailable (e.g., file not found, no access).
 451 Requested action aborted. Local error in processing.
 551 Requested action aborted. Page type unknown.
 452 Requested action not taken.
 Insufficient storage space in system.
 552 Requested file action aborted.
 Exceeded storage allocation (for current directory or
 dataset).
 553 Requested action not taken.
 File name not allowed.

 4.2.2 Numeric Order List of Reply Codes

 110 Restart marker reply.
 In this case, the text is exact and not left to the
 particular implementation; it must read:
 MARK yyyy = mmmm
 Where yyyy is User-process data stream marker, and mmmm
 server's equivalent marker (note the spaces between markers
 and "=").
 120 Service ready in nnn minutes.
 125 Data connection already open; transfer starting.
 150 File status okay; about to open data connection.

Postel & Reynolds [Page 41]

RFC 959 October 1985
File Transfer Protocol

 200 Command okay.
 202 Command not implemented, superfluous at this site.
 211 System status, or system help reply.
 212 Directory status.
 213 File status.
 214 Help message.
 On how to use the server or the meaning of a particular
 non-standard command. This reply is useful only to the
 human user.
 215 NAME system type.
 Where NAME is an official system name from the list in the
 Assigned Numbers document.
 220 Service ready for new user.
 221 Service closing control connection.
 Logged out if appropriate.
 225 Data connection open; no transfer in progress.
 226 Closing data connection.
 Requested file action successful (for example, file
 transfer or file abort).
 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
 230 User logged in, proceed.
 250 Requested file action okay, completed.
 257 "PATHNAME" created.

 331 User name okay, need password.
 332 Need account for login.
 350 Requested file action pending further information.

 421 Service not available, closing control connection.
 This may be a reply to any command if the service knows it
 must shut down.
 425 Can't open data connection.
 426 Connection closed; transfer aborted.
 450 Requested file action not taken.
 File unavailable (e.g., file busy).
 451 Requested action aborted: local error in processing.
 452 Requested action not taken.
 Insufficient storage space in system.

Postel & Reynolds [Page 42]

C
om

pendium
 2 page 273

RFC 959 October 1985
File Transfer Protocol

 500 Syntax error, command unrecognized.
 This may include errors such as command line too long.
 501 Syntax error in parameters or arguments.
 502 Command not implemented.
 503 Bad sequence of commands.
 504 Command not implemented for that parameter.
 530 Not logged in.
 532 Need account for storing files.
 550 Requested action not taken.
 File unavailable (e.g., file not found, no access).
 551 Requested action aborted: page type unknown.
 552 Requested file action aborted.
 Exceeded storage allocation (for current directory or
 dataset).
 553 Requested action not taken.
 File name not allowed.

5. DECLARATIVE SPECIFICATIONS

 5.1. MINIMUM IMPLEMENTATION

 In order to make FTP workable without needless error messages, the
 following minimum implementation is required for all servers:

 TYPE - ASCII Non-print
 MODE - Stream
 STRUCTURE - File, Record
 COMMANDS - USER, QUIT, PORT,
 TYPE, MODE, STRU,
 for the default values
 RETR, STOR,
 NOOP.

 The default values for transfer parameters are:

 TYPE - ASCII Non-print
 MODE - Stream
 STRU - File

 All hosts must accept the above as the standard defaults.

Postel & Reynolds [Page 43]

RFC 959 October 1985
File Transfer Protocol

 5.2. CONNECTIONS

 The server protocol interpreter shall "listen" on Port L. The
 user or user protocol interpreter shall initiate the full-duplex
 control connection. Server- and user- processes should follow the
 conventions of the Telnet protocol as specified in the
 ARPA-Internet Protocol Handbook [1]. Servers are under no
 obligation to provide for editing of command lines and may require
 that it be done in the user host. The control connection shall be
 closed by the server at the user's request after all transfers and
 replies are completed.

 The user-DTP must "listen" on the specified data port; this may be
 the default user port (U) or a port specified in the PORT command.
 The server shall initiate the data connection from his own default
 data port (L-1) using the specified user data port. The direction
 of the transfer and the port used will be determined by the FTP
 service command.

 Note that all FTP implementation must support data transfer using
 the default port, and that only the USER-PI may initiate the use
 of non-default ports.

 When data is to be transferred between two servers, A and B (refer
 to Figure 2), the user-PI, C, sets up control connections with
 both server-PI's. One of the servers, say A, is then sent a PASV
 command telling him to "listen" on his data port rather than
 initiate a connection when he receives a transfer service command.
 When the user-PI receives an acknowledgment to the PASV command,
 which includes the identity of the host and port being listened
 on, the user-PI then sends A's port, a, to B in a PORT command; a
 reply is returned. The user-PI may then send the corresponding
 service commands to A and B. Server B initiates the connection
 and the transfer proceeds. The command-reply sequence is listed
 below where the messages are vertically synchronous but
 horizontally asynchronous:

Postel & Reynolds [Page 44]

C
om

pendium
 2 page 274

RFC 959 October 1985
File Transfer Protocol

 User-PI - Server A User-PI - Server B
 ------------------ ------------------

 C->A : Connect C->B : Connect
 C->A : PASV
 A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2
 C->B : PORT A1,A2,A3,A4,a1,a2
 B->C : 200 Okay
 C->A : STOR C->B : RETR
 B->A : Connect to HOST-A, PORT-a

 Figure 3

 The data connection shall be closed by the server under the
 conditions described in the Section on Establishing Data
 Connections. If the data connection is to be closed following a
 data transfer where closing the connection is not required to
 indicate the end-of-file, the server must do so immediately.
 Waiting until after a new transfer command is not permitted
 because the user-process will have already tested the data
 connection to see if it needs to do a "listen"; (remember that the
 user must "listen" on a closed data port BEFORE sending the
 transfer request). To prevent a race condition here, the server
 sends a reply (226) after closing the data connection (or if the
 connection is left open, a "file transfer completed" reply (250)
 and the user-PI should wait for one of these replies before
 issuing a new transfer command).

 Any time either the user or server see that the connection is
 being closed by the other side, it should promptly read any
 remaining data queued on the connection and issue the close on its
 own side.

 5.3. COMMANDS

 The commands are Telnet character strings transmitted over the
 control connections as described in the Section on FTP Commands.
 The command functions and semantics are described in the Section
 on Access Control Commands, Transfer Parameter Commands, FTP
 Service Commands, and Miscellaneous Commands. The command syntax
 is specified here.

 The commands begin with a command code followed by an argument
 field. The command codes are four or fewer alphabetic characters.
 Upper and lower case alphabetic characters are to be treated
 identically. Thus, any of the following may represent the
 retrieve command:

Postel & Reynolds [Page 45]

RFC 959 October 1985
File Transfer Protocol

 RETR Retr retr ReTr rETr

 This also applies to any symbols representing parameter values,
 such as A or a for ASCII TYPE. The command codes and the argument
 fields are separated by one or more spaces.

 The argument field consists of a variable length character string
 ending with the character sequence <CRLF> (Carriage Return, Line
 Feed) for NVT-ASCII representation; for other negotiated languages
 a different end of line character might be used. It should be
 noted that the server is to take no action until the end of line
 code is received.

 The syntax is specified below in NVT-ASCII. All characters in the
 argument field are ASCII characters including any ASCII
 represented decimal integers. Square brackets denote an optional
 argument field. If the option is not taken, the appropriate
 default is implied.

Postel & Reynolds [Page 46]

C
om

pendium
 2 page 275

RFC 959 October 1985
File Transfer Protocol

 5.3.1. FTP COMMANDS

 The following are the FTP commands:

 USER <SP> <username> <CRLF>
 PASS <SP> <password> <CRLF>
 ACCT <SP> <account-information> <CRLF>
 CWD <SP> <pathname> <CRLF>
 CDUP <CRLF>
 SMNT <SP> <pathname> <CRLF>
 QUIT <CRLF>
 REIN <CRLF>
 PORT <SP> <host-port> <CRLF>
 PASV <CRLF>
 TYPE <SP> <type-code> <CRLF>
 STRU <SP> <structure-code> <CRLF>
 MODE <SP> <mode-code> <CRLF>
 RETR <SP> <pathname> <CRLF>
 STOR <SP> <pathname> <CRLF>
 STOU <CRLF>
 APPE <SP> <pathname> <CRLF>
 ALLO <SP> <decimal-integer>
 [<SP> R <SP> <decimal-integer>] <CRLF>
 REST <SP> <marker> <CRLF>
 RNFR <SP> <pathname> <CRLF>
 RNTO <SP> <pathname> <CRLF>
 ABOR <CRLF>
 DELE <SP> <pathname> <CRLF>
 RMD <SP> <pathname> <CRLF>
 MKD <SP> <pathname> <CRLF>
 PWD <CRLF>
 LIST [<SP> <pathname>] <CRLF>
 NLST [<SP> <pathname>] <CRLF>
 SITE <SP> <string> <CRLF>
 SYST <CRLF>
 STAT [<SP> <pathname>] <CRLF>
 HELP [<SP> <string>] <CRLF>
 NOOP <CRLF>

Postel & Reynolds [Page 47]

RFC 959 October 1985
File Transfer Protocol

 5.3.2. FTP COMMAND ARGUMENTS

 The syntax of the above argument fields (using BNF notation
 where applicable) is:

 <username> ::= <string>
 <password> ::= <string>
 <account-information> ::= <string>
 <string> ::= <char> | <char><string>
 <char> ::= any of the 128 ASCII characters except <CR> and
 <LF>
 <marker> ::= <pr-string>
 <pr-string> ::= <pr-char> | <pr-char><pr-string>
 <pr-char> ::= printable characters, any
 ASCII code 33 through 126
 <byte-size> ::= <number>
 <host-port> ::= <host-number>,<port-number>
 <host-number> ::= <number>,<number>,<number>,<number>
 <port-number> ::= <number>,<number>
 <number> ::= any decimal integer 1 through 255
 <form-code> ::= N | T | C
 <type-code> ::= A [<sp> <form-code>]
 | E [<sp> <form-code>]
 | I
 | L <sp> <byte-size>
 <structure-code> ::= F | R | P
 <mode-code> ::= S | B | C
 <pathname> ::= <string>
 <decimal-integer> ::= any decimal integer

Postel & Reynolds [Page 48]

C
om

pendium
 2 page 276

RFC 959 October 1985
File Transfer Protocol

 5.4. SEQUENCING OF COMMANDS AND REPLIES

 The communication between the user and server is intended to be an
 alternating dialogue. As such, the user issues an FTP command and
 the server responds with a prompt primary reply. The user should
 wait for this initial primary success or failure response before
 sending further commands.

 Certain commands require a second reply for which the user should
 also wait. These replies may, for example, report on the progress
 or completion of file transfer or the closing of the data
 connection. They are secondary replies to file transfer commands.

 One important group of informational replies is the connection
 greetings. Under normal circumstances, a server will send a 220
 reply, "awaiting input", when the connection is completed. The
 user should wait for this greeting message before sending any
 commands. If the server is unable to accept input right away, a
 120 "expected delay" reply should be sent immediately and a 220
 reply when ready. The user will then know not to hang up if there
 is a delay.

 Spontaneous Replies

 Sometimes "the system" spontaneously has a message to be sent
 to a user (usually all users). For example, "System going down
 in 15 minutes". There is no provision in FTP for such
 spontaneous information to be sent from the server to the user.
 It is recommended that such information be queued in the
 server-PI and delivered to the user-PI in the next reply
 (possibly making it a multi-line reply).

 The table below lists alternative success and failure replies for
 each command. These must be strictly adhered to; a server may
 substitute text in the replies, but the meaning and action implied
 by the code numbers and by the specific command reply sequence
 cannot be altered.

 Command-Reply Sequences

 In this section, the command-reply sequence is presented. Each
 command is listed with its possible replies; command groups are
 listed together. Preliminary replies are listed first (with
 their succeeding replies indented and under them), then
 positive and negative completion, and finally intermediary

Postel & Reynolds [Page 49]

RFC 959 October 1985
File Transfer Protocol

 replies with the remaining commands from the sequence
 following. This listing forms the basis for the state
 diagrams, which will be presented separately.

 Connection Establishment
 120
 220
 220
 421
 Login
 USER
 230
 530
 500, 501, 421
 331, 332
 PASS
 230
 202
 530
 500, 501, 503, 421
 332
 ACCT
 230
 202
 530
 500, 501, 503, 421
 CWD
 250
 500, 501, 502, 421, 530, 550
 CDUP
 200
 500, 501, 502, 421, 530, 550
 SMNT
 202, 250
 500, 501, 502, 421, 530, 550
 Logout
 REIN
 120
 220
 220
 421
 500, 502
 QUIT
 221
 500

Postel & Reynolds [Page 50]

C
om

pendium
 2 page 277

RFC 959 October 1985
File Transfer Protocol

 Transfer parameters
 PORT
 200
 500, 501, 421, 530
 PASV
 227
 500, 501, 502, 421, 530
 MODE
 200
 500, 501, 504, 421, 530
 TYPE
 200
 500, 501, 504, 421, 530
 STRU
 200
 500, 501, 504, 421, 530
 File action commands
 ALLO
 200
 202
 500, 501, 504, 421, 530
 REST
 500, 501, 502, 421, 530
 350
 STOR
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 452, 553
 500, 501, 421, 530
 STOU
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 452, 553
 500, 501, 421, 530
 RETR
 125, 150
 (110)
 226, 250
 425, 426, 451
 450, 550
 500, 501, 421, 530

Postel & Reynolds [Page 51]

RFC 959 October 1985
File Transfer Protocol

 LIST
 125, 150
 226, 250
 425, 426, 451
 450
 500, 501, 502, 421, 530
 NLST
 125, 150
 226, 250
 425, 426, 451
 450
 500, 501, 502, 421, 530
 APPE
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 550, 452, 553
 500, 501, 502, 421, 530
 RNFR
 450, 550
 500, 501, 502, 421, 530
 350
 RNTO
 250
 532, 553
 500, 501, 502, 503, 421, 530
 DELE
 250
 450, 550
 500, 501, 502, 421, 530
 RMD
 250
 500, 501, 502, 421, 530, 550
 MKD
 257
 500, 501, 502, 421, 530, 550
 PWD
 257
 500, 501, 502, 421, 550
 ABOR
 225, 226
 500, 501, 502, 421

Postel & Reynolds [Page 52]

C
om

pendium
 2 page 278

RFC 959 October 1985
File Transfer Protocol

 Informational commands
 SYST
 215
 500, 501, 502, 421
 STAT
 211, 212, 213
 450
 500, 501, 502, 421, 530
 HELP
 211, 214
 500, 501, 502, 421
 Miscellaneous commands
 SITE
 200
 202
 500, 501, 530
 NOOP
 200
 500 421

Postel & Reynolds [Page 53]

RFC 959 October 1985
File Transfer Protocol

6. STATE DIAGRAMS

 Here we present state diagrams for a very simple minded FTP
 implementation. Only the first digit of the reply codes is used.
 There is one state diagram for each group of FTP commands or command
 sequences.

 The command groupings were determined by constructing a model for
 each command then collecting together the commands with structurally
 identical models.

 For each command or command sequence there are three possible
 outcomes: success (S), failure (F), and error (E). In the state
 diagrams below we use the symbol B for "begin", and the symbol W for
 "wait for reply".

 We first present the diagram that represents the largest group of FTP
 commands:

 1,3 +---+
 ----------->| E |
 | +---+
 |
 +---+ cmd +---+ 2 +---+
 | B |---------->| W |---------->| S |
 +---+ +---+ +---+
 |
 | 4,5 +---+
 ----------->| F |
 +---+

 This diagram models the commands:

 ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV,
 QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.

Postel & Reynolds [Page 54]

C
om

pendium
 2 page 279

RFC 959 October 1985
File Transfer Protocol

 The other large group of commands is represented by a very similar
 diagram:

 3 +---+
 ----------->| E |
 | +---+
 |
 +---+ cmd +---+ 2 +---+
 | B |---------->| W |---------->| S |
 +---+ --->+---+ +---+
 | | |
 | | | 4,5 +---+
 | 1 | ----------->| F |
 ----- +---+

 This diagram models the commands:

 APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

 Note that this second model could also be used to represent the first
 group of commands, the only difference being that in the first group
 the 100 series replies are unexpected and therefore treated as error,
 while the second group expects (some may require) 100 series replies.
 Remember that at most, one 100 series reply is allowed per command.

 The remaining diagrams model command sequences, perhaps the simplest
 of these is the rename sequence:

 +---+ RNFR +---+ 1,2 +---+
 | B |---------->| W |---------->| E |
 +---+ +---+ -->+---+
 | | |
 3 | | 4,5 |
 -------------- ------ |
 | | | +---+
 | ------------->| S |
 | | 1,3 | | +---+
 | 2| --------
 | | | |
 V | | |
 +---+ RNTO +---+ 4,5 ----->+---+
 | |---------->| W |---------->| F |
 +---+ +---+ +---+

Postel & Reynolds [Page 55]

RFC 959 October 1985
File Transfer Protocol

 The next diagram is a simple model of the Restart command:

 +---+ REST +---+ 1,2 +---+
 | B |---------->| W |---------->| E |
 +---+ +---+ -->+---+
 | | |
 3 | | 4,5 |
 -------------- ------ |
 | | | +---+
 | ------------->| S |
 | | 3 | | +---+
 | 2| --------
 | | | |
 V | | |
 +---+ cmd +---+ 4,5 ----->+---+
 | |---------->| W |---------->| F |
 +---+ -->+---+ +---+
 | |
 | 1 |

 Where "cmd" is APPE, STOR, or RETR.

 We note that the above three models are similar. The Restart differs
 from the Rename two only in the treatment of 100 series replies at
 the second stage, while the second group expects (some may require)
 100 series replies. Remember that at most, one 100 series reply is
 allowed per command.

Postel & Reynolds [Page 56]

C
om

pendium
 2 page 280

RFC 959 October 1985
File Transfer Protocol

 The most complicated diagram is for the Login sequence:

 1
 +---+ USER +---+------------->+---+
 | B |---------->| W | 2 ---->| E |
 +---+ +---+------ | -->+---+
 | | | | |
 3 | | 4,5 | | |
 -------------- ----- | | |
 | | | | |
 | | | | |
 | --------- |
 | 1| | | |
 V | | | |
 +---+ PASS +---+ 2 | ------>+---+
 | |---------->| W |------------->| S |
 +---+ +---+ ---------->+---+
 | | | | |
 3 | |4,5| | |
 -------------- -------- |
 | | | | |
 | | | | |
 | -----------
 | 1,3| | | |
 V | 2| | |
 +---+ ACCT +---+-- | ----->+---+
 | |---------->| W | 4,5 -------->| F |
 +---+ +---+------------->+---+

Postel & Reynolds [Page 57]

RFC 959 October 1985
File Transfer Protocol

 Finally, we present a generalized diagram that could be used to model
 the command and reply interchange:

 | |
 Begin | |
 | V |
 | +---+ cmd +---+ 2 +---+ |
 -->| |------->| |---------->| | |
 | | | W | | S |-----|
 -->| | -->| |----- | | |
 | +---+ | +---+ 4,5 | +---+ | | | | | |
 | | | | | | |
 | | | 1| |3 | +---+ |
 | | | | | | | | |
 | | ---- | ---->| F |-----
 | | | | |
 | | | +---+

 |
 |
 V
 End

Postel & Reynolds [Page 58]

C
om

pendium
 2 page 281

RFC 959 October 1985
File Transfer Protocol

7. TYPICAL FTP SCENARIO

 User at host U wanting to transfer files to/from host S:

 In general, the user will communicate to the server via a mediating
 user-FTP process. The following may be a typical scenario. The
 user-FTP prompts are shown in parentheses, '---->' represents
 commands from host U to host S, and '<----' represents replies from
 host S to host U.

 LOCAL COMMANDS BY USER ACTION INVOLVED

 ftp (host) multics<CR> Connect to host S, port L,
 establishing control connections.
 <---- 220 Service ready <CRLF>.
 username Doe <CR> USER Doe<CRLF>---->
 <---- 331 User name ok,
 need password<CRLF>.
 password mumble <CR> PASS mumble<CRLF>---->
 <---- 230 User logged in<CRLF>.
 retrieve (local type) ASCII<CR>
 (local pathname) test 1 <CR> User-FTP opens local file in ASCII.
 (for. pathname) test.pl1<CR> RETR test.pl1<CRLF> ---->
 <---- 150 File status okay;
 about to open data
 connection<CRLF>.
 Server makes data connection
 to port U.

 <---- 226 Closing data connection,
 file transfer successful<CRLF>.
 type Image<CR> TYPE I<CRLF> ---->
 <---- 200 Command OK<CRLF>
 store (local type) image<CR>
 (local pathname) file dump<CR> User-FTP opens local file in Image.
 (for.pathname) >udd>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->
 <---- 550 Access denied<CRLF>
 terminate QUIT <CRLF> ---->
 Server closes all
 connections.

8. CONNECTION ESTABLISHMENT

 The FTP control connection is established via TCP between the user
 process port U and the server process port L. This protocol is
 assigned the service port 21 (25 octal), that is L=21.

Postel & Reynolds [Page 59]

RFC 959 October 1985
File Transfer Protocol

APPENDIX I - PAGE STRUCTURE

 The need for FTP to support page structure derives principally from
 the need to support efficient transmission of files between TOPS-20
 systems, particularly the files used by NLS.

 The file system of TOPS-20 is based on the concept of pages. The
 operating system is most efficient at manipulating files as pages.
 The operating system provides an interface to the file system so that
 many applications view files as sequential streams of characters.
 However, a few applications use the underlying page structures
 directly, and some of these create holey files.

 A TOPS-20 disk file consists of four things: a pathname, a page
 table, a (possibly empty) set of pages, and a set of attributes.

 The pathname is specified in the RETR or STOR command. It includes
 the directory name, file name, file name extension, and generation
 number.

 The page table contains up to 2**18 entries. Each entry may be
 EMPTY, or may point to a page. If it is not empty, there are also
 some page-specific access bits; not all pages of a file need have the
 same access protection.

 A page is a contiguous set of 512 words of 36 bits each.

 The attributes of the file, in the File Descriptor Block (FDB),
 contain such things as creation time, write time, read time, writer's
 byte-size, end-of-file pointer, count of reads and writes, backup
 system tape numbers, etc.

 Note that there is NO requirement that entries in the page table be
 contiguous. There may be empty page table slots between occupied
 ones. Also, the end of file pointer is simply a number. There is no
 requirement that it in fact point at the "last" datum in the file.
 Ordinary sequential I/O calls in TOPS-20 will cause the end of file
 pointer to be left after the last datum written, but other operations
 may cause it not to be so, if a particular programming system so
 requires.

 In fact, in both of these special cases, "holey" files and
 end-of-file pointers NOT at the end of the file, occur with NLS data
 files.

Postel & Reynolds [Page 60]

C
om

pendium
 2 page 282

RFC 959 October 1985
File Transfer Protocol

 The TOPS-20 paged files can be sent with the FTP transfer parameters:
 TYPE L 36, STRU P, and MODE S (in fact, any mode could be used).

 Each page of information has a header. Each header field, which is a
 logical byte, is a TOPS-20 word, since the TYPE is L 36.

 The header fields are:

 Word 0: Header Length.

 The header length is 5.

 Word 1: Page Index.

 If the data is a disk file page, this is the number of that
 page in the file's page map. Empty pages (holes) in the file
 are simply not sent. Note that a hole is NOT the same as a
 page of zeros.

 Word 2: Data Length.

 The number of data words in this page, following the header.
 Thus, the total length of the transmission unit is the Header
 Length plus the Data Length.

 Word 3: Page Type.

 A code for what type of chunk this is. A data page is type 3,
 the FDB page is type 2.

 Word 4: Page Access Control.

 The access bits associated with the page in the file's page
 map. (This full word quantity is put into AC2 of an SPACS by
 the program reading from net to disk.)

 After the header are Data Length data words. Data Length is
 currently either 512 for a data page or 31 for an FDB. Trailing
 zeros in a disk file page may be discarded, making Data Length less
 than 512 in that case.

Postel & Reynolds [Page 61]

RFC 959 October 1985
File Transfer Protocol

APPENDIX II - DIRECTORY COMMANDS

 Since UNIX has a tree-like directory structure in which directories
 are as easy to manipulate as ordinary files, it is useful to expand
 the FTP servers on these machines to include commands which deal with
 the creation of directories. Since there are other hosts on the
 ARPA-Internet which have tree-like directories (including TOPS-20 and
 Multics), these commands are as general as possible.

 Four directory commands have been added to FTP:

 MKD pathname

 Make a directory with the name "pathname".

 RMD pathname

 Remove the directory with the name "pathname".

 PWD

 Print the current working directory name.

 CDUP

 Change to the parent of the current working directory.

 The "pathname" argument should be created (removed) as a
 subdirectory of the current working directory, unless the "pathname"
 string contains sufficient information to specify otherwise to the
 server, e.g., "pathname" is an absolute pathname (in UNIX and
 Multics), or pathname is something like "<abso.lute.path>" to
 TOPS-20.

 REPLY CODES

 The CDUP command is a special case of CWD, and is included to
 simplify the implementation of programs for transferring directory
 trees between operating systems having different syntaxes for
 naming the parent directory. The reply codes for CDUP be
 identical to the reply codes of CWD.

 The reply codes for RMD be identical to the reply codes for its
 file analogue, DELE.

 The reply codes for MKD, however, are a bit more complicated. A
 freshly created directory will probably be the object of a future

Postel & Reynolds [Page 62]

C
om

pendium
 2 page 283

RFC 959 October 1985
File Transfer Protocol

 CWD command. Unfortunately, the argument to MKD may not always be
 a suitable argument for CWD. This is the case, for example, when
 a TOPS-20 subdirectory is created by giving just the subdirectory
 name. That is, with a TOPS-20 server FTP, the command sequence

 MKD MYDIR
 CWD MYDIR

 will fail. The new directory may only be referred to by its
 "absolute" name; e.g., if the MKD command above were issued while
 connected to the directory <DFRANKLIN>, the new subdirectory
 could only be referred to by the name <DFRANKLIN.MYDIR>.

 Even on UNIX and Multics, however, the argument given to MKD may
 not be suitable. If it is a "relative" pathname (i.e., a pathname
 which is interpreted relative to the current directory), the user
 would need to be in the same current directory in order to reach
 the subdirectory. Depending on the application, this may be
 inconvenient. It is not very robust in any case.

 To solve these problems, upon successful completion of an MKD
 command, the server should return a line of the form:

 257<space>"<directory-name>"<space><commentary>

 That is, the server will tell the user what string to use when
 referring to the created directory. The directory name can
 contain any character; embedded double-quotes should be escaped by
 double-quotes (the "quote-doubling" convention).

 For example, a user connects to the directory /usr/dm, and creates
 a subdirectory, named pathname:

 CWD /usr/dm
 200 directory changed to /usr/dm
 MKD pathname
 257 "/usr/dm/pathname" directory created

 An example with an embedded double quote:

 MKD foo"bar
 257 "/usr/dm/foo""bar" directory created
 CWD /usr/dm/foo"bar
 200 directory changed to /usr/dm/foo"bar

Postel & Reynolds [Page 63]

RFC 959 October 1985
File Transfer Protocol

 The prior existence of a subdirectory with the same name is an
 error, and the server must return an "access denied" error reply
 in that case.

 CWD /usr/dm
 200 directory changed to /usr/dm
 MKD pathname
 521-"/usr/dm/pathname" directory already exists;
 521 taking no action.

 The failure replies for MKD are analogous to its file creating
 cousin, STOR. Also, an "access denied" return is given if a file
 name with the same name as the subdirectory will conflict with the
 creation of the subdirectory (this is a problem on UNIX, but
 shouldn't be one on TOPS-20).

 Essentially because the PWD command returns the same type of
 information as the successful MKD command, the successful PWD
 command uses the 257 reply code as well.

 SUBTLETIES

 Because these commands will be most useful in transferring
 subtrees from one machine to another, carefully observe that the
 argument to MKD is to be interpreted as a sub-directory of the
 current working directory, unless it contains enough information
 for the destination host to tell otherwise. A hypothetical
 example of its use in the TOPS-20 world:

 CWD <some.where>
 200 Working directory changed
 MKD overrainbow
 257 "<some.where.overrainbow>" directory created
 CWD overrainbow
 431 No such directory
 CWD <some.where.overrainbow>
 200 Working directory changed

 CWD <some.where>
 200 Working directory changed to <some.where>
 MKD <unambiguous>
 257 "<unambiguous>" directory created
 CWD <unambiguous>

 Note that the first example results in a subdirectory of the
 connected directory. In contrast, the argument in the second
 example contains enough information for TOPS-20 to tell that the

Postel & Reynolds [Page 64]

C
om

pendium
 2 page 284

RFC 959 October 1985
File Transfer Protocol

 <unambiguous> directory is a top-level directory. Note also that
 in the first example the user "violated" the protocol by
 attempting to access the freshly created directory with a name
 other than the one returned by TOPS-20. Problems could have
 resulted in this case had there been an <overrainbow> directory;
 this is an ambiguity inherent in some TOPS-20 implementations.
 Similar considerations apply to the RMD command. The point is
 this: except where to do so would violate a host's conventions for
 denoting relative versus absolute pathnames, the host should treat
 the operands of the MKD and RMD commands as subdirectories. The
 257 reply to the MKD command must always contain the absolute
 pathname of the created directory.

Postel & Reynolds [Page 65]

RFC 959 October 1985
File Transfer Protocol

APPENDIX III - RFCs on FTP

 Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823),
 MIT-Project MAC, 16 April 1971.

 Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File
 Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172
 (NIC 6794), MIT-Project MAC, 23 June 1971.

 Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663),
 UCLA/CCN, 29 September 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
 (NIC 7813), MIT-Project MAC, 17 November 1971.

 McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",
 RFC 281 (NIC 8163), BBN, 8 December 1971.

 Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
 Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC,
 25 January 1972.

 Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596),
 MIT-Project MAC, 8 July 1972.

 Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)",
 RFC 385 (NIC 11357), MIT-Project MAC, 18 August 1972.

 Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah,
 27 November 1972.

 Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further
 Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972.

 Braden, Bob, "Comments on File Transfer Protocol", RFC 430
 (NIC 13299), UCLA/CCN, 7 February 1973.

 Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction",
 RFC 438 (NIC 13770), BBN, 15 January 1973.

 Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN,
 27 February 1973.

 McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN,
 16 February 1973.

Postel & Reynolds [Page 66]

C
om

pendium
 2 page 285

RFC 959 October 1985
File Transfer Protocol

 Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458
 (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973.

 Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN,
 12 July 1973.

 Krilanovich, Mark, and George Gregg, "Comments on the File Transfer
 Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974.

 Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the
 File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974.

 Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White,
 "Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB,
 Ames Research Center, SRI-ARC, 28 February 1974.

 Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463
 (NIC 14573), MIT-DMCG, 21 February 1973.

 Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN,
 8 March 1973.

 Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919),
 MIT-DMCG, 6 March 1973.

 Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II",
 RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973.

 White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948),
 SRI-ARC, 8 March 1973.

 White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949),
 SRI-ARC, 8 March 1973.

 Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506
 (NIC 16157), MIT-Multics, 26 June 1973.

 Day, John, "Memo to FTP Group (Proposal for File Access Protocol)",
 RFC 520 (NIC 16819), Illinois, 25 June 1973.

 Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532
 (NIC 17451), UCSD-CC, 22 June 1973.

 Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN,
 15 November 1973.

Postel & Reynolds [Page 67]

RFC 959 October 1985
File Transfer Protocol

 McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation -
 Schedule Change", RFC 593 (NIC 20615), BBN and MITRE,
 29 November 1973.

 Sussman, Julie, "FTP Error Code Usage for More Reliable Mail
 Service", RFC 630 (NIC 30237), BBN, 10 April 1974.

 Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843),
 UCLA/NMC, 5 June 1974.

 Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481),
 SU-AI, 10 May 1975.

 Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI,
 28 May 1975.

 Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975.

 Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL,
 31 October 1977.

 Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758),
 SRI-KL, 30 December 1977.

 Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT,
 10 December 1978.

 Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI,
 June 1980.

 Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP
 Commands", RFC 776, BBN, December 1980.

 Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE,
 July 1985.

Postel & Reynolds [Page 68]

C
om

pendium
 2 page 286

RFC 959 October 1985
File Transfer Protocol

REFERENCES

 [1] Feinler, Elizabeth, "Internet Protocol Transition Workbook",
 Network Information Center, SRI International, March 1982.

 [2] Postel, Jon, "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, DARPA, September 1981.

 [3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol
 Specification", RFC 854, ISI, May 1983.

 [4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943,
 ISI, April 1985.

Postel & Reynolds [Page 69]

C
om

pendium
 2 page 287

Network Working Group D. Kristol
Request for Comments: 2109 Bell Laboratories, Lucent Technologies
Category: Standards Track L. Montulli
 Netscape Communications
 February 1997

 HTTP State Management Mechanism

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

1. ABSTRACT

 This document specifies a way to create a stateful session with HTTP
 requests and responses. It describes two new headers, Cookie and
 Set-Cookie, which carry state information between participating
 origin servers and user agents. The method described here differs
 from Netscape's Cookie proposal, but it can interoperate with
 HTTP/1.0 user agents that use Netscape's method. (See the HISTORICAL
 section.)

2. TERMINOLOGY

 The terms user agent, client, server, proxy, and origin server have
 the same meaning as in the HTTP/1.0 specification.

 Fully-qualified host name (FQHN) means either the fully-qualified
 domain name (FQDN) of a host (i.e., a completely specified domain
 name ending in a top-level domain such as .com or .uk), or the
 numeric Internet Protocol (IP) address of a host. The fully
 qualified domain name is preferred; use of numeric IP addresses is
 strongly discouraged.

 The terms request-host and request-URI refer to the values the client
 would send to the server as, respectively, the host (but not port)
 and abs_path portions of the absoluteURI (http_URL) of the HTTP
 request line. Note that request-host must be a FQHN.

Kristol & Montulli Standards Track [Page 1]

RFC 2109 HTTP State Management Mechanism February 1997

 Hosts names can be specified either as an IP address or a FQHN
 string. Sometimes we compare one host name with another. Host A's
 name domain-matches host B's if

 * both host names are IP addresses and their host name strings match
 exactly; or

 * both host names are FQDN strings and their host name strings match
 exactly; or

 * A is a FQDN string and has the form NB, where N is a non-empty name
 string, B has the form .B', and B' is a FQDN string. (So, x.y.com
 domain-matches .y.com but not y.com.)

 Note that domain-match is not a commutative operation: a.b.c.com
 domain-matches .c.com, but not the reverse.

 Because it was used in Netscape's original implementation of state
 management, we will use the term cookie to refer to the state
 information that passes between an origin server and user agent, and
 that gets stored by the user agent.

3. STATE AND SESSIONS

 This document describes a way to create stateful sessions with HTTP
 requests and responses. Currently, HTTP servers respond to each
 client request without relating that request to previous or
 subsequent requests; the technique allows clients and servers that
 wish to exchange state information to place HTTP requests and
 responses within a larger context, which we term a "session". This
 context might be used to create, for example, a "shopping cart", in
 which user selections can be aggregated before purchase, or a
 magazine browsing system, in which a user's previous reading affects
 which offerings are presented.

 There are, of course, many different potential contexts and thus many
 different potential types of session. The designers' paradigm for
 sessions created by the exchange of cookies has these key attributes:

 1. Each session has a beginning and an end.

 2. Each session is relatively short-lived.

 3. Either the user agent or the origin server may terminate a
 session.

 4. The session is implicit in the exchange of state information.

Kristol & Montulli Standards Track [Page 2]

C
om

pendium
 2 page 288

RFC 2109 HTTP State Management Mechanism February 1997

4. OUTLINE

 We outline here a way for an origin server to send state information
 to the user agent, and for the user agent to return the state
 information to the origin server. The goal is to have a minimal
 impact on HTTP and user agents. Only origin servers that need to
 maintain sessions would suffer any significant impact, and that
 impact can largely be confined to Common Gateway Interface (CGI)
 programs, unless the server provides more sophisticated state
 management support. (See Implementation Considerations, below.)

4.1 Syntax: General

 The two state management headers, Set-Cookie and Cookie, have common
 syntactic properties involving attribute-value pairs. The following
 grammar uses the notation, and tokens DIGIT (decimal digits) and
 token (informally, a sequence of non-special, non-white space
 characters) from the HTTP/1.1 specification [RFC 2068] to describe
 their syntax.

 av-pairs = av-pair *(";" av-pair)
 av-pair = attr ["=" value] ; optional value
 attr = token
 value = word
 word = token | quoted-string

 Attributes (names) (attr) are case-insensitive. White space is
 permitted between tokens. Note that while the above syntax
 description shows value as optional, most attrs require them.

 NOTE: The syntax above allows whitespace between the attribute and
 the = sign.

4.2 Origin Server Role

4.2.1 General

 The origin server initiates a session, if it so desires. (Note that
 "session" here does not refer to a persistent network connection but
 to a logical session created from HTTP requests and responses. The
 presence or absence of a persistent connection should have no effect
 on the use of cookie-derived sessions). To initiate a session, the
 origin server returns an extra response header to the client, Set-
 Cookie. (The details follow later.)

 A user agent returns a Cookie request header (see below) to the
 origin server if it chooses to continue a session. The origin server
 may ignore it or use it to determine the current state of the

Kristol & Montulli Standards Track [Page 3]

RFC 2109 HTTP State Management Mechanism February 1997

 session. It may send back to the client a Set-Cookie response header
 with the same or different information, or it may send no Set-Cookie
 header at all. The origin server effectively ends a session by
 sending the client a Set-Cookie header with Max-Age=0.

 Servers may return a Set-Cookie response headers with any response.
 User agents should send Cookie request headers, subject to other
 rules detailed below, with every request.

 An origin server may include multiple Set-Cookie headers in a
 response. Note that an intervening gateway could fold multiple such
 headers into a single header.

4.2.2 Set-Cookie Syntax

 The syntax for the Set-Cookie response header is

 set-cookie = "Set-Cookie:" cookies
 cookies = 1#cookie
 cookie = NAME "=" VALUE *(";" cookie-av)
 NAME = attr
 VALUE = value
 cookie-av = "Comment" "=" value
 | "Domain" "=" value
 | "Max-Age" "=" value
 | "Path" "=" value
 | "Secure"
 | "Version" "=" 1*DIGIT

 Informally, the Set-Cookie response header comprises the token Set-
 Cookie:, followed by a comma-separated list of one or more cookies.
 Each cookie begins with a NAME=VALUE pair, followed by zero or more
 semi-colon-separated attribute-value pairs. The syntax for
 attribute-value pairs was shown earlier. The specific attributes and
 the semantics of their values follows. The NAME=VALUE attribute-
 value pair must come first in each cookie. The others, if present,
 can occur in any order. If an attribute appears more than once in a
 cookie, the behavior is undefined.

 NAME=VALUE
 Required. The name of the state information ("cookie") is NAME,
 and its value is VALUE. NAMEs that begin with $ are reserved for
 other uses and must not be used by applications.

Kristol & Montulli Standards Track [Page 4]

C
om

pendium
 2 page 289

RFC 2109 HTTP State Management Mechanism February 1997

 The VALUE is opaque to the user agent and may be anything the
 origin server chooses to send, possibly in a server-selected
 printable ASCII encoding. "Opaque" implies that the content is of
 interest and relevance only to the origin server. The content
 may, in fact, be readable by anyone that examines the Set-Cookie
 header.

 Comment=comment
 Optional. Because cookies can contain private information about a
 user, the Cookie attribute allows an origin server to document its
 intended use of a cookie. The user can inspect the information to
 decide whether to initiate or continue a session with this cookie.

 Domain=domain
 Optional. The Domain attribute specifies the domain for which the
 cookie is valid. An explicitly specified domain must always start
 with a dot.

 Max-Age=delta-seconds
 Optional. The Max-Age attribute defines the lifetime of the
 cookie, in seconds. The delta-seconds value is a decimal non-
 negative integer. After delta-seconds seconds elapse, the client
 should discard the cookie. A value of zero means the cookie
 should be discarded immediately.

 Path=path
 Optional. The Path attribute specifies the subset of URLs to
 which this cookie applies.

 Secure
 Optional. The Secure attribute (with no value) directs the user
 agent to use only (unspecified) secure means to contact the origin
 server whenever it sends back this cookie.

 The user agent (possibly under the user's control) may determine
 what level of security it considers appropriate for "secure"
 cookies. The Secure attribute should be considered security
 advice from the server to the user agent, indicating that it is in
 the session's interest to protect the cookie contents.

 Version=version
 Required. The Version attribute, a decimal integer, identifies to
 which version of the state management specification the cookie
 conforms. For this specification, Version=1 applies.

Kristol & Montulli Standards Track [Page 5]

RFC 2109 HTTP State Management Mechanism February 1997

4.2.3 Controlling Caching

 An origin server must be cognizant of the effect of possible caching
 of both the returned resource and the Set-Cookie header. Caching
 "public" documents is desirable. For example, if the origin server
 wants to use a public document such as a "front door" page as a
 sentinel to indicate the beginning of a session for which a Set-
 Cookie response header must be generated, the page should be stored
 in caches "pre-expired" so that the origin server will see further
 requests. "Private documents", for example those that contain
 information strictly private to a session, should not be cached in
 shared caches.

 If the cookie is intended for use by a single user, the Set-cookie
 header should not be cached. A Set-cookie header that is intended to
 be shared by multiple users may be cached.

 The origin server should send the following additional HTTP/1.1
 response headers, depending on circumstances:

 * To suppress caching of the Set-Cookie header: Cache-control: no-
 cache="set-cookie".

 and one of the following:

 * To suppress caching of a private document in shared caches: Cache-
 control: private.

 * To allow caching of a document and require that it be validated
 before returning it to the client: Cache-control: must-revalidate.

 * To allow caching of a document, but to require that proxy caches
 (not user agent caches) validate it before returning it to the
 client: Cache-control: proxy-revalidate.

 * To allow caching of a document and request that it be validated
 before returning it to the client (by "pre-expiring" it):
 Cache-control: max-age=0. Not all caches will revalidate the
 document in every case.

 HTTP/1.1 servers must send Expires: old-date (where old-date is a
 date long in the past) on responses containing Set-Cookie response
 headers unless they know for certain (by out of band means) that
 there are no downsteam HTTP/1.0 proxies. HTTP/1.1 servers may send
 other Cache-Control directives that permit caching by HTTP/1.1
 proxies in addition to the Expires: old-date directive; the Cache-
 Control directive will override the Expires: old-date for HTTP/1.1
 proxies.

Kristol & Montulli Standards Track [Page 6]

C
om

pendium
 2 page 290

RFC 2109 HTTP State Management Mechanism February 1997

4.3 User Agent Role

4.3.1 Interpreting Set-Cookie

 The user agent keeps separate track of state information that arrives
 via Set-Cookie response headers from each origin server (as
 distinguished by name or IP address and port). The user agent
 applies these defaults for optional attributes that are missing:

 VersionDefaults to "old cookie" behavior as originally specified by
 Netscape. See the HISTORICAL section.

 Domain Defaults to the request-host. (Note that there is no dot at
 the beginning of request-host.)

 Max-AgeThe default behavior is to discard the cookie when the user
 agent exits.

 Path Defaults to the path of the request URL that generated the
 Set-Cookie response, up to, but not including, the
 right-most /.

 Secure If absent, the user agent may send the cookie over an
 insecure channel.

4.3.2 Rejecting Cookies

 To prevent possible security or privacy violations, a user agent
 rejects a cookie (shall not store its information) if any of the
 following is true:

 * The value for the Path attribute is not a prefix of the request-
 URI.

 * The value for the Domain attribute contains no embedded dots or
 does not start with a dot.

 * The value for the request-host does not domain-match the Domain
 attribute.

 * The request-host is a FQDN (not IP address) and has the form HD,
 where D is the value of the Domain attribute, and H is a string
 that contains one or more dots.

 Examples:

 * A Set-Cookie from request-host y.x.foo.com for Domain=.foo.com
 would be rejected, because H is y.x and contains a dot.

Kristol & Montulli Standards Track [Page 7]

RFC 2109 HTTP State Management Mechanism February 1997

 * A Set-Cookie from request-host x.foo.com for Domain=.foo.com would
 be accepted.

 * A Set-Cookie with Domain=.com or Domain=.com., will always be
 rejected, because there is no embedded dot.

 * A Set-Cookie with Domain=ajax.com will be rejected because the
 value for Domain does not begin with a dot.

4.3.3 Cookie Management

 If a user agent receives a Set-Cookie response header whose NAME is
 the same as a pre-existing cookie, and whose Domain and Path
 attribute values exactly (string) match those of a pre-existing
 cookie, the new cookie supersedes the old. However, if the Set-
 Cookie has a value for Max-Age of zero, the (old and new) cookie is
 discarded. Otherwise cookies accumulate until they expire (resources
 permitting), at which time they are discarded.

 Because user agents have finite space in which to store cookies, they
 may also discard older cookies to make space for newer ones, using,
 for example, a least-recently-used algorithm, along with constraints
 on the maximum number of cookies that each origin server may set.

 If a Set-Cookie response header includes a Comment attribute, the
 user agent should store that information in a human-readable form
 with the cookie and should display the comment text as part of a
 cookie inspection user interface.

 User agents should allow the user to control cookie destruction. An
 infrequently-used cookie may function as a "preferences file" for
 network applications, and a user may wish to keep it even if it is
 the least-recently-used cookie. One possible implementation would be
 an interface that allows the permanent storage of a cookie through a
 checkbox (or, conversely, its immediate destruction).

 Privacy considerations dictate that the user have considerable
 control over cookie management. The PRIVACY section contains more
 information.

4.3.4 Sending Cookies to the Origin Server

 When it sends a request to an origin server, the user agent sends a
 Cookie request header to the origin server if it has cookies that are
 applicable to the request, based on

 * the request-host;

Kristol & Montulli Standards Track [Page 8]

C
om

pendium
 2 page 291

RFC 2109 HTTP State Management Mechanism February 1997

 * the request-URI;

 * the cookie's age.

 The syntax for the header is:

 cookie = "Cookie:" cookie-version
 1*((";" | ",") cookie-value)
 cookie-value = NAME "=" VALUE [";" path] [";" domain]
 cookie-version = "$Version" "=" value
 NAME = attr
 VALUE = value
 path = "$Path" "=" value
 domain = "$Domain" "=" value

 The value of the cookie-version attribute must be the value from the
 Version attribute, if any, of the corresponding Set-Cookie response
 header. Otherwise the value for cookie-version is 0. The value for
 the path attribute must be the value from the Path attribute, if any,
 of the corresponding Set-Cookie response header. Otherwise the
 attribute should be omitted from the Cookie request header. The
 value for the domain attribute must be the value from the Domain
 attribute, if any, of the corresponding Set-Cookie response header.
 Otherwise the attribute should be omitted from the Cookie request
 header.

 Note that there is no Comment attribute in the Cookie request header
 corresponding to the one in the Set-Cookie response header. The user
 agent does not return the comment information to the origin server.

 The following rules apply to choosing applicable cookie-values from
 among all the cookies the user agent has.

 Domain Selection
 The origin server's fully-qualified host name must domain-match
 the Domain attribute of the cookie.

 Path Selection
 The Path attribute of the cookie must match a prefix of the
 request-URI.

 Max-Age Selection
 Cookies that have expired should have been discarded and thus
 are not forwarded to an origin server.

Kristol & Montulli Standards Track [Page 9]

RFC 2109 HTTP State Management Mechanism February 1997

 If multiple cookies satisfy the criteria above, they are ordered in
 the Cookie header such that those with more specific Path attributes
 precede those with less specific. Ordering with respect to other
 attributes (e.g., Domain) is unspecified.

 Note: For backward compatibility, the separator in the Cookie header
 is semi-colon (;) everywhere. A server should also accept comma (,)
 as the separator between cookie-values for future compatibility.

4.3.5 Sending Cookies in Unverifiable Transactions

 Users must have control over sessions in order to ensure privacy.
 (See PRIVACY section below.) To simplify implementation and to
 prevent an additional layer of complexity where adequate safeguards
 exist, however, this document distinguishes between transactions that
 are verifiable and those that are unverifiable. A transaction is
 verifiable if the user has the option to review the request-URI prior
 to its use in the transaction. A transaction is unverifiable if the
 user does not have that option. Unverifiable transactions typically
 arise when a user agent automatically requests inlined or embedded
 entities or when it resolves redirection (3xx) responses from an
 origin server. Typically the origin transaction, the transaction
 that the user initiates, is verifiable, and that transaction may
 directly or indirectly induce the user agent to make unverifiable
 transactions.

 When it makes an unverifiable transaction, a user agent must enable a
 session only if a cookie with a domain attribute D was sent or
 received in its origin transaction, such that the host name in the
 Request-URI of the unverifiable transaction domain-matches D.

 This restriction prevents a malicious service author from using
 unverifiable transactions to induce a user agent to start or continue
 a session with a server in a different domain. The starting or
 continuation of such sessions could be contrary to the privacy
 expectations of the user, and could also be a security problem.

 User agents may offer configurable options that allow the user agent,
 or any autonomous programs that the user agent executes, to ignore
 the above rule, so long as these override options default to "off".

 Many current user agents already provide a review option that would
 render many links verifiable. For instance, some user agents display
 the URL that would be referenced for a particular link when the mouse
 pointer is placed over that link. The user can therefore determine
 whether to visit that site before causing the browser to do so.
 (Though not implemented on current user agents, a similar technique
 could be used for a button used to submit a form -- the user agent

Kristol & Montulli Standards Track [Page 10]

C
om

pendium
 2 page 292

RFC 2109 HTTP State Management Mechanism February 1997

 could display the action to be taken if the user were to select that
 button.) However, even this would not make all links verifiable; for
 example, links to automatically loaded images would not normally be
 subject to "mouse pointer" verification.

 Many user agents also provide the option for a user to view the HTML
 source of a document, or to save the source to an external file where
 it can be viewed by another application. While such an option does
 provide a crude review mechanism, some users might not consider it
 acceptable for this purpose.

4.4 How an Origin Server Interprets the Cookie Header

 A user agent returns much of the information in the Set-Cookie header
 to the origin server when the Path attribute matches that of a new
 request. When it receives a Cookie header, the origin server should
 treat cookies with NAMEs whose prefix is $ specially, as an attribute
 for the adjacent cookie. The value for such a NAME is to be
 interpreted as applying to the lexically (left-to-right) most recent
 cookie whose name does not have the $ prefix. If there is no
 previous cookie, the value applies to the cookie mechanism as a
 whole. For example, consider the cookie

 Cookie: $Version="1"; Customer="WILE_E_COYOTE";
 $Path="/acme"

 $Version applies to the cookie mechanism as a whole (and gives the
 version number for the cookie mechanism). $Path is an attribute
 whose value (/acme) defines the Path attribute that was used when the
 Customer cookie was defined in a Set-Cookie response header.

4.5 Caching Proxy Role

 One reason for separating state information from both a URL and
 document content is to facilitate the scaling that caching permits.
 To support cookies, a caching proxy must obey these rules already in
 the HTTP specification:

 * Honor requests from the cache, if possible, based on cache validity
 rules.

 * Pass along a Cookie request header in any request that the proxy
 must make of another server.

 * Return the response to the client. Include any Set-Cookie response
 header.

Kristol & Montulli Standards Track [Page 11]

RFC 2109 HTTP State Management Mechanism February 1997

 * Cache the received response subject to the control of the usual
 headers, such as Expires, Cache-control: no-cache, and Cache-
 control: private,

 * Cache the Set-Cookie subject to the control of the usual header,
 Cache-control: no-cache="set-cookie". (The Set-Cookie header
 should usually not be cached.)

 Proxies must not introduce Set-Cookie (Cookie) headers of their own
 in proxy responses (requests).

5. EXAMPLES

5.1 Example 1

 Most detail of request and response headers has been omitted. Assume
 the user agent has no stored cookies.

 1. User Agent -> Server

 POST /acme/login HTTP/1.1
 [form data]

 User identifies self via a form.

 2. Server -> User Agent

 HTTP/1.1 200 OK
 Set-Cookie: Customer="WILE_E_COYOTE"; Version="1"; Path="/acme"

 Cookie reflects user's identity.

 3. User Agent -> Server

 POST /acme/pickitem HTTP/1.1
 Cookie: $Version="1"; Customer="WILE_E_COYOTE"; $Path="/acme"
 [form data]

 User selects an item for "shopping basket."

 4. Server -> User Agent

 HTTP/1.1 200 OK
 Set-Cookie: Part_Number="Rocket_Launcher_0001"; Version="1";
 Path="/acme"

 Shopping basket contains an item.

Kristol & Montulli Standards Track [Page 12]

C
om

pendium
 2 page 293

RFC 2109 HTTP State Management Mechanism February 1997

 5. User Agent -> Server

 POST /acme/shipping HTTP/1.1
 Cookie: $Version="1";
 Customer="WILE_E_COYOTE"; $Path="/acme";
 Part_Number="Rocket_Launcher_0001"; $Path="/acme"
 [form data]

 User selects shipping method from form.

 6. Server -> User Agent

 HTTP/1.1 200 OK
 Set-Cookie: Shipping="FedEx"; Version="1"; Path="/acme"

 New cookie reflects shipping method.

 7. User Agent -> Server

 POST /acme/process HTTP/1.1
 Cookie: $Version="1";
 Customer="WILE_E_COYOTE"; $Path="/acme";
 Part_Number="Rocket_Launcher_0001"; $Path="/acme";
 Shipping="FedEx"; $Path="/acme"
 [form data]

 User chooses to process order.

 8. Server -> User Agent

 HTTP/1.1 200 OK

 Transaction is complete.

 The user agent makes a series of requests on the origin server, after
 each of which it receives a new cookie. All the cookies have the
 same Path attribute and (default) domain. Because the request URLs
 all have /acme as a prefix, and that matches the Path attribute, each
 request contains all the cookies received so far.

5.2 Example 2

 This example illustrates the effect of the Path attribute. All
 detail of request and response headers has been omitted. Assume the
 user agent has no stored cookies.

 Imagine the user agent has received, in response to earlier requests,
 the response headers

Kristol & Montulli Standards Track [Page 13]

RFC 2109 HTTP State Management Mechanism February 1997

 Set-Cookie: Part_Number="Rocket_Launcher_0001"; Version="1";
 Path="/acme"

 and

 Set-Cookie: Part_Number="Riding_Rocket_0023"; Version="1";
 Path="/acme/ammo"

 A subsequent request by the user agent to the (same) server for URLs
 of the form /acme/ammo/... would include the following request
 header:

 Cookie: $Version="1";
 Part_Number="Riding_Rocket_0023"; $Path="/acme/ammo";
 Part_Number="Rocket_Launcher_0001"; $Path="/acme"

 Note that the NAME=VALUE pair for the cookie with the more specific
 Path attribute, /acme/ammo, comes before the one with the less
 specific Path attribute, /acme. Further note that the same cookie
 name appears more than once.

 A subsequent request by the user agent to the (same) server for a URL
 of the form /acme/parts/ would include the following request header:

 Cookie: $Version="1"; Part_Number="Rocket_Launcher_0001"; $Path="/acme"

 Here, the second cookie's Path attribute /acme/ammo is not a prefix
 of the request URL, /acme/parts/, so the cookie does not get
 forwarded to the server.

6. IMPLEMENTATION CONSIDERATIONS

 Here we speculate on likely or desirable details for an origin server
 that implements state management.

6.1 Set-Cookie Content

 An origin server's content should probably be divided into disjoint
 application areas, some of which require the use of state
 information. The application areas can be distinguished by their
 request URLs. The Set-Cookie header can incorporate information
 about the application areas by setting the Path attribute for each
 one.

 The session information can obviously be clear or encoded text that
 describes state. However, if it grows too large, it can become
 unwieldy. Therefore, an implementor might choose for the session
 information to be a key to a server-side resource. Of course, using

Kristol & Montulli Standards Track [Page 14]

C
om

pendium
 2 page 294

RFC 2109 HTTP State Management Mechanism February 1997

 a database creates some problems that this state management
 specification was meant to avoid, namely:

 1. keeping real state on the server side;

 2. how and when to garbage-collect the database entry, in case the
 user agent terminates the session by, for example, exiting.

6.2 Stateless Pages

 Caching benefits the scalability of WWW. Therefore it is important
 to reduce the number of documents that have state embedded in them
 inherently. For example, if a shopping-basket-style application
 always displays a user's current basket contents on each page, those
 pages cannot be cached, because each user's basket's contents would
 be different. On the other hand, if each page contains just a link
 that allows the user to "Look at My Shopping Basket", the page can be
 cached.

6.3 Implementation Limits

 Practical user agent implementations have limits on the number and
 size of cookies that they can store. In general, user agents' cookie
 support should have no fixed limits. They should strive to store as
 many frequently-used cookies as possible. Furthermore, general-use
 user agents should provide each of the following minimum capabilities
 individually, although not necessarily simultaneously:

 * at least 300 cookies

 * at least 4096 bytes per cookie (as measured by the size of the
 characters that comprise the cookie non-terminal in the syntax
 description of the Set-Cookie header)

 * at least 20 cookies per unique host or domain name

 User agents created for specific purposes or for limited-capacity
 devices should provide at least 20 cookies of 4096 bytes, to ensure
 that the user can interact with a session-based origin server.

 The information in a Set-Cookie response header must be retained in
 its entirety. If for some reason there is inadequate space to store
 the cookie, it must be discarded, not truncated.

 Applications should use as few and as small cookies as possible, and
 they should cope gracefully with the loss of a cookie.

Kristol & Montulli Standards Track [Page 15]

RFC 2109 HTTP State Management Mechanism February 1997

6.3.1 Denial of Service Attacks

 User agents may choose to set an upper bound on the number of cookies
 to be stored from a given host or domain name or on the size of the
 cookie information. Otherwise a malicious server could attempt to
 flood a user agent with many cookies, or large cookies, on successive
 responses, which would force out cookies the user agent had received
 from other servers. However, the minima specified above should still
 be supported.

7. PRIVACY

7.1 User Agent Control

 An origin server could create a Set-Cookie header to track the path
 of a user through the server. Users may object to this behavior as
 an intrusive accumulation of information, even if their identity is
 not evident. (Identity might become evident if a user subsequently
 fills out a form that contains identifying information.) This state
 management specification therefore requires that a user agent give
 the user control over such a possible intrusion, although the
 interface through which the user is given this control is left
 unspecified. However, the control mechanisms provided shall at least
 allow the user

 * to completely disable the sending and saving of cookies.

 * to determine whether a stateful session is in progress.

 * to control the saving of a cookie on the basis of the cookie's
 Domain attribute.

 Such control could be provided by, for example, mechanisms

 * to notify the user when the user agent is about to send a cookie
 to the origin server, offering the option not to begin a session.

 * to display a visual indication that a stateful session is in
 progress.

 * to let the user decide which cookies, if any, should be saved
 when the user concludes a window or user agent session.

 * to let the user examine the contents of a cookie at any time.

 A user agent usually begins execution with no remembered state
 information. It should be possible to configure a user agent never
 to send Cookie headers, in which case it can never sustain state with

Kristol & Montulli Standards Track [Page 16]

C
om

pendium
 2 page 295

RFC 2109 HTTP State Management Mechanism February 1997

 an origin server. (The user agent would then behave like one that is
 unaware of how to handle Set-Cookie response headers.)

 When the user agent terminates execution, it should let the user
 discard all state information. Alternatively, the user agent may ask
 the user whether state information should be retained; the default
 should be "no". If the user chooses to retain state information, it
 would be restored the next time the user agent runs.

 NOTE: User agents should probably be cautious about using files to
 store cookies long-term. If a user runs more than one instance of
 the user agent, the cookies could be commingled or otherwise messed
 up.

7.2 Protocol Design

 The restrictions on the value of the Domain attribute, and the rules
 concerning unverifiable transactions, are meant to reduce the ways
 that cookies can "leak" to the "wrong" site. The intent is to
 restrict cookies to one, or a closely related set of hosts.
 Therefore a request-host is limited as to what values it can set for
 Domain. We consider it acceptable for hosts host1.foo.com and
 host2.foo.com to share cookies, but not a.com and b.com.

 Similarly, a server can only set a Path for cookies that are related
 to the request-URI.

8. SECURITY CONSIDERATIONS

8.1 Clear Text

 The information in the Set-Cookie and Cookie headers is unprotected.
 Two consequences are:

 1. Any sensitive information that is conveyed in them is exposed
 to intruders.

 2. A malicious intermediary could alter the headers as they travel
 in either direction, with unpredictable results.

 These facts imply that information of a personal and/or financial
 nature should only be sent over a secure channel. For less sensitive
 information, or when the content of the header is a database key, an
 origin server should be vigilant to prevent a bad Cookie value from
 causing failures.

Kristol & Montulli Standards Track [Page 17]

RFC 2109 HTTP State Management Mechanism February 1997

8.2 Cookie Spoofing

 Proper application design can avoid spoofing attacks from related
 domains. Consider:

 1. User agent makes request to victim.cracker.edu, gets back
 cookie session_id="1234" and sets the default domain
 victim.cracker.edu.

 2. User agent makes request to spoof.cracker.edu, gets back
 cookie session-id="1111", with Domain=".cracker.edu".

 3. User agent makes request to victim.cracker.edu again, and
 passes

 Cookie: $Version="1";
 session_id="1234";
 session_id="1111"; $Domain=".cracker.edu"

 The server at victim.cracker.edu should detect that the second
 cookie was not one it originated by noticing that the Domain
 attribute is not for itself and ignore it.

8.3 Unexpected Cookie Sharing

 A user agent should make every attempt to prevent the sharing of
 session information between hosts that are in different domains.
 Embedded or inlined objects may cause particularly severe privacy
 problems if they can be used to share cookies between disparate
 hosts. For example, a malicious server could embed cookie
 information for host a.com in a URI for a CGI on host b.com. User
 agent implementors are strongly encouraged to prevent this sort of
 exchange whenever possible.

9. OTHER, SIMILAR, PROPOSALS

 Three other proposals have been made to accomplish similar goals.
 This specification is an amalgam of Kristol's State-Info proposal and
 Netscape's Cookie proposal.

 Brian Behlendorf proposed a Session-ID header that would be user-
 agent-initiated and could be used by an origin server to track
 "clicktrails". It would not carry any origin-server-defined state,
 however. Phillip Hallam-Baker has proposed another client-defined
 session ID mechanism for similar purposes.

Kristol & Montulli Standards Track [Page 18]

C
om

pendium
 2 page 296

RFC 2109 HTTP State Management Mechanism February 1997

 While both session IDs and cookies can provide a way to sustain
 stateful sessions, their intended purpose is different, and,
 consequently, the privacy requirements for them are different. A
 user initiates session IDs to allow servers to track progress through
 them, or to distinguish multiple users on a shared machine. Cookies
 are server-initiated, so the cookie mechanism described here gives
 users control over something that would otherwise take place without
 the users' awareness. Furthermore, cookies convey rich, server-
 selected information, whereas session IDs comprise user-selected,
 simple information.

10. HISTORICAL

10.1 Compatibility With Netscape's Implementation

 HTTP/1.0 clients and servers may use Set-Cookie and Cookie headers
 that reflect Netscape's original cookie proposal. These notes cover
 inter-operation between "old" and "new" cookies.

10.1.1 Extended Cookie Header

 This proposal adds attribute-value pairs to the Cookie request header
 in a compatible way. An "old" client that receives a "new" cookie
 will ignore attributes it does not understand; it returns what it
 does understand to the origin server. A "new" client always sends
 cookies in the new form.

 An "old" server that receives a "new" cookie will see what it thinks
 are many cookies with names that begin with a $, and it will ignore
 them. (The "old" server expects these cookies to be separated by
 semi-colon, not comma.) A "new" server can detect cookies that have
 passed through an "old" client, because they lack a $Version
 attribute.

10.1.2 Expires and Max-Age

 Netscape's original proposal defined an Expires header that took a
 date value in a fixed-length variant format in place of Max-Age:

 Wdy, DD-Mon-YY HH:MM:SS GMT

 Note that the Expires date format contains embedded spaces, and that
 "old" cookies did not have quotes around values. Clients that
 implement to this specification should be aware of "old" cookies and
 Expires.

Kristol & Montulli Standards Track [Page 19]

RFC 2109 HTTP State Management Mechanism February 1997

10.1.3 Punctuation

 In Netscape's original proposal, the values in attribute-value pairs
 did not accept "-quoted strings. Origin servers should be cautious
 about sending values that require quotes unless they know the
 receiving user agent understands them (i.e., "new" cookies). A
 ("new") user agent should only use quotes around values in Cookie
 headers when the cookie's version(s) is (are) all compliant with this
 specification or later.

 In Netscape's original proposal, no whitespace was permitted around
 the = that separates attribute-value pairs. Therefore such
 whitespace should be used with caution in new implementations.

10.2 Caching and HTTP/1.0

 Some caches, such as those conforming to HTTP/1.0, will inevitably
 cache the Set-Cookie header, because there was no mechanism to
 suppress caching of headers prior to HTTP/1.1. This caching can lead
 to security problems. Documents transmitted by an origin server
 along with Set-Cookie headers will usually either be uncachable, or
 will be "pre-expired". As long as caches obey instructions not to
 cache documents (following Expires: <a date in the past> or Pragma:
 no-cache (HTTP/1.0), or Cache-control: no-cache (HTTP/1.1))
 uncachable documents present no problem. However, pre-expired
 documents may be stored in caches. They require validation (a
 conditional GET) on each new request, but some cache operators loosen
 the rules for their caches, and sometimes serve expired documents
 without first validating them. This combination of factors can lead
 to cookies meant for one user later being sent to another user. The
 Set-Cookie header is stored in the cache, and, although the document
 is stale (expired), the cache returns the document in response to
 later requests, including cached headers.

11. ACKNOWLEDGEMENTS

 This document really represents the collective efforts of the
 following people, in addition to the authors: Roy Fielding, Marc
 Hedlund, Ted Hardie, Koen Holtman, Shel Kaphan, Rohit Khare.

Kristol & Montulli Standards Track [Page 20]

C
om

pendium
 2 page 297

RFC 2109 HTTP State Management Mechanism February 1997

12. AUTHORS' ADDRESSES

 David M. Kristol
 Bell Laboratories, Lucent Technologies
 600 Mountain Ave. Room 2A-227
 Murray Hill, NJ 07974

 Phone: (908) 582-2250
 Fax: (908) 582-5809
 EMail: dmk@bell-labs.com

 Lou Montulli
 Netscape Communications Corp.
 501 E. Middlefield Rd.
 Mountain View, CA 94043

 Phone: (415) 528-2600
 EMail: montulli@netscape.com

Kristol & Montulli Standards Track [Page 21]

C
om

pendium
 2 page 298

Network Working Group M. Horton
Request for Comments: 1036 AT&T Bell Laboratories
Obsoletes: RFC-850 R. Adams
 Center for Seismic Studies
 December 1987

 Standard for Interchange of USENET Messages

STATUS OF THIS MEMO

 This document defines the standard format for the interchange of
 network News messages among USENET hosts. It updates and replaces
 RFC-850, reflecting version B2.11 of the News program. This memo is
 disributed as an RFC to make this information easily accessible to
 the Internet community. It does not specify an Internet standard.
 Distribution of this memo is unlimited.

1. Introduction

 This document defines the standard format for the interchange of
 network News messages among USENET hosts. It describes the format
 for messages themselves and gives partial standards for transmission
 of news. The news transmission is not entirely in order to give a
 good deal of flexibility to the hosts to choose transmission
 hardware and software, to batch news, and so on.

 There are five sections to this document. Section two defines the
 format. Section three defines the valid control messages. Section
 four specifies some valid transmission methods. Section five
 describes the overall news propagation algorithm.

2. Message Format

 The primary consideration in choosing a message format is that it
 fit in with existing tools as well as possible. Existing tools
 include implementations of both mail and news. (The notesfiles
 system from the University of Illinois is considered a news
 implementation.) A standard format for mail messages has existed
 for many years on the Internet, and this format meets most of the
 needs of USENET. Since the Internet format is extensible,
 extensions to meet the additional needs of USENET are easily made
 within the Internet standard. Therefore, the rule is adopted that
 all USENET news messages must be formatted as valid Internet mail
 messages, according to the Internet standard RFC-822. The USENET
 News standard is more restrictive than the Internet standard,

Horton & Adams [Page 1]

RFC 1036 Standard for USENET Messages December 1987

 placing additional requirements on each message and forbidding use
 of certain Internet features. However, it should always be possible
 to use a tool expecting an Internet message to process a news
 message. In any situation where this standard conflicts with the
 Internet standard, RFC-822 should be considered correct and this
 standard in error.

 Here is an example USENET message to illustrate the fields.

 From: jerry@eagle.ATT.COM (Jerry Schwarz)
 Path: cbosgd!mhuxj!mhuxt!eagle!jerry
 Newsgroups: news.announce
 Subject: Usenet Etiquette -- Please Read
 Message-ID: <642@eagle.ATT.COM>
 Date: Fri, 19 Nov 82 16:14:55 GMT
 Followup-To: news.misc
 Expires: Sat, 1 Jan 83 00:00:00 -0500
 Organization: AT&T Bell Laboratories, Murray Hill

 The body of the message comes here, after a blank line.

 Here is an example of a message in the old format (before the
 existence of this standard). It is recommended that
 implementations also accept messages in this format to ease upward
 conversion.

 From: cbosgd!mhuxj!mhuxt!eagle!jerry (Jerry Schwarz)
 Newsgroups: news.misc
 Title: Usenet Etiquette -- Please Read
 Article-I.D.: eagle.642
 Posted: Fri Nov 19 16:14:55 1982
 Received: Fri Nov 19 16:59:30 1982
 Expires: Mon Jan 1 00:00:00 1990

 The body of the message comes here, after a blank line.

 Some news systems transmit news in the A format, which looks like
 this:

 Aeagle.642
 news.misc
 cbosgd!mhuxj!mhuxt!eagle!jerry
 Fri Nov 19 16:14:55 1982
 Usenet Etiquette - Please Read
 The body of the message comes here, with no blank line.

 A standard USENET message consists of several header lines, followed
 by a blank line, followed by the body of the message. Each header

Horton & Adams [Page 2]

C
om

pendium
 2 page 299

RFC 1036 Standard for USENET Messages December 1987

 line consist of a keyword, a colon, a blank, and some additional
 information. This is a subset of the Internet standard, simplified
 to allow simpler software to handle it. The "From" line may
 optionally include a full name, in the format above, or use the
 Internet angle bracket syntax. To keep the implementations simple,
 other formats (for example, with part of the machine address after
 the close parenthesis) are not allowed. The Internet convention of
 continuation header lines (beginning with a blank or tab) is
 allowed.

 Certain headers are required, and certain other headers are
 optional. Any unrecognized headers are allowed, and will be passed
 through unchanged. The required header lines are "From", "Date",
 "Newsgroups", "Subject", "Message-ID", and "Path". The optional
 header lines are "Followup-To", "Expires", "Reply-To", "Sender",
 "References", "Control", "Distribution", "Keywords", "Summary",
 "Approved", "Lines", "Xref", and "Organization". Each of these
 header lines will be described below.

2.1. Required Header lines

2.1.1. From

 The "From" line contains the electronic mailing address of the
 person who sent the message, in the Internet syntax. It may
 optionally also contain the full name of the person, in parentheses,
 after the electronic address. The electronic address is the same as
 the entity responsible for originating the message, unless the
 "Sender" header is present, in which case the "From" header might
 not be verified. Note that in all host and domain names, upper and
 lower case are considered the same, thus "mark@cbosgd.ATT.COM",
 "mark@cbosgd.att.com", and "mark@CBosgD.ATt.COm" are all equivalent.
 User names may or may not be case sensitive, for example,
 "Billy@cbosgd.ATT.COM" might be different from
 "BillY@cbosgd.ATT.COM". Programs should avoid changing the case of
 electronic addresses when forwarding news or mail.

 RFC-822 specifies that all text in parentheses is to be interpreted
 as a comment. It is common in Internet mail to place the full name
 of the user in a comment at the end of the "From" line. This
 standard specifies a more rigid syntax. The full name is not
 considered a comment, but an optional part of the header line.
 Either the full name is omitted, or it appears in parentheses after
 the electronic address of the person posting the message, or it
 appears before an electronic address which is enclosed in angle
 brackets. Thus, the three permissible forms are:

Horton & Adams [Page 3]

RFC 1036 Standard for USENET Messages December 1987

 From: mark@cbosgd.ATT.COM
 From: mark@cbosgd.ATT.COM (Mark Horton)
 From: Mark Horton <mark@cbosgd.ATT.COM>

 Full names may contain any printing ASCII characters from space
 through tilde, except that they may not contain "(" (left
 parenthesis), ")" (right parenthesis), "<" (left angle bracket), or
 ">" (right angle bracket). Additional restrictions may be placed on
 full names by the mail standard, in particular, the characters ","
 (comma), ":" (colon), "@" (at), "!" (bang), "/" (slash), "="
 (equal), and ";" (semicolon) are inadvisable in full names.

2.1.2. Date

 The "Date" line (formerly "Posted") is the date that the message was
 originally posted to the network. Its format must be acceptable
 both in RFC-822 and to the getdate(3) routine that is provided with
 the Usenet software. This date remains unchanged as the message is
 propagated throughout the network. One format that is acceptable to
 both is:

 Wdy, DD Mon YY HH:MM:SS TIMEZONE

 Several examples of valid dates appear in the sample message above.
 Note in particular that ctime(3) format:

 Wdy Mon DD HH:MM:SS YYYY

 is not acceptable because it is not a valid RFC-822 date. However,
 since older software still generates this format, news
 implementations are encouraged to accept this format and translate
 it into an acceptable format.

 There is no hope of having a complete list of timezones. Universal
 Time (GMT), the North American timezones (PST, PDT, MST, MDT, CST,
 CDT, EST, EDT) and the +/-hhmm offset specifed in RFC-822 should be
 supported. It is recommended that times in message headers be
 transmitted in GMT and displayed in the local time zone.

2.1.3. Newsgroups

 The "Newsgroups" line specifies the newsgroup or newsgroups in which
 the message belongs. Multiple newsgroups may be specified,
 separated by a comma. Newsgroups specified must all be the names of
 existing newsgroups, as no new newsgroups will be created by simply
 posting to them.

Horton & Adams [Page 4[

C
om

pendium
 2 page 300

RFC 1036 Standard for USENET Messages December 1987

 Wildcards (e.g., the word "all") are never allowed in a "News-
 groups" line. For example, a newsgroup comp.all is illegal,
 although a newsgroup rec.sport.football is permitted.

 If a message is received with a "Newsgroups" line listing some valid
 newsgroups and some invalid newsgroups, a host should not remove
 invalid newsgroups from the list. Instead, the invalid newsgroups
 should be ignored. For example, suppose host A subscribes to the
 classes btl.all and comp.all, and exchanges news messages with host
 B, which subscribes to comp.all but not btl.all. Suppose A receives
 a message with Newsgroups: comp.unix,btl.general.

 This message is passed on to B because B receives comp.unix, but B
 does not receive btl.general. A must leave the "Newsgroups" line
 unchanged. If it were to remove btl.general, the edited header
 could eventually re-enter the btl.all class, resulting in a message
 that is not shown to users subscribing to btl.general. Also,
 follow-ups from outside btl.all would not be shown to such users.

2.1.4. Subject

 The "Subject" line (formerly "Title") tells what the message is
 about. It should be suggestive enough of the contents of the
 message to enable a reader to make a decision whether to read the
 message based on the subject alone. If the message is submitted in
 response to another message (e.g., is a follow-up) the default
 subject should begin with the four characters "Re:", and the
 "References" line is required. For follow-ups, the use of the
 "Summary" line is encouraged.

2.1.5. Message-ID

 The "Message-ID" line gives the message a unique identifier. The
 Message-ID may not be reused during the lifetime of any previous
 message with the same Message-ID. (It is recommended that no
 Message-ID be reused for at least two years.) Message-ID's have the
 syntax:

 <string not containing blank or ">">

 In order to conform to RFC-822, the Message-ID must have the format:

 <unique@full_domain_name>

 where full_domain_name is the full name of the host at which the
 message entered the network, including a domain that host is in, and
 unique is any string of printing ASCII characters, not including "<"
 (left angle bracket), ">" (right angle bracket), or "@" (at sign).

Horton & Adams [Page 5]

RFC 1036 Standard for USENET Messages December 1987

 For example, the unique part could be an integer representing a
 sequence number for messages submitted to the network, or a short
 string derived from the date and time the message was created. For
 example, a valid Message-ID for a message submitted from host ucbvax
 in domain "Berkeley.EDU" would be "<4123@ucbvax.Berkeley.EDU>".
 Programmers are urged not to make assumptions about the content of
 Message-ID fields from other hosts, but to treat them as unknown
 character strings. It is not safe, for example, to assume that a
 Message-ID will be under 14 characters, that it is unique in the
 first 14 characters, nor that is does not contain a "/".

 The angle brackets are considered part of the Message-ID. Thus, in
 references to the Message-ID, such as the ihave/sendme and cancel
 control messages, the angle brackets are included. White space
 characters (e.g., blank and tab) are not allowed in a Message-ID.
 Slashes ("/") are strongly discouraged. All characters between the
 angle brackets must be printing ASCII characters.

2.1.6. Path

 This line shows the path the message took to reach the current
 system. When a system forwards the message, it should add its own
 name to the list of systems in the "Path" line. The names may be
 separated by any punctuation character or characters (except "."
 which is considered part of the hostname). Thus, the following are
 valid entries:

 cbosgd!mhuxj!mhuxt
 cbosgd, mhuxj, mhuxt
 @cbosgd.ATT.COM,@mhuxj.ATT.COM,@mhuxt.ATT.COM
 teklabs, zehntel, sri-unix@cca!decvax

 (The latter path indicates a message that passed through decvax,
 cca, sri-unix, zehntel, and teklabs, in that order.) Additional
 names should be added from the left. For example, the most recently
 added name in the fourth example was teklabs. Letters, digits,
 periods and hyphens are considered part of host names; other
 punctuation, including blanks, are considered separators.

 Normally, the rightmost name will be the name of the originating
 system. However, it is also permissible to include an extra entry
 on the right, which is the name of the sender. This is for upward
 compatibility with older systems.

 The "Path" line is not used for replies, and should not be taken as
 a mailing address. It is intended to show the route the message
 traveled to reach the local host. There are several uses for this
 information. One is to monitor USENET routing for performance

Horton & Adams [Page 6]

C
om

pendium
 2 page 301

RFC 1036 Standard for USENET Messages December 1987

 reasons. Another is to establish a path to reach new hosts.
 Perhaps the most important use is to cut down on redundant USENET
 traffic by failing to forward a message to a host that is known to
 have already received it. In particular, when host A sends a
 message to host B, the "Path" line includes A, so that host B will
 not immediately send the message back to host A. The name each host
 uses to identify itself should be the same as the name by which its
 neighbors know it, in order to make this optimization possible.

 A host adds its own name to the front of a path when it receives a
 message from another host. Thus, if a message with path "A!X!Y!Z"
 is passed from host A to host B, B will add its own name to the path
 when it receives the message from A, e.g., "B!A!X!Y!Z". If B then
 passes the message on to C, the message sent to C will contain the
 path "B!A!X!Y!Z", and when C receives it, C will change it to
 "C!B!A!X!Y!Z".

 Special upward compatibility note: Since the "From", "Sender", and
 "Reply-To" lines are in Internet format, and since many USENET hosts
 do not yet have mailers capable of understanding Internet format, it
 would break the reply capability to completely sever the connection
 between the "Path" header and the reply function. It is recognized
 that the path is not always a valid reply string in older
 implementations, and no requirement to fix this problem is placed on
 implementations. However, the existing convention of placing the
 host name and an "!" at the front of the path, and of starting the
 path with the host name, an "!", and the user name, should be
 maintained when possible.

2.2. Optional Headers

2.2.1. Reply-To

 This line has the same format as "From". If present, mailed replies
 to the author should be sent to the name given here. Otherwise,
 replies are mailed to the name on the "From" line. (This does not
 prevent additional copies from being sent to recipients named by the
 replier, or on "To" or "Cc" lines.) The full name may be optionally
 given, in parentheses, as in the "From" line.

2.2.2. Sender

 This field is present only if the submitter manually enters a "From"
 line. It is intended to record the entity responsible for
 submitting the message to the network. It should be verified by the
 software at the submitting host.

Horton & Adams [Page 7]

RFC 1036 Standard for USENET Messages December 1987

 For example, if John Smith is visiting CCA and wishes to post a
 message to the network, using friend Sarah Jones' account, the
 message might read:

 From: smith@ucbvax.Berkeley.EDU (John Smith)
 Sender: jones@cca.COM (Sarah Jones)

 If a gateway program enters a mail message into the network at host
 unix.SRI.COM, the lines might read:

 From: John.Doe@A.CS.CMU.EDU
 Sender: network@unix.SRI.COM

 The primary purpose of this field is to be able to track down
 messages to determine how they were entered into the network. The
 full name may be optionally given, in parentheses, as in the "From"
 line.

2.2.3. Followup-To

 This line has the same format as "Newsgroups". If present, follow-
 up messages are to be posted to the newsgroup or newsgroups listed
 here. If this line is not present, follow-ups are posted to the
 newsgroup or newsgroups listed in the "Newsgroups" line.

 If the keyword poster is present, follow-up messages are not
 permitted. The message should be mailed to the submitter of the
 message via mail.

2.2.4. Expires

 This line, if present, is in a legal USENET date format. It
 specifies a suggested expiration date for the message. If not
 present, the local default expiration date is used. This field is
 intended to be used to clean up messages with a limited usefulness,
 or to keep important messages around for longer than usual. For
 example, a message announcing an upcoming seminar could have an
 expiration date the day after the seminar, since the message is not
 useful after the seminar is over. Since local hosts have local
 policies for expiration of news (depending on available disk space,
 for instance), users are discouraged from providing expiration dates
 for messages unless there is a natural expiration date associated
 with the topic. System software should almost never provide a
 default "Expires" line. Leave it out and allow local policies to be
 used unless there is a good reason not to.

Horton & Adams [Page 8]

C
om

pendium
 2 page 302

RFC 1036 Standard for USENET Messages December 1987

2.2.5. References

 This field lists the Message-ID's of any messages prompting the
 submission of this message. It is required for all follow-up
 messages, and forbidden when a new subject is raised.
 Implementations should provide a follow-up command, which allows a
 user to post a follow-up message. This command should generate a
 "Subject" line which is the same as the original message, except
 that if the original subject does not begin with "Re:" or "re:", the
 four characters "Re:" are inserted before the subject. If there is
 no "References" line on the original header, the "References" line
 should contain the Message-ID of the original message (including the
 angle brackets). If the original message does have a "References"
 line, the follow-up message should have a "References" line
 containing the text of the original "References" line, a blank, and
 the Message-ID of the original message.

 The purpose of the "References" header is to allow messages to be
 grouped into conversations by the user interface program. This
 allows conversations within a newsgroup to be kept together, and
 potentially users might shut off entire conversations without
 unsubscribing to a newsgroup. User interfaces need not make use of
 this header, but all automatically generated follow-ups should
 generate the "References" line for the benefit of systems that do
 use it, and manually generated follow-ups (e.g., typed in well after
 the original message has been printed by the machine) should be
 encouraged to include them as well.

 It is permissible to not include the entire previous "References"
 line if it is too long. An attempt should be made to include a
 reasonable number of backwards references.

2.2.6. Control

 If a message contains a "Control" line, the message is a control
 message. Control messages are used for communication among USENET
 host machines, not to be read by users. Control messages are
 distributed by the same newsgroup mechanism as ordinary messages.
 The body of the "Control" header line is the message to the host.

 For upward compatibility, messages that match the newsgroup pattern
 "all.all.ctl" should also be interpreted as control messages. If no
 "Control" header is present on such messages, the subject is used as
 the control message. However, messages on newsgroups matching this
 pattern do not conform to this standard.

Horton & Adams [Page 9]

RFC 1036 Standard for USENET Messages December 1987

 Also for upward compatibility, if the first 4 characters of the
 "Subject:" line are "cmsg", the rest of the "Subject:" line should
 be interpreted as a control message.

2.2.7. Distribution

 This line is used to alter the distribution scope of the message.
 It is a comma separated list similar to the "Newsgroups" line. User
 subscriptions are still controlled by "Newsgroups", but the message
 is sent to all systems subscribing to the newsgroups on the
 "Distribution" line in addition to the "Newsgroups" line. For the
 message to be transmitted, the receiving site must normally receive
 one of the specified newsgroups AND must receive one of the
 specified distributions. Thus, a message concerning a car for sale
 in New Jersey might have headers including:

 Newsgroups: rec.auto,misc.forsale
 Distribution: nj,ny

 so that it would only go to persons subscribing to rec.auto or misc.
 for sale within New Jersey or New York. The intent of this header
 is to restrict the distribution of a newsgroup further, not to
 increase it. A local newsgroup, such as nj.crazy-eddie, will
 probably not be propagated by hosts outside New Jersey that do not
 show such a newsgroup as valid. A follow-up message should default
 to the same "Distribution" line as the original message, but the
 user can change it to a more limited one, or escalate the
 distribution if it was originally restricted and a more widely
 distributed reply is appropriate.

2.2.8. Organization

 The text of this line is a short phrase describing the organization
 to which the sender belongs, or to which the machine belongs. The
 intent of this line is to help identify the person posting the
 message, since host names are often cryptic enough to make it hard
 to recognize the organization by the electronic address.

2.2.9. Keywords

 A few well-selected keywords identifying the message should be on
 this line. This is used as an aid in determining if this message is
 interesting to the reader.

2.2.10. Summary

 This line should contain a brief summary of the message. It is
 usually used as part of a follow-up to another message. Again, it

Horton & Adams [Page 10]

C
om

pendium
 2 page 303

RFC 1036 Standard for USENET Messages December 1987

 is very useful to the reader in determining whether to read the
 message.

2.2.11. Approved

 This line is required for any message posted to a moderated
 newsgroup. It should be added by the moderator and consist of his
 mail address. It is also required with certain control messages.

2.2.12. Lines

 This contains a count of the number of lines in the body of the
 message.

2.2.13. Xref

 This line contains the name of the host (with domains omitted) and a
 white space separated list of colon-separated pairs of newsgroup
 names and message numbers. These are the newsgroups listed in the
 "Newsgroups" line and the corresponding message numbers from the
 spool directory.

 This is only of value to the local system, so it should not be
 transmitted. For example, in:

 Path: seismo!lll-crg!lll-lcc!pyramid!decwrl!reid
 From: reid@decwrl.DEC.COM (Brian Reid)
 Newsgroups: news.lists,news.groups
 Subject: USENET READERSHIP SUMMARY REPORT FOR SEP 86
 Message-ID: <5658@decwrl.DEC.COM>
 Date: 1 Oct 86 11:26:15 GMT
 Organization: DEC Western Research Laboratory
 Lines: 441
 Approved: reid@decwrl.UUCP
 Xref: seismo news.lists:461 news.groups:6378

 the "Xref" line shows that the message is message number 461 in the
 newsgroup news.lists, and message number 6378 in the newsgroup
 news.groups, on host seismo. This information may be used by
 certain user interfaces.

3. Control Messages

 This section lists the control messages currently defined. The body
 of the "Control" header line is the control message. Messages are a
 sequence of zero or more words, separated by white space (blanks or
 tabs). The first word is the name of the control message, remaining
 words are parameters to the message. The remainder of the header

Horton & Adams [Page 11]

RFC 1036 Standard for USENET Messages December 1987

 and the body of the message are also potential parameters; for
 example, the "From" line might suggest an address to which a
 response is to be mailed.

 Implementors and administrators may choose to allow control messages
 to be carried out automatically, or to queue them for annual
 processing. However, manually processed messages should be dealt
 with promptly.

 Failed control messages should NOT be mailed to the originator of
 the message, but to the local "usenet" account.

3.1. Cancel

 cancel <Message-ID>

 If a message with the given Message-ID is present on the local
 system, the message is cancelled. This mechanism allows a user to
 cancel a message after the message has been distributed over the
 network.

 If the system is unable to cancel the message as requested, it
 should not forward the cancellation request to its neighbor systems.

 Only the author of the message or the local news administrator is
 allowed to send this message. The verified sender of a message is
 the "Sender" line, or if no "Sender" line is present, the "From"
 line. The verified sender of the cancel message must be the same as
 either the "Sender" or "From" field of the original message. A
 verified sender in the cancel message is allowed to match an
 unverified "From" in the original message.

3.2. Ihave/Sendme

 ihave <Message-ID list> [<remotesys>]
 sendme <Message-ID list> [<remotesys>]

 This message is part of the ihave/sendme protocol, which allows one
 host (say A) to tell another host (B) that a particular message has
 been received on A. Suppose that host A receives message
 "<1234@ucbvax.Berkeley.edu>", and wishes to transmit the message to
 host B.

 A sends the control message "ihave <1234@ucbvax.Berkeley.edu> A" to
 host B (by posting it to newsgroup to.B). B responds with the
 control message "sendme <1234@ucbvax.Berkeley.edu> B" (on newsgroup
 to.A), if it has not already received the message. Upon receiving

Horton & Adams [Page 12]

C
om

pendium
 2 page 304

RFC 1036 Standard for USENET Messages December 1987

 the sendme message, A sends the message to B.

 This protocol can be used to cut down on redundant traffic between
 hosts. It is optional and should be used only if the particular
 situation makes it worthwhile. Frequently, the outcome is that,
 since most original messages are short, and since there is a high
 overhead to start sending a new message with UUCP, it costs as much
 to send the ihave as it would cost to send the message itself.

 One possible solution to this overhead problem is to batch requests.
 Several Message-ID's may be announced or requested in one message.
 If no Message-ID's are listed in the control message, the body of
 the message should be scanned for Message-ID's, one per line.

3.3. Newgroup

 newgroup <groupname> [moderated]

 This control message creates a new newsgroup with the given name.
 Since no messages may be posted or forwarded until a newsgroup is
 created, this message is required before a newsgroup can be used.
 The body of the message is expected to be a short paragraph
 describing the intended use of the newsgroup.

 If the second argument is present and it is the keyword moderated,
 the group should be created moderated instead of the default of
 unmoderated. The newgroup message should be ignored unless there is
 an "Approved" line in the same message header.

3.4. Rmgroup

 rmgroup <groupname>

 This message removes a newsgroup with the given name. Since the
 newsgroup is removed from every host on the network, this command
 should be used carefully by a responsible administrator. The
 rmgroup message should be ignored unless there is an "Approved:"
 line in the same message header.

Horton & Adams [Page 13]

RFC 1036 Standard for USENET Messages December 1987

3.5. Sendsys
 sendsys (no arguments)

 The sys file, listing all neighbors and the newsgroups to be sent to
 each neighbor, will be mailed to the author of the control message
 ("Reply-To", if present, otherwise "From"). This information is
 considered public information, and it is a requirement of membership
 in USENET that this information be provided on request, either
 automatically in response to this control message, or manually, by
 mailing the requested information to the author of the message.
 This information is used to keep the map of USENET up to date, and
 to determine where netnews is sent.

 The format of the file mailed back to the author should be the same
 as that of the sys file. This format has one line per neighboring
 host (plus one line for the local host), containing four colon
 separated fields. The first field has the host name of the
 neighbor, the second field has a newsgroup pattern describing the
 newsgroups sent to the neighbor. The third and fourth fields are
 not defined by this standard. The sys file is not the same as the
 UUCP L.sys file. A sample response is:

 From: cbosgd!mark (Mark Horton)
 Date: Sun, 27 Mar 83 20:39:37 -0500
 Subject: response to your sendsys request
 To: mark@cbosgd.ATT.COM

 Responding-System: cbosgd.ATT.COM
 cbosgd:osg,cb,btl,bell,world,comp,sci,rec,talk,misc,news,soc,to,
 test
 ucbvax:world,comp,to.ucbvax:L:
 cbosg:world,comp,bell,btl,cb,osg,to.cbosg:F:/usr/spool/outnews
 /cbosg
 cbosgb:osg,to.cbosgb:F:/usr/spool/outnews/cbosgb
 sescent:world,comp,bell,btl,cb,to.sescent:F:/usr/spool/outnews
 /sescent
 npois:world,comp,bell,btl,ug,to.npois:F:/usr/spool/outnews/npois
 mhuxi:world,comp,bell,btl,ug,to.mhuxi:F:/usr/spool/outnews/mhuxi

3.6. Version

 version (no arguments)

 The name and version of the software running on the local system is
 to be mailed back to the author of the message ("Reply-to" if
 present, otherwise "From").

3.7. Checkgroups

Horton & Adams [Page 14]

C
om

pendium
 2 page 305

RFC 1036 Standard for USENET Messages December 1987

 The message body is a list of "official" newsgroups and their
 description, one group per line. They are compared against the list
 of active newsgroups on the current host. The names of any obsolete
 or new newsgroups are mailed to the user "usenet" and descriptions
 of the new newsgroups are added to the help file used when posting
 news.

4. Transmission Methods

 USENET is not a physical network, but rather a logical network
 resting on top of several existing physical networks. These
 networks include, but are not limited to, UUCP, the Internet, an
 Ethernet, the BLICN network, an NSC Hyperchannel, and a BERKNET.
 What is important is that two neighboring systems on USENET have
 some method to get a new message, in the format listed here, from
 one system to the other, and once on the receiving system, processed
 by the netnews software on that system. (On UNIX systems, this
 usually means the rnews program being run with the message on the
 standard input. <1>)

 It is not a requirement that USENET hosts have mail systems capable
 of understanding the Internet mail syntax, but it is strongly
 recommended. Since "From", "Reply-To", and "Sender" lines use the
 Internet syntax, replies will be difficult or impossible without an
 Internet mailer. A host without an Internet mailer can attempt to
 use the "Path" header line for replies, but this field is not
 guaranteed to be a working path for replies. In any event, any host
 generating or forwarding news messages must have an Internet address
 that allows them to receive mail from hosts with Internet mailers,
 and they must include their Internet address on their From line.

4.1. Remote Execution

 Some networks permit direct remote command execution. On these
 networks, news may be forwarded by spooling the rnews command with
 the message on the standard input. For example, if the remote
 system is called remote, news would be sent over a UUCP link
 with the command:

 uux - remote!rnews

 and on a Berknet:

 net -mremote rnews

Horton & Adams [Page 15]

RFC 1036 Standard for USENET Messages December 1987

 It is important that the message be sent via a reliable mechanism,
 normally involving the possibility of spooling, rather than direct
 real-time remote execution. This is because, if the remote system
 is down, a direct execution command will fail, and the message will
 never be delivered. If the message is spooled, it will eventually
 be delivered when both systems are up.

4.2. Transfer by Mail

 On some systems, direct remote spooled execution is not possible.
 However, most systems support electronic mail, and a news message
 can be sent as mail. One approach is to send a mail message which
 is identical to the news message: the mail headers are the news
 headers, and the mail body is the news body. By convention, this
 mail is sent to the user newsmail on the remote machine.

 One problem with this method is that it may not be possible to
 convince the mail system that the "From" line of the message is
 valid, since the mail message was generated by a program on a
 system different from the source of the news message. Another
 problem is that error messages caused by the mail transmission
 would be sent to the originator of the news message, who has no
 control over news transmission between two cooperating hosts
 and does not know whom to contact. Transmission error messages
 should be directed to a responsible contact person on the
 sending machine.

 A solution to this problem is to encapsulate the news message into a
 mail message, such that the entire message (headers and body) are
 part of the body of the mail message. The convention here is that
 such mail is sent to user rnews on the remote system. A mail
 message body is generated by prepending the letter N to each line of
 the news message, and then attaching whatever mail headers are
 convenient to generate. The N's are attached to prevent any special
 lines in the news message from interfering with mail transmission,
 and to prevent any extra lines inserted by the mailer (headers,
 blank lines, etc.) from becoming part of the news message. A
 program on the receiving machine receives mail to rnews, extracting
 the message itself and invoking the rnews program. An example in
 this format might look like this:

Horton & Adams [Page 16]

C
om

pendium
 2 page 306

RFC 1036 Standard for USENET Messages December 1987

 Date: Mon, 3 Jan 83 08:33:47 MST
 From: news@cbosgd.ATT.COM
 Subject: network news message
 To: rnews@npois.ATT.COM

 NPath: cbosgd!mhuxj!harpo!utah-cs!sask!derek
 NFrom: derek@sask.UUCP (Derek Andrew)
 NNewsgroups: misc.test
 NSubject: necessary test
 NMessage-ID: <176@sask.UUCP>
 NDate: Mon, 3 Jan 83 00:59:15 MST
 N
 NThis really is a test. If anyone out there more than 6
 Nhops away would kindly confirm this note I would
 Nappreciate it. We suspect that our news postings
 Nare not getting out into the world.
 N

 Using mail solves the spooling problem, since mail must always be
 spooled if the destination host is down. However, it adds more
 overhead to the transmission process (to encapsulate and extract the
 message) and makes it harder for software to give different
 priorities to news and mail.

4.3. Batching

 Since news messages are usually short, and since a large number of
 messages are often sent between two hosts in a day, it may make
 sense to batch news messages. Several messages can be combined into
 one large message, using conventions agreed upon in advance by the
 two hosts. One such batching scheme is described here; its use is
 highly recommended.

 News messages are combined into a script, separated by a header of
 the form:

 #! rnews 1234

 where 1234 is the length of the message in bytes. Each such line is
 followed by a message containing the given number of bytes. (The
 newline at the end of each line of the message is counted as one
 byte, for purposes of this count, even if it is stored as <CARRIAGE
 RETURN><LINE FEED>.) For example, a batch of message might look
 like this:

Horton & Adams [Page 17]

RFC 1036 Standard for USENET Messages December 1987

 #! rnews 239
 From: jerry@eagle.ATT.COM (Jerry Schwarz)
 Path: cbosgd!mhuxj!mhuxt!eagle!jerry
 Newsgroups: news.announce
 Subject: Usenet Etiquette -- Please Read
 Message-ID: <642@eagle.ATT.COM>
 Date: Fri, 19 Nov 82 16:14:55 EST
 Approved: mark@cbosgd.ATT.COM

 Here is an important message about USENET Etiquette.
 #! rnews 234
 From: jerry@eagle.ATT.COM (Jerry Schwarz)
 Path: cbosgd!mhuxj!mhuxt!eagle!jerry
 Newsgroups: news.announce
 Subject: Notes on Etiquette message
 Message-ID: <643@eagle.ATT.COM>
 Date: Fri, 19 Nov 82 17:24:12 EST
 Approved: mark@cbosgd.ATT.COM

 There was something I forgot to mention in the last
 message.

 Batched news is recognized because the first character in the
 message is #. The message is then passed to the unbatcher for
 interpretation.

 The second argument (in this example rnews) determines which
 batching scheme is being used. Cooperating hosts may use whatever
 scheme is appropriate for them.

5. The News Propagation Algorithm

 This section describes the overall scheme of USENET and the
 algorithm followed by hosts in propagating news to the entire
 logical network. Since all hosts are affected by incorrectly
 formatted messages and by propagation errors, it is important
 for the method to be standardized.

 USENET is a directed graph. Each node in the graph is a host
 computer, and each arc in the graph is a transmission path from
 one host to another host. Each arc is labeled with a newsgroup
 pattern, specifying which newsgroup classes are forwarded along
 that link. Most arcs are bidirectional, that is, if host A
 sends a class of newsgroups to host B, then host B usually sends
 the same class of newsgroups to host A. This bidirectionality
 is not, however, required.

 USENET is made up of many subnetworks. Each subnet has a name, such

Horton & Adams [Page 18]

C
om

pendium
 2 page 307

RFC 1036 Standard for USENET Messages December 1987

 as comp or btl. Each subnet is a connected graph, that is, a path
 exists from every node to every other node in the subnet. In
 addition, the entire graph is (theoretically) connected. (In
 practice, some political considerations have caused some hosts to be
 unable to post messages reaching the rest of the network.)

 A message is posted on one machine to a list of newsgroups. That
 machine accepts it locally, then forwards it to all its neighbors
 that are interested in at least one of the newsgroups of the
 message. (Site A deems host B to be "interested" in a newsgroup if
 the newsgroup matches the pattern on the arc from A to B. This
 pattern is stored in a file on the A machine.) The hosts receiving
 the incoming message examine it to make sure they really want the
 message, accept it locally, and then in turn forward the message to
 all their interested neighbors. This process continues until the
 entire network has seen the message.

 An important part of the algorithm is the prevention of loops. The
 above process would cause a message to loop along a cycle forever.
 In particular, when host A sends a message to host B, host B will
 send it back to host A, which will send it to host B, and so on.
 One solution to this is the history mechanism. Each host keeps
 track of all messages it has seen (by their Message-ID) and
 whenever a message comes in that it has already seen, the incoming
 message is discarded immediately. This solution is sufficient to
 prevent loops, but additional optimizations can be made to avoid
 sending messages to hosts that will simply throw them away.

 One optimization is that a message should never be sent to a machine
 listed in the "Path" line of the header. When a machine name is
 in the "Path" line, the message is known to have passed through the
 machine. Another optimization is that, if the message originated
 on host A, then host A has already seen the message. Thus, if a
 message is posted to newsgroup misc.misc, it will match the pattern
 misc.all (where all is a metasymbol that matches any string), and
 will be forwarded to all hosts that subscribe to misc.all (as
 determined by what their neighbors send them). These hosts make up
 the misc subnetwork. A message posted to btl.general will reach all
 hosts receiving btl.all, but will not reach hosts that do not get
 btl.all. In effect, the messages reaches the btl subnetwork. A
 messages posted to newsgroups misc.misc,btl.general will reach all
 hosts subscribing to either of the two classes.

Notes

 <1> UNIX is a registered trademark of AT&T.

Horton & Adams [Page 19]

C
om

pendium
 2 page 308

Network Working Group R. Fielding
Request for Comments: 2068 UC Irvine
Category: Standards Track J. Gettys
 J. Mogul
 DEC
 H. Frystyk
 T. Berners-Lee
 MIT/LCS
 January 1997

 Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. It is a generic, stateless, object-oriented protocol which
 can be used for many tasks, such as name servers and distributed
 object management systems, through extension of its request methods.
 A feature of HTTP is the typing and negotiation of data
 representation, allowing systems to be built independently of the
 data being transferred.

 HTTP has been in use by the World-Wide Web global information
 initiative since 1990. This specification defines the protocol
 referred to as "HTTP/1.1".

Table of Contents

 1 Introduction...7
 1.1 Purpose ..7
 1.2 Requirements ...7
 1.3 Terminology ..8
 1.4 Overall Operation11
 2 Notational Conventions and Generic Grammar..............13
 2.1 Augmented BNF13
 2.2 Basic Rules ...15
 3 Protocol Parameters.....................................17
 3.1 HTTP Version ..17

Fielding, et. al. Standards Track [Page 1]

RFC 2068 HTTP/1.1 January 1997

 3.2 Uniform Resource Identifiers18
 3.2.1 General Syntax18
 3.2.2 http URL ...19
 3.2.3 URI Comparison20
 3.3 Date/Time Formats21
 3.3.1 Full Date ..21
 3.3.2 Delta Seconds22
 3.4 Character Sets22
 3.5 Content Codings23
 3.6 Transfer Codings24
 3.7 Media Types ...25
 3.7.1 Canonicalization and Text Defaults26
 3.7.2 Multipart Types27
 3.8 Product Tokens28
 3.9 Quality Values28
 3.10 Language Tags28
 3.11 Entity Tags ..29
 3.12 Range Units ..30
 4 HTTP Message..30
 4.1 Message Types30
 4.2 Message Headers31
 4.3 Message Body ..32
 4.4 Message Length32
 4.5 General Header Fields34
 5 Request...34
 5.1 Request-Line ..34
 5.1.1 Method ...35
 5.1.2 Request-URI35
 5.2 The Resource Identified by a Request37
 5.3 Request Header Fields37
 6 Response..38
 6.1 Status-Line ...38
 6.1.1 Status Code and Reason Phrase39
 6.2 Response Header Fields41
 7 Entity..41
 7.1 Entity Header Fields41
 7.2 Entity Body ...42
 7.2.1 Type ...42
 7.2.2 Length ...43
 8 Connections...43
 8.1 Persistent Connections43
 8.1.1 Purpose ..43
 8.1.2 Overall Operation44
 8.1.3 Proxy Servers45
 8.1.4 Practical Considerations45
 8.2 Message Transmission Requirements46
 9 Method Definitions......................................48
 9.1 Safe and Idempotent Methods48

Fielding, et. al. Standards Track [Page 2]

C
om

pendium
 2 page 309

RFC 2068 HTTP/1.1 January 1997

 9.1.1 Safe Methods48
 9.1.2 Idempotent Methods49
 9.2 OPTIONS ...49
 9.3 GET ...50
 9.4 HEAD ..50
 9.5 POST ..51
 9.6 PUT ...52
 9.7 DELETE ..53
 9.8 TRACE ...53
 10 Status Code Definitions................................53
 10.1 Informational 1xx54
 10.1.1 100 Continue54
 10.1.2 101 Switching Protocols54
 10.2 Successful 2xx54
 10.2.1 200 OK ..54
 10.2.2 201 Created55
 10.2.3 202 Accepted55
 10.2.4 203 Non-Authoritative Information55
 10.2.5 204 No Content55
 10.2.6 205 Reset Content56
 10.2.7 206 Partial Content56
 10.3 Redirection 3xx56
 10.3.1 300 Multiple Choices57
 10.3.2 301 Moved Permanently57
 10.3.3 302 Moved Temporarily58
 10.3.4 303 See Other58
 10.3.5 304 Not Modified58
 10.3.6 305 Use Proxy59
 10.4 Client Error 4xx59
 10.4.1 400 Bad Request60
 10.4.2 401 Unauthorized60
 10.4.3 402 Payment Required60
 10.4.4 403 Forbidden60
 10.4.5 404 Not Found60
 10.4.6 405 Method Not Allowed61
 10.4.7 406 Not Acceptable61
 10.4.8 407 Proxy Authentication Required61
 10.4.9 408 Request Timeout62
 10.4.10 409 Conflict62
 10.4.11 410 Gone62
 10.4.12 411 Length Required63
 10.4.13 412 Precondition Failed63
 10.4.14 413 Request Entity Too Large63
 10.4.15 414 Request-URI Too Long63
 10.4.16 415 Unsupported Media Type63
 10.5 Server Error 5xx64
 10.5.1 500 Internal Server Error64
 10.5.2 501 Not Implemented64

Fielding, et. al. Standards Track [Page 3]

RFC 2068 HTTP/1.1 January 1997

 10.5.3 502 Bad Gateway64
 10.5.4 503 Service Unavailable64
 10.5.5 504 Gateway Timeout64
 10.5.6 505 HTTP Version Not Supported65
 11 Access Authentication..................................65
 11.1 Basic Authentication Scheme66
 11.2 Digest Authentication Scheme67
 12 Content Negotiation....................................67
 12.1 Server-driven Negotiation68
 12.2 Agent-driven Negotiation69
 12.3 Transparent Negotiation70
 13 Caching in HTTP..70
 13.1.1 Cache Correctness72
 13.1.2 Warnings ..73
 13.1.3 Cache-control Mechanisms74
 13.1.4 Explicit User Agent Warnings74
 13.1.5 Exceptions to the Rules and Warnings75
 13.1.6 Client-controlled Behavior75
 13.2 Expiration Model75
 13.2.1 Server-Specified Expiration75
 13.2.2 Heuristic Expiration76
 13.2.3 Age Calculations77
 13.2.4 Expiration Calculations79
 13.2.5 Disambiguating Expiration Values80
 13.2.6 Disambiguating Multiple Responses80
 13.3 Validation Model81
 13.3.1 Last-modified Dates82
 13.3.2 Entity Tag Cache Validators82
 13.3.3 Weak and Strong Validators82
 13.3.4 Rules for When to Use Entity Tags and Last-
 modified Dates..85
 13.3.5 Non-validating Conditionals86
 13.4 Response Cachability86
 13.5 Constructing Responses From Caches87
 13.5.1 End-to-end and Hop-by-hop Headers88
 13.5.2 Non-modifiable Headers88
 13.5.3 Combining Headers89
 13.5.4 Combining Byte Ranges90
 13.6 Caching Negotiated Responses90
 13.7 Shared and Non-Shared Caches91
 13.8 Errors or Incomplete Response Cache Behavior91
 13.9 Side Effects of GET and HEAD92
 13.10 Invalidation After Updates or Deletions92
 13.11 Write-Through Mandatory93
 13.12 Cache Replacement93
 13.13 History Lists93
 14 Header Field Definitions...............................94
 14.1 Accept ...95

Fielding, et. al. Standards Track [Page 4]

C
om

pendium
 2 page 310

RFC 2068 HTTP/1.1 January 1997

 14.2 Accept-Charset97
 14.3 Accept-Encoding97
 14.4 Accept-Language98
 14.5 Accept-Ranges99
 14.6 Age ..99
 14.7 Allow ...100
 14.8 Authorization100
 14.9 Cache-Control101
 14.9.1 What is Cachable103
 14.9.2 What May be Stored by Caches103
 14.9.3 Modifications of the Basic Expiration Mechanism 104
 14.9.4 Cache Revalidation and Reload Controls105
 14.9.5 No-Transform Directive107
 14.9.6 Cache Control Extensions108
 14.10 Connection109
 14.11 Content-Base109
 14.12 Content-Encoding110
 14.13 Content-Language110
 14.14 Content-Length111
 14.15 Content-Location112
 14.16 Content-MD5113
 14.17 Content-Range114
 14.18 Content-Type116
 14.19 Date ...116
 14.20 ETag ...117
 14.21 Expires ..117
 14.22 From ...118
 14.23 Host ...119
 14.24 If-Modified-Since119
 14.25 If-Match ...121
 14.26 If-None-Match122
 14.27 If-Range ...123
 14.28 If-Unmodified-Since124
 14.29 Last-Modified124
 14.30 Location ...125
 14.31 Max-Forwards125
 14.32 Pragma ...126
 14.33 Proxy-Authenticate127
 14.34 Proxy-Authorization127
 14.35 Public ...127
 14.36 Range ..128
 14.36.1 Byte Ranges128
 14.36.2 Range Retrieval Requests130
 14.37 Referer ..131
 14.38 Retry-After131
 14.39 Server ...132
 14.40 Transfer-Encoding132
 14.41 Upgrade ..132

Fielding, et. al. Standards Track [Page 5]

RFC 2068 HTTP/1.1 January 1997

 14.42 User-Agent134
 14.43 Vary ...134
 14.44 Via ..135
 14.45 Warning ..137
 14.46 WWW-Authenticate139
 15 Security Considerations...............................139
 15.1 Authentication of Clients139
 15.2 Offering a Choice of Authentication Schemes140
 15.3 Abuse of Server Log Information141
 15.4 Transfer of Sensitive Information141
 15.5 Attacks Based On File and Path Names142
 15.6 Personal Information143
 15.7 Privacy Issues Connected to Accept Headers143
 15.8 DNS Spoofing144
 15.9 Location Headers and Spoofing144
 16 Acknowledgments.......................................144
 17 References..146
 18 Authors' Addresses....................................149
 19 Appendices..150
 19.1 Internet Media Type message/http150
 19.2 Internet Media Type multipart/byteranges150
 19.3 Tolerant Applications151
 19.4 Differences Between HTTP Entities and
 MIME Entities...152
 19.4.1 Conversion to Canonical Form152
 19.4.2 Conversion of Date Formats153
 19.4.3 Introduction of Content-Encoding153
 19.4.4 No Content-Transfer-Encoding153
 19.4.5 HTTP Header Fields in Multipart Body-Parts153
 19.4.6 Introduction of Transfer-Encoding154
 19.4.7 MIME-Version154
 19.5 Changes from HTTP/1.0154
 19.5.1 Changes to Simplify Multi-homed Web Servers and
 Conserve IP Addresses155
 19.6 Additional Features156
 19.6.1 Additional Request Methods156
 19.6.2 Additional Header Field Definitions156
 19.7 Compatibility with Previous Versions160
 19.7.1 Compatibility with HTTP/1.0 Persistent
 Connections..161

Fielding, et. al. Standards Track [Page 6]

C
om

pendium
 2 page 311

RFC 2068 HTTP/1.1 January 1997

1 Introduction

1.1 Purpose

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World-Wide Web global
 information initiative since 1990. The first version of HTTP,
 referred to as HTTP/0.9, was a simple protocol for raw data transfer
 across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved
 the protocol by allowing messages to be in the format of MIME-like
 messages, containing metainformation about the data transferred and
 modifiers on the request/response semantics. However, HTTP/1.0 does
 not sufficiently take into consideration the effects of hierarchical
 proxies, caching, the need for persistent connections, and virtual
 hosts. In addition, the proliferation of incompletely-implemented
 applications calling themselves "HTTP/1.0" has necessitated a
 protocol version change in order for two communicating applications
 to determine each other's true capabilities.

 This specification defines the protocol referred to as "HTTP/1.1".
 This protocol includes more stringent requirements than HTTP/1.0 in
 order to ensure reliable implementation of its features.

 Practical information systems require more functionality than simple
 retrieval, including search, front-end update, and annotation. HTTP
 allows an open-ended set of methods that indicate the purpose of a
 request. It builds on the discipline of reference provided by the
 Uniform Resource Identifier (URI) [3][20], as a location (URL) [4] or
 name (URN) , for indicating the resource to which a method is to be
 applied. Messages are passed in a format similar to that used by
 Internet mail as defined by the Multipurpose Internet Mail Extensions
 (MIME).

 HTTP is also used as a generic protocol for communication between
 user agents and proxies/gateways to other Internet systems, including
 those supported by the SMTP [16], NNTP [13], FTP [18], Gopher [2],
 and WAIS [10] protocols. In this way, HTTP allows basic hypermedia
 access to resources available from diverse applications.

1.2 Requirements

 This specification uses the same words as RFC 1123 [8] for defining
 the significance of each particular requirement. These words are:

 MUST
 This word or the adjective "required" means that the item is an
 absolute requirement of the specification.

Fielding, et. al. Standards Track [Page 7]

RFC 2068 HTTP/1.1 January 1997

 SHOULD
 This word or the adjective "recommended" means that there may
 exist valid reasons in particular circumstances to ignore this
 item, but the full implications should be understood and the case
 carefully weighed before choosing a different course.

 MAY
 This word or the adjective "optional" means that this item is
 truly optional. One vendor may choose to include the item because
 a particular marketplace requires it or because it enhances the
 product, for example; another vendor may omit the same item.

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST requirements for the protocols it implements. An
 implementation that satisfies all the MUST and all the SHOULD
 requirements for its protocols is said to be "unconditionally
 compliant"; one that satisfies all the MUST requirements but not all
 the SHOULD requirements for its protocols is said to be
 "conditionally compliant."

1.3 Terminology

 This specification uses a number of terms to refer to the roles
 played by participants in, and objects of, the HTTP communication.

 connection
 A transport layer virtual circuit established between two programs
 for the purpose of communication.

 message
 The basic unit of HTTP communication, consisting of a structured
 sequence of octets matching the syntax defined in section 4 and
 transmitted via the connection.

 request
 An HTTP request message, as defined in section 5.

 response
 An HTTP response message, as defined in section 6.

 resource
 A network data object or service that can be identified by a URI,
 as defined in section 3.2. Resources may be available in multiple
 representations (e.g. multiple languages, data formats, size,
 resolutions) or vary in other ways.

Fielding, et. al. Standards Track [Page 8]

C
om

pendium
 2 page 312

RFC 2068 HTTP/1.1 January 1997

 entity
 The information transferred as the payload of a request or
 response. An entity consists of metainformation in the form of
 entity-header fields and content in the form of an entity-body, as
 described in section 7.

 representation
 An entity included with a response that is subject to content
 negotiation, as described in section 12. There may exist multiple
 representations associated with a particular response status.

 content negotiation
 The mechanism for selecting the appropriate representation when
 servicing a request, as described in section 12. The
 representation of entities in any response can be negotiated
 (including error responses).

 variant
 A resource may have one, or more than one, representation(s)
 associated with it at any given instant. Each of these
 representations is termed a `variant.' Use of the term `variant'
 does not necessarily imply that the resource is subject to content
 negotiation.

 client
 A program that establishes connections for the purpose of sending
 requests.

 user agent
 The client which initiates a request. These are often browsers,
 editors, spiders (web-traversing robots), or other end user tools.

 server
 An application program that accepts connections in order to
 service requests by sending back responses. Any given program may
 be capable of being both a client and a server; our use of these
 terms refers only to the role being performed by the program for a
 particular connection, rather than to the program's capabilities
 in general. Likewise, any server may act as an origin server,
 proxy, gateway, or tunnel, switching behavior based on the nature
 of each request.

 origin server
 The server on which a given resource resides or is to be created.

Fielding, et. al. Standards Track [Page 9]

RFC 2068 HTTP/1.1 January 1997

 proxy
 An intermediary program which acts as both a server and a client
 for the purpose of making requests on behalf of other clients.
 Requests are serviced internally or by passing them on, with
 possible translation, to other servers. A proxy must implement
 both the client and server requirements of this specification.

 gateway
 A server which acts as an intermediary for some other server.
 Unlike a proxy, a gateway receives requests as if it were the
 origin server for the requested resource; the requesting client
 may not be aware that it is communicating with a gateway.

 tunnel
 An intermediary program which is acting as a blind relay between
 two connections. Once active, a tunnel is not considered a party
 to the HTTP communication, though the tunnel may have been
 initiated by an HTTP request. The tunnel ceases to exist when both
 ends of the relayed connections are closed.

 cache
 A program's local store of response messages and the subsystem
 that controls its message storage, retrieval, and deletion. A
 cache stores cachable responses in order to reduce the response
 time and network bandwidth consumption on future, equivalent
 requests. Any client or server may include a cache, though a cache
 cannot be used by a server that is acting as a tunnel.

 cachable
 A response is cachable if a cache is allowed to store a copy of
 the response message for use in answering subsequent requests. The
 rules for determining the cachability of HTTP responses are
 defined in section 13. Even if a resource is cachable, there may
 be additional constraints on whether a cache can use the cached
 copy for a particular request.

 first-hand
 A response is first-hand if it comes directly and without
 unnecessary delay from the origin server, perhaps via one or more
 proxies. A response is also first-hand if its validity has just
 been checked directly with the origin server.

 explicit expiration time
 The time at which the origin server intends that an entity should
 no longer be returned by a cache without further validation.

Fielding, et. al. Standards Track [Page 10]

C
om

pendium
 2 page 313

RFC 2068 HTTP/1.1 January 1997

 heuristic expiration time
 An expiration time assigned by a cache when no explicit expiration
 time is available.

 age
 The age of a response is the time since it was sent by, or
 successfully validated with, the origin server.

 freshness lifetime
 The length of time between the generation of a response and its
 expiration time.

 fresh
 A response is fresh if its age has not yet exceeded its freshness
 lifetime.

 stale
 A response is stale if its age has passed its freshness lifetime.

 semantically transparent
 A cache behaves in a "semantically transparent" manner, with
 respect to a particular response, when its use affects neither the
 requesting client nor the origin server, except to improve
 performance. When a cache is semantically transparent, the client
 receives exactly the same response (except for hop-by-hop headers)
 that it would have received had its request been handled directly
 by the origin server.

 validator
 A protocol element (e.g., an entity tag or a Last-Modified time)
 that is used to find out whether a cache entry is an equivalent
 copy of an entity.

1.4 Overall Operation

 The HTTP protocol is a request/response protocol. A client sends a
 request to the server in the form of a request method, URI, and
 protocol version, followed by a MIME-like message containing request
 modifiers, client information, and possible body content over a
 connection with a server. The server responds with a status line,
 including the message's protocol version and a success or error code,
 followed by a MIME-like message containing server information, entity
 metainformation, and possible entity-body content. The relationship
 between HTTP and MIME is described in appendix 19.4.

Fielding, et. al. Standards Track [Page 11]

RFC 2068 HTTP/1.1 January 1997

 Most HTTP communication is initiated by a user agent and consists of
 a request to be applied to a resource on some origin server. In the
 simplest case, this may be accomplished via a single connection (v)
 between the user agent (UA) and the origin server (O).

 request chain ------------------------>
 UA -------------------v------------------- O
 <----------------------- response chain

 A more complicated situation occurs when one or more intermediaries
 are present in the request/response chain. There are three common
 forms of intermediary: proxy, gateway, and tunnel. A proxy is a
 forwarding agent, receiving requests for a URI in its absolute form,
 rewriting all or part of the message, and forwarding the reformatted
 request toward the server identified by the URI. A gateway is a
 receiving agent, acting as a layer above some other server(s) and, if
 necessary, translating the requests to the underlying server's
 protocol. A tunnel acts as a relay point between two connections
 without changing the messages; tunnels are used when the
 communication needs to pass through an intermediary (such as a
 firewall) even when the intermediary cannot understand the contents
 of the messages.

 request chain -------------------------------------->
 UA -----v----- A -----v----- B -----v----- C -----v----- O
 <------------------------------------- response chain

 The figure above shows three intermediaries (A, B, and C) between the
 user agent and origin server. A request or response message that
 travels the whole chain will pass through four separate connections.
 This distinction is important because some HTTP communication options
 may apply only to the connection with the nearest, non-tunnel
 neighbor, only to the end-points of the chain, or to all connections
 along the chain. Although the diagram is linear, each participant
 may be engaged in multiple, simultaneous communications. For example,
 B may be receiving requests from many clients other than A, and/or
 forwarding requests to servers other than C, at the same time that it
 is handling A's request.

 Any party to the communication which is not acting as a tunnel may
 employ an internal cache for handling requests. The effect of a cache
 is that the request/response chain is shortened if one of the
 participants along the chain has a cached response applicable to that
 request. The following illustrates the resulting chain if B has a
 cached copy of an earlier response from O (via C) for a request which
 has not been cached by UA or A.

Fielding, et. al. Standards Track [Page 12]

C
om

pendium
 2 page 314

RFC 2068 HTTP/1.1 January 1997

 request chain ---------->
 UA -----v----- A -----v----- B - - - - - - C - - - - - - O
 <--------- response chain

 Not all responses are usefully cachable, and some requests may
 contain modifiers which place special requirements on cache behavior.
 HTTP requirements for cache behavior and cachable responses are
 defined in section 13.

 In fact, there are a wide variety of architectures and configurations
 of caches and proxies currently being experimented with or deployed
 across the World Wide Web; these systems include national hierarchies
 of proxy caches to save transoceanic bandwidth, systems that
 broadcast or multicast cache entries, organizations that distribute
 subsets of cached data via CD-ROM, and so on. HTTP systems are used
 in corporate intranets over high-bandwidth links, and for access via
 PDAs with low-power radio links and intermittent connectivity. The
 goal of HTTP/1.1 is to support the wide diversity of configurations
 already deployed while introducing protocol constructs that meet the
 needs of those who build web applications that require high
 reliability and, failing that, at least reliable indications of
 failure.

 HTTP communication usually takes place over TCP/IP connections. The
 default port is TCP 80, but other ports can be used. This does not
 preclude HTTP from being implemented on top of any other protocol on
 the Internet, or on other networks. HTTP only presumes a reliable
 transport; any protocol that provides such guarantees can be used;
 the mapping of the HTTP/1.1 request and response structures onto the
 transport data units of the protocol in question is outside the scope
 of this specification.

 In HTTP/1.0, most implementations used a new connection for each
 request/response exchange. In HTTP/1.1, a connection may be used for
 one or more request/response exchanges, although connections may be
 closed for a variety of reasons (see section 8.1).

2 Notational Conventions and Generic Grammar

2.1 Augmented BNF

 All of the mechanisms specified in this document are described in
 both prose and an augmented Backus-Naur Form (BNF) similar to that
 used by RFC 822 [9]. Implementers will need to be familiar with the
 notation in order to understand this specification. The augmented BNF
 includes the following constructs:

Fielding, et. al. Standards Track [Page 13]

RFC 2068 HTTP/1.1 January 1997

name = definition
 The name of a rule is simply the name itself (without any enclosing
 "<" and ">") and is separated from its definition by the equal "="
 character. Whitespace is only significant in that indentation of
 continuation lines is used to indicate a rule definition that spans
 more than one line. Certain basic rules are in uppercase, such as
 SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used
 within definitions whenever their presence will facilitate
 discerning the use of rule names.

"literal"
 Quotation marks surround literal text. Unless stated otherwise, the
 text is case-insensitive.

rule1 | rule2
 Elements separated by a bar ("|") are alternatives, e.g., "yes |
 no" will accept yes or no.

(rule1 rule2)
 Elements enclosed in parentheses are treated as a single element.
 Thus, "(elem (foo | bar) elem)" allows the token sequences "elem
 foo elem" and "elem bar elem".

*rule
 The character "*" preceding an element indicates repetition. The
 full form is "<n>*<m>element" indicating at least <n> and at most
 <m> occurrences of element. Default values are 0 and infinity so
 that "*(element)" allows any number, including zero; "1*element"
 requires at least one; and "1*2element" allows one or two.

[rule]
 Square brackets enclose optional elements; "[foo bar]" is
 equivalent to "*1(foo bar)".

N rule
 Specific repetition: "<n>(element)" is equivalent to
 "<n>*<n>(element)"; that is, exactly <n> occurrences of (element).
 Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
 alphabetic characters.

#rule
 A construct "#" is defined, similar to "*", for defining lists of
 elements. The full form is "<n>#<m>element " indicating at least
 <n> and at most <m> elements, each separated by one or more commas
 (",") and optional linear whitespace (LWS). This makes the usual
 form of lists very easy; a rule such as "(*LWS element *(*LWS ","
 *LWS element)) " can be shown as "1#element". Wherever this
 construct is used, null elements are allowed, but do not contribute

Fielding, et. al. Standards Track [Page 14]

C
om

pendium
 2 page 315

RFC 2068 HTTP/1.1 January 1997

 to the count of elements present. That is, "(element), , (element)
 " is permitted, but counts as only two elements. Therefore, where
 at least one element is required, at least one non-null element
 must be present. Default values are 0 and infinity so that
 "#element" allows any number, including zero; "1#element" requires
 at least one; and "1#2element" allows one or two.

; comment
 A semi-colon, set off some distance to the right of rule text,
 starts a comment that continues to the end of line. This is a
 simple way of including useful notes in parallel with the
 specifications.

implied *LWS
 The grammar described by this specification is word-based. Except
 where noted otherwise, linear whitespace (LWS) can be included
 between any two adjacent words (token or quoted-string), and
 between adjacent tokens and delimiters (tspecials), without
 changing the interpretation of a field. At least one delimiter
 (tspecials) must exist between any two tokens, since they would
 otherwise be interpreted as a single token.

2.2 Basic Rules

 The following rules are used throughout this specification to
 describe basic parsing constructs. The US-ASCII coded character set
 is defined by ANSI X3.4-1986 [21].

 OCTET = <any 8-bit sequence of data>
 CHAR = <any US-ASCII character (octets 0 - 127)>
 UPALPHA = <any US-ASCII uppercase letter "A".."Z">
 LOALPHA = <any US-ASCII lowercase letter "a".."z">
 ALPHA = UPALPHA | LOALPHA
 DIGIT = <any US-ASCII digit "0".."9">
 CTL = <any US-ASCII control character
 (octets 0 - 31) and DEL (127)>
 CR = <US-ASCII CR, carriage return (13)>
 LF = <US-ASCII LF, linefeed (10)>
 SP = <US-ASCII SP, space (32)>
 HT = <US-ASCII HT, horizontal-tab (9)>
 <"> = <US-ASCII double-quote mark (34)>

Fielding, et. al. Standards Track [Page 15]

RFC 2068 HTTP/1.1 January 1997

 HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
 protocol elements except the entity-body (see appendix 19.3 for
 tolerant applications). The end-of-line marker within an entity-body
 is defined by its associated media type, as described in section 3.7.

 CRLF = CR LF

 HTTP/1.1 headers can be folded onto multiple lines if the
 continuation line begins with a space or horizontal tab. All linear
 white space, including folding, has the same semantics as SP.

 LWS = [CRLF] 1*(SP | HT)

 The TEXT rule is only used for descriptive field contents and values
 that are not intended to be interpreted by the message parser. Words
 of *TEXT may contain characters from character sets other than ISO
 8859-1 [22] only when encoded according to the rules of RFC 1522
 [14].

 TEXT = <any OCTET except CTLs,
 but including LWS>

 Hexadecimal numeric characters are used in several protocol elements.

 HEX = "A" | "B" | "C" | "D" | "E" | "F"
 | "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

 Many HTTP/1.1 header field values consist of words separated by LWS
 or special characters. These special characters MUST be in a quoted
 string to be used within a parameter value.

 token = 1*<any CHAR except CTLs or tspecials>

 tspecials = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

 Comments can be included in some HTTP header fields by surrounding
 the comment text with parentheses. Comments are only allowed in
 fields containing "comment" as part of their field value definition.
 In all other fields, parentheses are considered part of the field
 value.

 comment = "(" *(ctext | comment) ")"
 ctext = <any TEXT excluding "(" and ")">

Fielding, et. al. Standards Track [Page 16]

C
om

pendium
 2 page 316

RFC 2068 HTTP/1.1 January 1997

 A string of text is parsed as a single word if it is quoted using
 double-quote marks.

 quoted-string = (<"> *(qdtext) <">)

 qdtext = <any TEXT except <">>

 The backslash character ("\") may be used as a single-character quoting
 mechanism only within quoted-string and comment constructs.

 quoted-pair = "\" CHAR

3 Protocol Parameters

3.1 HTTP Version

 HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
 of the protocol. The protocol versioning policy is intended to allow
 the sender to indicate the format of a message and its capacity for
 understanding further HTTP communication, rather than the features
 obtained via that communication. No change is made to the version
 number for the addition of message components which do not affect
 communication behavior or which only add to extensible field values.
 The <minor> number is incremented when the changes made to the
 protocol add features which do not change the general message parsing
 algorithm, but which may add to the message semantics and imply
 additional capabilities of the sender. The <major> number is
 incremented when the format of a message within the protocol is
 changed.

 The version of an HTTP message is indicated by an HTTP-Version field
 in the first line of the message.

 HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

 Note that the major and minor numbers MUST be treated as separate
 integers and that each may be incremented higher than a single digit.
 Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is
 lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and
 MUST NOT be sent.

 Applications sending Request or Response messages, as defined by this
 specification, MUST include an HTTP-Version of "HTTP/1.1". Use of
 this version number indicates that the sending application is at
 least conditionally compliant with this specification.

 The HTTP version of an application is the highest HTTP version for
 which the application is at least conditionally compliant.

Fielding, et. al. Standards Track [Page 17]

RFC 2068 HTTP/1.1 January 1997

 Proxy and gateway applications must be careful when forwarding
 messages in protocol versions different from that of the application.
 Since the protocol version indicates the protocol capability of the
 sender, a proxy/gateway MUST never send a message with a version
 indicator which is greater than its actual version; if a higher
 version request is received, the proxy/gateway MUST either downgrade
 the request version, respond with an error, or switch to tunnel
 behavior. Requests with a version lower than that of the
 proxy/gateway's version MAY be upgraded before being forwarded; the
 proxy/gateway's response to that request MUST be in the same major
 version as the request.

 Note: Converting between versions of HTTP may involve modification
 of header fields required or forbidden by the versions involved.

3.2 Uniform Resource Identifiers

 URIs have been known by many names: WWW addresses, Universal Document
 Identifiers, Universal Resource Identifiers , and finally the
 combination of Uniform Resource Locators (URL) and Names (URN). As
 far as HTTP is concerned, Uniform Resource Identifiers are simply
 formatted strings which identify--via name, location, or any other
 characteristic--a resource.

3.2.1 General Syntax

 URIs in HTTP can be represented in absolute form or relative to some
 known base URI, depending upon the context of their use. The two
 forms are differentiated by the fact that absolute URIs always begin
 with a scheme name followed by a colon.

 URI = (absoluteURI | relativeURI) ["#" fragment]

 absoluteURI = scheme ":" *(uchar | reserved)

 relativeURI = net_path | abs_path | rel_path

 net_path = "//" net_loc [abs_path]
 abs_path = "/" rel_path
 rel_path = [path] [";" params] ["?" query]

 path = fsegment *("/" segment)
 fsegment = 1*pchar
 segment = *pchar

 params = param *(";" param)
 param = *(pchar | "/")

Fielding, et. al. Standards Track [Page 18]

C
om

pendium
 2 page 317

RFC 2068 HTTP/1.1 January 1997

 scheme = 1*(ALPHA | DIGIT | "+" | "-" | ".")
 net_loc = *(pchar | ";" | "?")

 query = *(uchar | reserved)
 fragment = *(uchar | reserved)

 pchar = uchar | ":" | "@" | "&" | "=" | "+"
 uchar = unreserved | escape
 unreserved = ALPHA | DIGIT | safe | extra | national

 escape = "%" HEX HEX
 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"
 extra = "!" | "*" | "'" | "(" | ")" | ","
 safe = "$" | "-" | "_" | "."
 unsafe = CTL | SP | <"> | "#" | "%" | "<" | ">"
 national = <any OCTET excluding ALPHA, DIGIT,
 reserved, extra, safe, and unsafe>

 For definitive information on URL syntax and semantics, see RFC 1738
 [4] and RFC 1808 [11]. The BNF above includes national characters not
 allowed in valid URLs as specified by RFC 1738, since HTTP servers
 are not restricted in the set of unreserved characters allowed to
 represent the rel_path part of addresses, and HTTP proxies may
 receive requests for URIs not defined by RFC 1738.

 The HTTP protocol does not place any a priori limit on the length of
 a URI. Servers MUST be able to handle the URI of any resource they
 serve, and SHOULD be able to handle URIs of unbounded length if they
 provide GET-based forms that could generate such URIs. A server
 SHOULD return 414 (Request-URI Too Long) status if a URI is longer
 than the server can handle (see section 10.4.15).

 Note: Servers should be cautious about depending on URI lengths
 above 255 bytes, because some older client or proxy implementations
 may not properly support these lengths.

3.2.2 http URL

 The "http" scheme is used to locate network resources via the HTTP
 protocol. This section defines the scheme-specific syntax and
 semantics for http URLs.

Fielding, et. al. Standards Track [Page 19]

RFC 2068 HTTP/1.1 January 1997

 http_URL = "http:" "//" host [":" port] [abs_path]

 host = <A legal Internet host domain name
 or IP address (in dotted-decimal form),
 as defined by Section 2.1 of RFC 1123>

 port = *DIGIT

 If the port is empty or not given, port 80 is assumed. The semantics
 are that the identified resource is located at the server listening
 for TCP connections on that port of that host, and the Request-URI
 for the resource is abs_path. The use of IP addresses in URL's SHOULD
 be avoided whenever possible (see RFC 1900 [24]). If the abs_path is
 not present in the URL, it MUST be given as "/" when used as a
 Request-URI for a resource (section 5.1.2).

3.2.3 URI Comparison

 When comparing two URIs to decide if they match or not, a client
 SHOULD use a case-sensitive octet-by-octet comparison of the entire
 URIs, with these exceptions:

 o A port that is empty or not given is equivalent to the default
 port for that URI;

 o Comparisons of host names MUST be case-insensitive;

 o Comparisons of scheme names MUST be case-insensitive;

 o An empty abs_path is equivalent to an abs_path of "/".

 Characters other than those in the "reserved" and "unsafe" sets (see
 section 3.2) are equivalent to their ""%" HEX HEX" encodings.

 For example, the following three URIs are equivalent:

 http://abc.com:80/~smith/home.html
 http://ABC.com/%7Esmith/home.html
 http://ABC.com:/%7esmith/home.html

Fielding, et. al. Standards Track [Page 20]

C
om

pendium
 2 page 318

RFC 2068 HTTP/1.1 January 1997

3.3 Date/Time Formats

3.3.1 Full Date

 HTTP applications have historically allowed three different formats
 for the representation of date/time stamps:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

 The first format is preferred as an Internet standard and represents
 a fixed-length subset of that defined by RFC 1123 (an update to RFC
 822). The second format is in common use, but is based on the
 obsolete RFC 850 [12] date format and lacks a four-digit year.
 HTTP/1.1 clients and servers that parse the date value MUST accept
 all three formats (for compatibility with HTTP/1.0), though they MUST
 only generate the RFC 1123 format for representing HTTP-date values
 in header fields.

 Note: Recipients of date values are encouraged to be robust in
 accepting date values that may have been sent by non-HTTP
 applications, as is sometimes the case when retrieving or posting
 messages via proxies/gateways to SMTP or NNTP.

 All HTTP date/time stamps MUST be represented in Greenwich Mean Time
 (GMT), without exception. This is indicated in the first two formats
 by the inclusion of "GMT" as the three-letter abbreviation for time
 zone, and MUST be assumed when reading the asctime format.

 HTTP-date = rfc1123-date | rfc850-date | asctime-date

 rfc1123-date = wkday "," SP date1 SP time SP "GMT"
 rfc850-date = weekday "," SP date2 SP time SP "GMT"
 asctime-date = wkday SP date3 SP time SP 4DIGIT

 date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
 date2 = 2DIGIT "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)
 date3 = month SP (2DIGIT | (SP 1DIGIT))
 ; month day (e.g., Jun 2)

 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; 00:00:00 - 23:59:59

 wkday = "Mon" | "Tue" | "Wed"
 | "Thu" | "Fri" | "Sat" | "Sun"

Fielding, et. al. Standards Track [Page 21]

RFC 2068 HTTP/1.1 January 1997

 weekday = "Monday" | "Tuesday" | "Wednesday"
 | "Thursday" | "Friday" | "Saturday" | "Sunday"

 month = "Jan" | "Feb" | "Mar" | "Apr"
 | "May" | "Jun" | "Jul" | "Aug"
 | "Sep" | "Oct" | "Nov" | "Dec"

 Note: HTTP requirements for the date/time stamp format apply only
 to their usage within the protocol stream. Clients and servers are
 not required to use these formats for user presentation, request
 logging, etc.

3.3.2 Delta Seconds

 Some HTTP header fields allow a time value to be specified as an
 integer number of seconds, represented in decimal, after the time
 that the message was received.

 delta-seconds = 1*DIGIT

3.4 Character Sets

 HTTP uses the same definition of the term "character set" as that
 described for MIME:

 The term "character set" is used in this document to refer to a
 method used with one or more tables to convert a sequence of octets
 into a sequence of characters. Note that unconditional conversion
 in the other direction is not required, in that not all characters
 may be available in a given character set and a character set may
 provide more than one sequence of octets to represent a particular
 character. This definition is intended to allow various kinds of
 character encodings, from simple single-table mappings such as US-
 ASCII to complex table switching methods such as those that use ISO
 2022's techniques. However, the definition associated with a MIME
 character set name MUST fully specify the mapping to be performed
 from octets to characters. In particular, use of external profiling
 information to determine the exact mapping is not permitted.

 Note: This use of the term "character set" is more commonly
 referred to as a "character encoding." However, since HTTP and MIME
 share the same registry, it is important that the terminology also
 be shared.

Fielding, et. al. Standards Track [Page 22]

C
om

pendium
 2 page 319

RFC 2068 HTTP/1.1 January 1997

 HTTP character sets are identified by case-insensitive tokens. The
 complete set of tokens is defined by the IANA Character Set registry
 [19].

 charset = token

 Although HTTP allows an arbitrary token to be used as a charset
 value, any token that has a predefined value within the IANA
 Character Set registry MUST represent the character set defined by
 that registry. Applications SHOULD limit their use of character sets
 to those defined by the IANA registry.

3.5 Content Codings

 Content coding values indicate an encoding transformation that has
 been or can be applied to an entity. Content codings are primarily
 used to allow a document to be compressed or otherwise usefully
 transformed without losing the identity of its underlying media type
 and without loss of information. Frequently, the entity is stored in
 coded form, transmitted directly, and only decoded by the recipient.

 content-coding = token

 All content-coding values are case-insensitive. HTTP/1.1 uses
 content-coding values in the Accept-Encoding (section 14.3) and
 Content-Encoding (section 14.12) header fields. Although the value
 describes the content-coding, what is more important is that it
 indicates what decoding mechanism will be required to remove the
 encoding.

 The Internet Assigned Numbers Authority (IANA) acts as a registry for
 content-coding value tokens. Initially, the registry contains the
 following tokens:

 gzip An encoding format produced by the file compression program "gzip"
 (GNU zip) as described in RFC 1952 [25]. This format is a Lempel-
 Ziv coding (LZ77) with a 32 bit CRC.

 compress
 The encoding format produced by the common UNIX file compression
 program "compress". This format is an adaptive Lempel-Ziv-Welch
 coding (LZW).

Fielding, et. al. Standards Track [Page 23]

RFC 2068 HTTP/1.1 January 1997

 Note: Use of program names for the identification of encoding
 formats is not desirable and should be discouraged for future
 encodings. Their use here is representative of historical practice,
 not good design. For compatibility with previous implementations of
 HTTP, applications should consider "x-gzip" and "x-compress" to be
 equivalent to "gzip" and "compress" respectively.

 deflate The "zlib" format defined in RFC 1950[31] in combination with
 the "deflate" compression mechanism described in RFC 1951[29].

 New content-coding value tokens should be registered; to allow
 interoperability between clients and servers, specifications of the
 content coding algorithms needed to implement a new value should be
 publicly available and adequate for independent implementation, and
 conform to the purpose of content coding defined in this section.

3.6 Transfer Codings

 Transfer coding values are used to indicate an encoding
 transformation that has been, can be, or may need to be applied to an
 entity-body in order to ensure "safe transport" through the network.
 This differs from a content coding in that the transfer coding is a
 property of the message, not of the original entity.

 transfer-coding = "chunked" | transfer-extension

 transfer-extension = token

 All transfer-coding values are case-insensitive. HTTP/1.1 uses
 transfer coding values in the Transfer-Encoding header field (section
 14.40).

 Transfer codings are analogous to the Content-Transfer-Encoding
 values of MIME , which were designed to enable safe transport of
 binary data over a 7-bit transport service. However, safe transport
 has a different focus for an 8bit-clean transfer protocol. In HTTP,
 the only unsafe characteristic of message-bodies is the difficulty in
 determining the exact body length (section 7.2.2), or the desire to
 encrypt data over a shared transport.

 The chunked encoding modifies the body of a message in order to
 transfer it as a series of chunks, each with its own size indicator,
 followed by an optional footer containing entity-header fields. This
 allows dynamically-produced content to be transferred along with the
 information necessary for the recipient to verify that it has
 received the full message.

Fielding, et. al. Standards Track [Page 24]

C
om

pendium
 2 page 320

RFC 2068 HTTP/1.1 January 1997

 Chunked-Body = *chunk
 "0" CRLF
 footer
 CRLF

 chunk = chunk-size [chunk-ext] CRLF
 chunk-data CRLF

 hex-no-zero = <HEX excluding "0">

 chunk-size = hex-no-zero *HEX
 chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-value])
 chunk-ext-name = token
 chunk-ext-val = token | quoted-string
 chunk-data = chunk-size(OCTET)

 footer = *entity-header

 The chunked encoding is ended by a zero-sized chunk followed by the
 footer, which is terminated by an empty line. The purpose of the
 footer is to provide an efficient way to supply information about an
 entity that is generated dynamically; applications MUST NOT send
 header fields in the footer which are not explicitly defined as being
 appropriate for the footer, such as Content-MD5 or future extensions
 to HTTP for digital signatures or other facilities.

 An example process for decoding a Chunked-Body is presented in
 appendix 19.4.6.

 All HTTP/1.1 applications MUST be able to receive and decode the
 "chunked" transfer coding, and MUST ignore transfer coding extensions
 they do not understand. A server which receives an entity-body with a
 transfer-coding it does not understand SHOULD return 501
 (Unimplemented), and close the connection. A server MUST NOT send
 transfer-codings to an HTTP/1.0 client.

3.7 Media Types

 HTTP uses Internet Media Types in the Content-Type (section 14.18)
 and Accept (section 14.1) header fields in order to provide open and
 extensible data typing and type negotiation.

 media-type = type "/" subtype *(";" parameter)
 type = token
 subtype = token

 Parameters may follow the type/subtype in the form of attribute/value
 pairs.

Fielding, et. al. Standards Track [Page 25]

RFC 2068 HTTP/1.1 January 1997

 parameter = attribute "=" value
 attribute = token
 value = token | quoted-string

 The type, subtype, and parameter attribute names are case-
 insensitive. Parameter values may or may not be case-sensitive,
 depending on the semantics of the parameter name. Linear white space
 (LWS) MUST NOT be used between the type and subtype, nor between an
 attribute and its value. User agents that recognize the media-type
 MUST process (or arrange to be processed by any external applications
 used to process that type/subtype by the user agent) the parameters
 for that MIME type as described by that type/subtype definition to
 the and inform the user of any problems discovered.

 Note: some older HTTP applications do not recognize media type
 parameters. When sending data to older HTTP applications,
 implementations should only use media type parameters when they are
 required by that type/subtype definition.

 Media-type values are registered with the Internet Assigned Number
 Authority (IANA). The media type registration process is outlined in
 RFC 2048 [17]. Use of non-registered media types is discouraged.

3.7.1 Canonicalization and Text Defaults

 Internet media types are registered with a canonical form. In
 general, an entity-body transferred via HTTP messages MUST be
 represented in the appropriate canonical form prior to its
 transmission; the exception is "text" types, as defined in the next
 paragraph.

 When in canonical form, media subtypes of the "text" type use CRLF as
 the text line break. HTTP relaxes this requirement and allows the
 transport of text media with plain CR or LF alone representing a line
 break when it is done consistently for an entire entity-body. HTTP
 applications MUST accept CRLF, bare CR, and bare LF as being
 representative of a line break in text media received via HTTP. In
 addition, if the text is represented in a character set that does not
 use octets 13 and 10 for CR and LF respectively, as is the case for
 some multi-byte character sets, HTTP allows the use of whatever octet
 sequences are defined by that character set to represent the
 equivalent of CR and LF for line breaks. This flexibility regarding
 line breaks applies only to text media in the entity-body; a bare CR
 or LF MUST NOT be substituted for CRLF within any of the HTTP control
 structures (such as header fields and multipart boundaries).

 If an entity-body is encoded with a Content-Encoding, the underlying
 data MUST be in a form defined above prior to being encoded.

Fielding, et. al. Standards Track [Page 26]

C
om

pendium
 2 page 321

RFC 2068 HTTP/1.1 January 1997

 The "charset" parameter is used with some media types to define the
 character set (section 3.4) of the data. When no explicit charset
 parameter is provided by the sender, media subtypes of the "text"
 type are defined to have a default charset value of "ISO-8859-1" when
 received via HTTP. Data in character sets other than "ISO-8859-1" or
 its subsets MUST be labeled with an appropriate charset value.

 Some HTTP/1.0 software has interpreted a Content-Type header without
 charset parameter incorrectly to mean "recipient should guess."
 Senders wishing to defeat this behavior MAY include a charset
 parameter even when the charset is ISO-8859-1 and SHOULD do so when
 it is known that it will not confuse the recipient.

 Unfortunately, some older HTTP/1.0 clients did not deal properly with
 an explicit charset parameter. HTTP/1.1 recipients MUST respect the
 charset label provided by the sender; and those user agents that have
 a provision to "guess" a charset MUST use the charset from the
 content-type field if they support that charset, rather than the
 recipient's preference, when initially displaying a document.

3.7.2 Multipart Types

 MIME provides for a number of "multipart" types -- encapsulations of
 one or more entities within a single message-body. All multipart
 types share a common syntax, as defined in MIME [7], and MUST
 include a boundary parameter as part of the media type value. The
 message body is itself a protocol element and MUST therefore use only
 CRLF to represent line breaks between body-parts. Unlike in MIME, the
 epilogue of any multipart message MUST be empty; HTTP applications
 MUST NOT transmit the epilogue (even if the original multipart
 contains an epilogue).

 In HTTP, multipart body-parts MAY contain header fields which are
 significant to the meaning of that part. A Content-Location header
 field (section 14.15) SHOULD be included in the body-part of each
 enclosed entity that can be identified by a URL.

 In general, an HTTP user agent SHOULD follow the same or similar
 behavior as a MIME user agent would upon receipt of a multipart type.
 If an application receives an unrecognized multipart subtype, the
 application MUST treat it as being equivalent to "multipart/mixed".

 Note: The "multipart/form-data" type has been specifically defined
 for carrying form data suitable for processing via the POST request
 method, as described in RFC 1867 [15].

Fielding, et. al. Standards Track [Page 27]

RFC 2068 HTTP/1.1 January 1997

3.8 Product Tokens

 Product tokens are used to allow communicating applications to
 identify themselves by software name and version. Most fields using
 product tokens also allow sub-products which form a significant part
 of the application to be listed, separated by whitespace. By
 convention, the products are listed in order of their significance
 for identifying the application.

 product = token ["/" product-version]
 product-version = token

 Examples:

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3
 Server: Apache/0.8.4

 Product tokens should be short and to the point -- use of them for
 advertising or other non-essential information is explicitly
 forbidden. Although any token character may appear in a product-
 version, this token SHOULD only be used for a version identifier
 (i.e., successive versions of the same product SHOULD only differ in
 the product-version portion of the product value).

3.9 Quality Values

 HTTP content negotiation (section 12) uses short "floating point"
 numbers to indicate the relative importance ("weight") of various
 negotiable parameters. A weight is normalized to a real number in the
 range 0 through 1, where 0 is the minimum and 1 the maximum value.
 HTTP/1.1 applications MUST NOT generate more than three digits after
 the decimal point. User configuration of these values SHOULD also be
 limited in this fashion.

 qvalue = ("0" ["." 0*3DIGIT])
 | ("1" ["." 0*3("0")])

 "Quality values" is a misnomer, since these values merely represent
 relative degradation in desired quality.

3.10 Language Tags

 A language tag identifies a natural language spoken, written, or
 otherwise conveyed by human beings for communication of information
 to other human beings. Computer languages are explicitly excluded.
 HTTP uses language tags within the Accept-Language and Content-
 Language fields.

Fielding, et. al. Standards Track [Page 28]

C
om

pendium
 2 page 322

RFC 2068 HTTP/1.1 January 1997

 The syntax and registry of HTTP language tags is the same as that
 defined by RFC 1766 [1]. In summary, a language tag is composed of 1
 or more parts: A primary language tag and a possibly empty series of
 subtags:

 language-tag = primary-tag *("-" subtag)

 primary-tag = 1*8ALPHA
 subtag = 1*8ALPHA

 Whitespace is not allowed within the tag and all tags are case-
 insensitive. The name space of language tags is administered by the
 IANA. Example tags include:

 en, en-US, en-cockney, i-cherokee, x-pig-latin

 where any two-letter primary-tag is an ISO 639 language abbreviation
 and any two-letter initial subtag is an ISO 3166 country code. (The
 last three tags above are not registered tags; all but the last are
 examples of tags which could be registered in future.)

3.11 Entity Tags

 Entity tags are used for comparing two or more entities from the same
 requested resource. HTTP/1.1 uses entity tags in the ETag (section
 14.20), If-Match (section 14.25), If-None-Match (section 14.26), and
 If-Range (section 14.27) header fields. The definition of how they
 are used and compared as cache validators is in section 13.3.3. An
 entity tag consists of an opaque quoted string, possibly prefixed by
 a weakness indicator.

 entity-tag = [weak] opaque-tag

 weak = "W/"
 opaque-tag = quoted-string

 A "strong entity tag" may be shared by two entities of a resource
 only if they are equivalent by octet equality.

 A "weak entity tag," indicated by the "W/" prefix, may be shared by
 two entities of a resource only if the entities are equivalent and
 could be substituted for each other with no significant change in
 semantics. A weak entity tag can only be used for weak comparison.

 An entity tag MUST be unique across all versions of all entities
 associated with a particular resource. A given entity tag value may
 be used for entities obtained by requests on different URIs without
 implying anything about the equivalence of those entities.

Fielding, et. al. Standards Track [Page 29]

RFC 2068 HTTP/1.1 January 1997

3.12 Range Units

 HTTP/1.1 allows a client to request that only part (a range of) the
 response entity be included within the response. HTTP/1.1 uses range
 units in the Range (section 14.36) and Content-Range (section 14.17)
 header fields. An entity may be broken down into subranges according
 to various structural units.

 range-unit = bytes-unit | other-range-unit

 bytes-unit = "bytes"
 other-range-unit = token

The only range unit defined by HTTP/1.1 is "bytes". HTTP/1.1
 implementations may ignore ranges specified using other units.
 HTTP/1.1 has been designed to allow implementations of applications
 that do not depend on knowledge of ranges.

4 HTTP Message

4.1 Message Types

 HTTP messages consist of requests from client to server and responses
 from server to client.

 HTTP-message = Request | Response ; HTTP/1.1 messages

 Request (section 5) and Response (section 6) messages use the generic
 message format of RFC 822 [9] for transferring entities (the payload
 of the message). Both types of message consist of a start-line, one
 or more header fields (also known as "headers"), an empty line (i.e.,
 a line with nothing preceding the CRLF) indicating the end of the
 header fields, and an optional message-body.

 generic-message = start-line
 *message-header
 CRLF
 [message-body]

 start-line = Request-Line | Status-Line

 In the interest of robustness, servers SHOULD ignore any empty
 line(s) received where a Request-Line is expected. In other words, if
 the server is reading the protocol stream at the beginning of a
 message and receives a CRLF first, it should ignore the CRLF.

Fielding, et. al. Standards Track [Page 30]

C
om

pendium
 2 page 323

RFC 2068 HTTP/1.1 January 1997

 Note: certain buggy HTTP/1.0 client implementations generate an
 extra CRLF's after a POST request. To restate what is explicitly
 forbidden by the BNF, an HTTP/1.1 client must not preface or follow
 a request with an extra CRLF.

4.2 Message Headers

 HTTP header fields, which include general-header (section 4.5),
 request-header (section 5.3), response-header (section 6.2), and
 entity-header (section 7.1) fields, follow the same generic format as
 that given in Section 3.1 of RFC 822 [9]. Each header field consists
 of a name followed by a colon (":") and the field value. Field names
 are case-insensitive. The field value may be preceded by any amount
 of LWS, though a single SP is preferred. Header fields can be
 extended over multiple lines by preceding each extra line with at
 least one SP or HT. Applications SHOULD follow "common form" when
 generating HTTP constructs, since there might exist some
 implementations that fail to accept anything beyond the common forms.

 message-header = field-name ":" [field-value] CRLF

 field-name = token
 field-value = *(field-content | LWS)

 field-content = <the OCTETs making up the field-value
 and consisting of either *TEXT or combinations
 of token, tspecials, and quoted-string>

 The order in which header fields with differing field names are
 received is not significant. However, it is "good practice" to send
 general-header fields first, followed by request-header or response-
 header fields, and ending with the entity-header fields.

 Multiple message-header fields with the same field-name may be
 present in a message if and only if the entire field-value for that
 header field is defined as a comma-separated list [i.e., #(values)].
 It MUST be possible to combine the multiple header fields into one
 "field-name: field-value" pair, without changing the semantics of the
 message, by appending each subsequent field-value to the first, each
 separated by a comma. The order in which header fields with the same
 field-name are received is therefore significant to the
 interpretation of the combined field value, and thus a proxy MUST NOT
 change the order of these field values when a message is forwarded.

Fielding, et. al. Standards Track [Page 31]

RFC 2068 HTTP/1.1 January 1997

4.3 Message Body

 The message-body (if any) of an HTTP message is used to carry the
 entity-body associated with the request or response. The message-body
 differs from the entity-body only when a transfer coding has been
 applied, as indicated by the Transfer-Encoding header field (section
 14.40).

 message-body = entity-body
 | <entity-body encoded as per Transfer-Encoding>

 Transfer-Encoding MUST be used to indicate any transfer codings
 applied by an application to ensure safe and proper transfer of the
 message. Transfer-Encoding is a property of the message, not of the
 entity, and thus can be added or removed by any application along the
 request/response chain.

 The rules for when a message-body is allowed in a message differ for
 requests and responses.

 The presence of a message-body in a request is signaled by the
 inclusion of a Content-Length or Transfer-Encoding header field in
 the request's message-headers. A message-body MAY be included in a
 request only when the request method (section 5.1.1) allows an
 entity-body.

 For response messages, whether or not a message-body is included with
 a message is dependent on both the request method and the response
 status code (section 6.1.1). All responses to the HEAD request method
 MUST NOT include a message-body, even though the presence of entity-
 header fields might lead one to believe they do. All 1xx
 (informational), 204 (no content), and 304 (not modified) responses
 MUST NOT include a message-body. All other responses do include a
 message-body, although it may be of zero length.

4.4 Message Length

 When a message-body is included with a message, the length of that
 body is determined by one of the following (in order of precedence):

 1. Any response message which MUST NOT include a message-body
 (such as the 1xx, 204, and 304 responses and any response to a HEAD
 request) is always terminated by the first empty line after the
 header fields, regardless of the entity-header fields present in the
 message.

 2. If a Transfer-Encoding header field (section 14.40) is present and
 indicates that the "chunked" transfer coding has been applied, then

Fielding, et. al. Standards Track [Page 32]

C
om

pendium
 2 page 324

RFC 2068 HTTP/1.1 January 1997

 the length is defined by the chunked encoding (section 3.6).

 3. If a Content-Length header field (section 14.14) is present, its
 value in bytes represents the length of the message-body.

 4. If the message uses the media type "multipart/byteranges", which is
 self-delimiting, then that defines the length. This media type MUST
 NOT be used unless the sender knows that the recipient can parse it;
 the presence in a request of a Range header with multiple byte-range
 specifiers implies that the client can parse multipart/byteranges
 responses.

 5. By the server closing the connection. (Closing the connection
 cannot be used to indicate the end of a request body, since that
 would leave no possibility for the server to send back a response.)

 For compatibility with HTTP/1.0 applications, HTTP/1.1 requests
 containing a message-body MUST include a valid Content-Length header
 field unless the server is known to be HTTP/1.1 compliant. If a
 request contains a message-body and a Content-Length is not given,
 the server SHOULD respond with 400 (bad request) if it cannot
 determine the length of the message, or with 411 (length required) if
 it wishes to insist on receiving a valid Content-Length.

 All HTTP/1.1 applications that receive entities MUST accept the
 "chunked" transfer coding (section 3.6), thus allowing this mechanism
 to be used for messages when the message length cannot be determined
 in advance.

 Messages MUST NOT include both a Content-Length header field and the
 "chunked" transfer coding. If both are received, the Content-Length
 MUST be ignored.

 When a Content-Length is given in a message where a message-body is
 allowed, its field value MUST exactly match the number of OCTETs in
 the message-body. HTTP/1.1 user agents MUST notify the user when an
 invalid length is received and detected.

Fielding, et. al. Standards Track [Page 33]

RFC 2068 HTTP/1.1 January 1997

4.5 General Header Fields

 There are a few header fields which have general applicability for
 both request and response messages, but which do not apply to the
 entity being transferred. These header fields apply only to the
 message being transmitted.

 general-header = Cache-Control ; Section 14.9
 | Connection ; Section 14.10
 | Date ; Section 14.19
 | Pragma ; Section 14.32
 | Transfer-Encoding ; Section 14.40
 | Upgrade ; Section 14.41
 | Via ; Section 14.44

 General-header field names can be extended reliably only in
 combination with a change in the protocol version. However, new or
 experimental header fields may be given the semantics of general
 header fields if all parties in the communication recognize them to
 be general-header fields. Unrecognized header fields are treated as
 entity-header fields.

5 Request

 A request message from a client to a server includes, within the
 first line of that message, the method to be applied to the resource,
 the identifier of the resource, and the protocol version in use.

 Request = Request-Line ; Section 5.1
 *(general-header ; Section 4.5
 | request-header ; Section 5.3
 | entity-header) ; Section 7.1
 CRLF
 [message-body] ; Section 7.2

5.1 Request-Line

 The Request-Line begins with a method token, followed by the
 Request-URI and the protocol version, and ending with CRLF. The
 elements are separated by SP characters. No CR or LF are allowed
 except in the final CRLF sequence.

 Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Fielding, et. al. Standards Track [Page 34]

C
om

pendium
 2 page 325

RFC 2068 HTTP/1.1 January 1997

5.1.1 Method

 The Method token indicates the method to be performed on the resource
 identified by the Request-URI. The method is case-sensitive.

 Method = "OPTIONS" ; Section 9.2
 | "GET" ; Section 9.3
 | "HEAD" ; Section 9.4
 | "POST" ; Section 9.5
 | "PUT" ; Section 9.6
 | "DELETE" ; Section 9.7
 | "TRACE" ; Section 9.8
 | extension-method

 extension-method = token

 The list of methods allowed by a resource can be specified in an
 Allow header field (section 14.7). The return code of the response
 always notifies the client whether a method is currently allowed on a
 resource, since the set of allowed methods can change dynamically.
 Servers SHOULD return the status code 405 (Method Not Allowed) if the
 method is known by the server but not allowed for the requested
 resource, and 501 (Not Implemented) if the method is unrecognized or
 not implemented by the server. The list of methods known by a server
 can be listed in a Public response-header field (section 14.35).

 The methods GET and HEAD MUST be supported by all general-purpose
 servers. All other methods are optional; however, if the above
 methods are implemented, they MUST be implemented with the same
 semantics as those specified in section 9.

5.1.2 Request-URI

 The Request-URI is a Uniform Resource Identifier (section 3.2) and
 identifies the resource upon which to apply the request.

 Request-URI = "*" | absoluteURI | abs_path

 The three options for Request-URI are dependent on the nature of the
 request. The asterisk "*" means that the request does not apply to a
 particular resource, but to the server itself, and is only allowed
 when the method used does not necessarily apply to a resource. One
 example would be

 OPTIONS * HTTP/1.1

 The absoluteURI form is required when the request is being made to a
 proxy. The proxy is requested to forward the request or service it

Fielding, et. al. Standards Track [Page 35]

RFC 2068 HTTP/1.1 January 1997

 from a valid cache, and return the response. Note that the proxy MAY
 forward the request on to another proxy or directly to the server
 specified by the absoluteURI. In order to avoid request loops, a
 proxy MUST be able to recognize all of its server names, including
 any aliases, local variations, and the numeric IP address. An example
 Request-Line would be:

 GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

 To allow for transition to absoluteURIs in all requests in future
 versions of HTTP, all HTTP/1.1 servers MUST accept the absoluteURI
 form in requests, even though HTTP/1.1 clients will only generate
 them in requests to proxies.

 The most common form of Request-URI is that used to identify a
 resource on an origin server or gateway. In this case the absolute
 path of the URI MUST be transmitted (see section 3.2.1, abs_path) as
 the Request-URI, and the network location of the URI (net_loc) MUST
 be transmitted in a Host header field. For example, a client wishing
 to retrieve the resource above directly from the origin server would
 create a TCP connection to port 80 of the host "www.w3.org" and send
 the lines:

 GET /pub/WWW/TheProject.html HTTP/1.1
 Host: www.w3.org

 followed by the remainder of the Request. Note that the absolute path
 cannot be empty; if none is present in the original URI, it MUST be
 given as "/" (the server root).

 If a proxy receives a request without any path in the Request-URI and
 the method specified is capable of supporting the asterisk form of
 request, then the last proxy on the request chain MUST forward the
 request with "*" as the final Request-URI. For example, the request

 OPTIONS http://www.ics.uci.edu:8001 HTTP/1.1

 would be forwarded by the proxy as

 OPTIONS * HTTP/1.1
 Host: www.ics.uci.edu:8001

 after connecting to port 8001 of host "www.ics.uci.edu".

 The Request-URI is transmitted in the format specified in section
 3.2.1. The origin server MUST decode the Request-URI in order to
 properly interpret the request. Servers SHOULD respond to invalid
 Request-URIs with an appropriate status code.

Fielding, et. al. Standards Track [Page 36]

C
om

pendium
 2 page 326

RFC 2068 HTTP/1.1 January 1997

 In requests that they forward, proxies MUST NOT rewrite the
 "abs_path" part of a Request-URI in any way except as noted above to
 replace a null abs_path with "*", no matter what the proxy does in
 its internal implementation.

 Note: The "no rewrite" rule prevents the proxy from changing the
 meaning of the request when the origin server is improperly using a
 non-reserved URL character for a reserved purpose. Implementers
 should be aware that some pre-HTTP/1.1 proxies have been known to
 rewrite the Request-URI.

5.2 The Resource Identified by a Request

 HTTP/1.1 origin servers SHOULD be aware that the exact resource
 identified by an Internet request is determined by examining both the
 Request-URI and the Host header field.

 An origin server that does not allow resources to differ by the
 requested host MAY ignore the Host header field value. (But see
 section 19.5.1 for other requirements on Host support in HTTP/1.1.)

 An origin server that does differentiate resources based on the host
 requested (sometimes referred to as virtual hosts or vanity
 hostnames) MUST use the following rules for determining the requested
 resource on an HTTP/1.1 request:

 1. If Request-URI is an absoluteURI, the host is part of the
 Request-URI. Any Host header field value in the request MUST be
 ignored.

 2. If the Request-URI is not an absoluteURI, and the request
 includes a Host header field, the host is determined by the Host
 header field value.

 3. If the host as determined by rule 1 or 2 is not a valid host on
 the server, the response MUST be a 400 (Bad Request) error
 message.

 Recipients of an HTTP/1.0 request that lacks a Host header field MAY
 attempt to use heuristics (e.g., examination of the URI path for
 something unique to a particular host) in order to determine what
 exact resource is being requested.

5.3 Request Header Fields

 The request-header fields allow the client to pass additional
 information about the request, and about the client itself, to the
 server. These fields act as request modifiers, with semantics

Fielding, et. al. Standards Track [Page 37]

RFC 2068 HTTP/1.1 January 1997

 equivalent to the parameters on a programming language method
 invocation.

 request-header = Accept ; Section 14.1
 | Accept-Charset ; Section 14.2
 | Accept-Encoding ; Section 14.3
 | Accept-Language ; Section 14.4
 | Authorization ; Section 14.8
 | From ; Section 14.22
 | Host ; Section 14.23
 | If-Modified-Since ; Section 14.24
 | If-Match ; Section 14.25
 | If-None-Match ; Section 14.26
 | If-Range ; Section 14.27
 | If-Unmodified-Since ; Section 14.28
 | Max-Forwards ; Section 14.31
 | Proxy-Authorization ; Section 14.34
 | Range ; Section 14.36
 | Referer ; Section 14.37
 | User-Agent ; Section 14.42

 Request-header field names can be extended reliably only in
 combination with a change in the protocol version. However, new or
 experimental header fields MAY be given the semantics of request-
 header fields if all parties in the communication recognize them to
 be request-header fields. Unrecognized header fields are treated as
 entity-header fields.

6 Response

 After receiving and interpreting a request message, a server responds
 with an HTTP response message.

 Response = Status-Line ; Section 6.1
 *(general-header ; Section 4.5
 | response-header ; Section 6.2
 | entity-header) ; Section 7.1
 CRLF
 [message-body] ; Section 7.2

6.1 Status-Line

 The first line of a Response message is the Status-Line, consisting
 of the protocol version followed by a numeric status code and its
 associated textual phrase, with each element separated by SP
 characters. No CR or LF is allowed except in the final CRLF
 sequence.

Fielding, et. al. Standards Track [Page 38]

C
om

pendium
 2 page 327

RFC 2068 HTTP/1.1 January 1997

 Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

6.1.1 Status Code and Reason Phrase

 The Status-Code element is a 3-digit integer result code of the
 attempt to understand and satisfy the request. These codes are fully
 defined in section 10. The Reason-Phrase is intended to give a short
 textual description of the Status-Code. The Status-Code is intended
 for use by automata and the Reason-Phrase is intended for the human
 user. The client is not required to examine or display the Reason-
 Phrase.

 The first digit of the Status-Code defines the class of response. The
 last two digits do not have any categorization role. There are 5
 values for the first digit:

 o 1xx: Informational - Request received, continuing process

 o 2xx: Success - The action was successfully received, understood,
 and accepted

 o 3xx: Redirection - Further action must be taken in order to
 complete the request

 o 4xx: Client Error - The request contains bad syntax or cannot be
 fulfilled

 o 5xx: Server Error - The server failed to fulfill an apparently
 valid request

 The individual values of the numeric status codes defined for
 HTTP/1.1, and an example set of corresponding Reason-Phrase's, are
 presented below. The reason phrases listed here are only recommended
 -- they may be replaced by local equivalents without affecting the
 protocol.

 Status-Code = "100" ; Continue
 | "101" ; Switching Protocols
 | "200" ; OK
 | "201" ; Created
 | "202" ; Accepted
 | "203" ; Non-Authoritative Information
 | "204" ; No Content
 | "205" ; Reset Content
 | "206" ; Partial Content
 | "300" ; Multiple Choices
 | "301" ; Moved Permanently
 | "302" ; Moved Temporarily

Fielding, et. al. Standards Track [Page 39]

RFC 2068 HTTP/1.1 January 1997

 | "303" ; See Other
 | "304" ; Not Modified
 | "305" ; Use Proxy
 | "400" ; Bad Request
 | "401" ; Unauthorized
 | "402" ; Payment Required
 | "403" ; Forbidden
 | "404" ; Not Found
 | "405" ; Method Not Allowed
 | "406" ; Not Acceptable
 | "407" ; Proxy Authentication Required
 | "408" ; Request Time-out
 | "409" ; Conflict
 | "410" ; Gone
 | "411" ; Length Required
 | "412" ; Precondition Failed
 | "413" ; Request Entity Too Large
 | "414" ; Request-URI Too Large
 | "415" ; Unsupported Media Type
 | "500" ; Internal Server Error
 | "501" ; Not Implemented
 | "502" ; Bad Gateway
 | "503" ; Service Unavailable
 | "504" ; Gateway Time-out
 | "505" ; HTTP Version not supported
 | extension-code

 extension-code = 3DIGIT

 Reason-Phrase = *<TEXT, excluding CR, LF>

 HTTP status codes are extensible. HTTP applications are not required
 to understand the meaning of all registered status codes, though such
 understanding is obviously desirable. However, applications MUST
 understand the class of any status code, as indicated by the first
 digit, and treat any unrecognized response as being equivalent to the
 x00 status code of that class, with the exception that an
 unrecognized response MUST NOT be cached. For example, if an
 unrecognized status code of 431 is received by the client, it can
 safely assume that there was something wrong with its request and
 treat the response as if it had received a 400 status code. In such
 cases, user agents SHOULD present to the user the entity returned
 with the response, since that entity is likely to include human-
 readable information which will explain the unusual status.

Fielding, et. al. Standards Track [Page 40]

C
om

pendium
 2 page 328

RFC 2068 HTTP/1.1 January 1997

6.2 Response Header Fields

 The response-header fields allow the server to pass additional
 information about the response which cannot be placed in the Status-
 Line. These header fields give information about the server and about
 further access to the resource identified by the Request-URI.

 response-header = Age ; Section 14.6
 | Location ; Section 14.30
 | Proxy-Authenticate ; Section 14.33
 | Public ; Section 14.35
 | Retry-After ; Section 14.38
 | Server ; Section 14.39
 | Vary ; Section 14.43
 | Warning ; Section 14.45
 | WWW-Authenticate ; Section 14.46

 Response-header field names can be extended reliably only in
 combination with a change in the protocol version. However, new or
 experimental header fields MAY be given the semantics of response-
 header fields if all parties in the communication recognize them to
 be response-header fields. Unrecognized header fields are treated as
 entity-header fields.

7 Entity

 Request and Response messages MAY transfer an entity if not otherwise
 restricted by the request method or response status code. An entity
 consists of entity-header fields and an entity-body, although some
 responses will only include the entity-headers.

 In this section, both sender and recipient refer to either the client
 or the server, depending on who sends and who receives the entity.

7.1 Entity Header Fields

 Entity-header fields define optional metainformation about the
 entity-body or, if no body is present, about the resource identified
 by the request.

Fielding, et. al. Standards Track [Page 41]

RFC 2068 HTTP/1.1 January 1997

 entity-header = Allow ; Section 14.7
 | Content-Base ; Section 14.11
 | Content-Encoding ; Section 14.12
 | Content-Language ; Section 14.13
 | Content-Length ; Section 14.14
 | Content-Location ; Section 14.15
 | Content-MD5 ; Section 14.16
 | Content-Range ; Section 14.17
 | Content-Type ; Section 14.18
 | ETag ; Section 14.20
 | Expires ; Section 14.21
 | Last-Modified ; Section 14.29
 | extension-header

 extension-header = message-header

 The extension-header mechanism allows additional entity-header fields
 to be defined without changing the protocol, but these fields cannot
 be assumed to be recognizable by the recipient. Unrecognized header
 fields SHOULD be ignored by the recipient and forwarded by proxies.

7.2 Entity Body

 The entity-body (if any) sent with an HTTP request or response is in
 a format and encoding defined by the entity-header fields.

 entity-body = *OCTET

 An entity-body is only present in a message when a message-body is
 present, as described in section 4.3. The entity-body is obtained
 from the message-body by decoding any Transfer-Encoding that may have
 been applied to ensure safe and proper transfer of the message.

7.2.1 Type

 When an entity-body is included with a message, the data type of that
 body is determined via the header fields Content-Type and Content-
 Encoding. These define a two-layer, ordered encoding model:

 entity-body := Content-Encoding(Content-Type(data))

 Content-Type specifies the media type of the underlying data.
 Content-Encoding may be used to indicate any additional content
 codings applied to the data, usually for the purpose of data
 compression, that are a property of the requested resource. There is
 no default encoding.

Fielding, et. al. Standards Track [Page 42]

C
om

pendium
 2 page 329

RFC 2068 HTTP/1.1 January 1997

 Any HTTP/1.1 message containing an entity-body SHOULD include a
 Content-Type header field defining the media type of that body. If
 and only if the media type is not given by a Content-Type field, the
 recipient MAY attempt to guess the media type via inspection of its
 content and/or the name extension(s) of the URL used to identify the
 resource. If the media type remains unknown, the recipient SHOULD
 treat it as type "application/octet-stream".

7.2.2 Length

 The length of an entity-body is the length of the message-body after
 any transfer codings have been removed. Section 4.4 defines how the
 length of a message-body is determined.

8 Connections

8.1 Persistent Connections

8.1.1 Purpose

 Prior to persistent connections, a separate TCP connection was
 established to fetch each URL, increasing the load on HTTP servers
 and causing congestion on the Internet. The use of inline images and
 other associated data often requires a client to make multiple
 requests of the same server in a short amount of time. Analyses of
 these performance problems are available [30][27]; analysis and
 results from a prototype implementation are in [26].

 Persistent HTTP connections have a number of advantages:

 o By opening and closing fewer TCP connections, CPU time is saved,
 and memory used for TCP protocol control blocks is also saved.
 o HTTP requests and responses can be pipelined on a connection.
 Pipelining allows a client to make multiple requests without
 waiting for each response, allowing a single TCP connection to be
 used much more efficiently, with much lower elapsed time.
 o Network congestion is reduced by reducing the number of packets
 caused by TCP opens, and by allowing TCP sufficient time to
 determine the congestion state of the network.
 o HTTP can evolve more gracefully; since errors can be reported
 without the penalty of closing the TCP connection. Clients using
 future versions of HTTP might optimistically try a new feature, but
 if communicating with an older server, retry with old semantics
 after an error is reported.

 HTTP implementations SHOULD implement persistent connections.

Fielding, et. al. Standards Track [Page 43]

RFC 2068 HTTP/1.1 January 1997

8.1.2 Overall Operation

 A significant difference between HTTP/1.1 and earlier versions of
 HTTP is that persistent connections are the default behavior of any
 HTTP connection. That is, unless otherwise indicated, the client may
 assume that the server will maintain a persistent connection.

 Persistent connections provide a mechanism by which a client and a
 server can signal the close of a TCP connection. This signaling takes
 place using the Connection header field. Once a close has been
 signaled, the client MUST not send any more requests on that
 connection.

8.1.2.1 Negotiation

 An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to
 maintain a persistent connection unless a Connection header including
 the connection-token "close" was sent in the request. If the server
 chooses to close the connection immediately after sending the
 response, it SHOULD send a Connection header including the
 connection-token close.

 An HTTP/1.1 client MAY expect a connection to remain open, but would
 decide to keep it open based on whether the response from a server
 contains a Connection header with the connection-token close. In case
 the client does not want to maintain a connection for more than that
 request, it SHOULD send a Connection header including the
 connection-token close.

 If either the client or the server sends the close token in the
 Connection header, that request becomes the last one for the
 connection.

 Clients and servers SHOULD NOT assume that a persistent connection is
 maintained for HTTP versions less than 1.1 unless it is explicitly
 signaled. See section 19.7.1 for more information on backwards
 compatibility with HTTP/1.0 clients.

 In order to remain persistent, all messages on the connection must
 have a self-defined message length (i.e., one not defined by closure
 of the connection), as described in section 4.4.

8.1.2.2 Pipelining

 A client that supports persistent connections MAY "pipeline" its
 requests (i.e., send multiple requests without waiting for each
 response). A server MUST send its responses to those requests in the
 same order that the requests were received.

Fielding, et. al. Standards Track [Page 44]

C
om

pendium
 2 page 330

RFC 2068 HTTP/1.1 January 1997

 Clients which assume persistent connections and pipeline immediately
 after connection establishment SHOULD be prepared to retry their
 connection if the first pipelined attempt fails. If a client does
 such a retry, it MUST NOT pipeline before it knows the connection is
 persistent. Clients MUST also be prepared to resend their requests if
 the server closes the connection before sending all of the
 corresponding responses.

8.1.3 Proxy Servers

 It is especially important that proxies correctly implement the
 properties of the Connection header field as specified in 14.2.1.

 The proxy server MUST signal persistent connections separately with
 its clients and the origin servers (or other proxy servers) that it
 connects to. Each persistent connection applies to only one transport
 link.

 A proxy server MUST NOT establish a persistent connection with an
 HTTP/1.0 client.

8.1.4 Practical Considerations

 Servers will usually have some time-out value beyond which they will
 no longer maintain an inactive connection. Proxy servers might make
 this a higher value since it is likely that the client will be making
 more connections through the same server. The use of persistent
 connections places no requirements on the length of this time-out for
 either the client or the server.

 When a client or server wishes to time-out it SHOULD issue a graceful
 close on the transport connection. Clients and servers SHOULD both
 constantly watch for the other side of the transport close, and
 respond to it as appropriate. If a client or server does not detect
 the other side's close promptly it could cause unnecessary resource
 drain on the network.

 A client, server, or proxy MAY close the transport connection at any
 time. For example, a client MAY have started to send a new request at
 the same time that the server has decided to close the "idle"
 connection. From the server's point of view, the connection is being
 closed while it was idle, but from the client's point of view, a
 request is in progress.

 This means that clients, servers, and proxies MUST be able to recover
 from asynchronous close events. Client software SHOULD reopen the
 transport connection and retransmit the aborted request without user
 interaction so long as the request method is idempotent (see section

Fielding, et. al. Standards Track [Page 45]

RFC 2068 HTTP/1.1 January 1997

 9.1.2); other methods MUST NOT be automatically retried, although
 user agents MAY offer a human operator the choice of retrying the
 request.

 However, this automatic retry SHOULD NOT be repeated if the second
 request fails.

 Servers SHOULD always respond to at least one request per connection,
 if at all possible. Servers SHOULD NOT close a connection in the
 middle of transmitting a response, unless a network or client failure
 is suspected.

 Clients that use persistent connections SHOULD limit the number of
 simultaneous connections that they maintain to a given server. A
 single-user client SHOULD maintain AT MOST 2 connections with any
 server or proxy. A proxy SHOULD use up to 2*N connections to another
 server or proxy, where N is the number of simultaneously active
 users. These guidelines are intended to improve HTTP response times
 and avoid congestion of the Internet or other networks.

8.2 Message Transmission Requirements

General requirements:

o HTTP/1.1 servers SHOULD maintain persistent connections and use
 TCP's flow control mechanisms to resolve temporary overloads,
 rather than terminating connections with the expectation that
 clients will retry. The latter technique can exacerbate network
 congestion.

o An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
 the network connection for an error status while it is transmitting
 the request. If the client sees an error status, it SHOULD
 immediately cease transmitting the body. If the body is being sent
 using a "chunked" encoding (section 3.6), a zero length chunk and
 empty footer MAY be used to prematurely mark the end of the
 message. If the body was preceded by a Content-Length header, the
 client MUST close the connection.

o An HTTP/1.1 (or later) client MUST be prepared to accept a 100
 (Continue) status followed by a regular response.

o An HTTP/1.1 (or later) server that receives a request from a
 HTTP/1.0 (or earlier) client MUST NOT transmit the 100 (continue)
 response; it SHOULD either wait for the request to be completed
 normally (thus avoiding an interrupted request) or close the
 connection prematurely.

Fielding, et. al. Standards Track [Page 46]

C
om

pendium
 2 page 331

RFC 2068 HTTP/1.1 January 1997

 Upon receiving a method subject to these requirements from an
 HTTP/1.1 (or later) client, an HTTP/1.1 (or later) server MUST either
 respond with 100 (Continue) status and continue to read from the
 input stream, or respond with an error status. If it responds with an
 error status, it MAY close the transport (TCP) connection or it MAY
 continue to read and discard the rest of the request. It MUST NOT
 perform the requested method if it returns an error status.

 Clients SHOULD remember the version number of at least the most
 recently used server; if an HTTP/1.1 client has seen an HTTP/1.1 or
 later response from the server, and it sees the connection close
 before receiving any status from the server, the client SHOULD retry
 the request without user interaction so long as the request method is
 idempotent (see section 9.1.2); other methods MUST NOT be
 automatically retried, although user agents MAY offer a human
 operator the choice of retrying the request.. If the client does
 retry the request, the client

 o MUST first send the request header fields, and then

 o MUST wait for the server to respond with either a 100 (Continue)
 response, in which case the client should continue, or with an
 error status.

 If an HTTP/1.1 client has not seen an HTTP/1.1 or later response from
 the server, it should assume that the server implements HTTP/1.0 or
 older and will not use the 100 (Continue) response. If in this case
 the client sees the connection close before receiving any status from
 the server, the client SHOULD retry the request. If the client does
 retry the request to this HTTP/1.0 server, it should use the
 following "binary exponential backoff" algorithm to be assured of
 obtaining a reliable response:

 1. Initiate a new connection to the server

 2. Transmit the request-headers

 3. Initialize a variable R to the estimated round-trip time to the
 server (e.g., based on the time it took to establish the
 connection), or to a constant value of 5 seconds if the round-trip
 time is not available.

 4. Compute T = R * (2**N), where N is the number of previous retries
 of this request.

 5. Wait either for an error response from the server, or for T seconds
 (whichever comes first)

Fielding, et. al. Standards Track [Page 47]

RFC 2068 HTTP/1.1 January 1997

 6. If no error response is received, after T seconds transmit the body
 of the request.

 7. If client sees that the connection is closed prematurely, repeat
 from step 1 until the request is accepted, an error response is
 received, or the user becomes impatient and terminates the retry
 process.

 No matter what the server version, if an error status is received,
 the client

 o MUST NOT continue and

 o MUST close the connection if it has not completed sending the
 message.

 An HTTP/1.1 (or later) client that sees the connection close after
 receiving a 100 (Continue) but before receiving any other status
 SHOULD retry the request, and need not wait for 100 (Continue)
 response (but MAY do so if this simplifies the implementation).

9 Method Definitions

 The set of common methods for HTTP/1.1 is defined below. Although
 this set can be expanded, additional methods cannot be assumed to
 share the same semantics for separately extended clients and servers.

 The Host request-header field (section 14.23) MUST accompany all
 HTTP/1.1 requests.

9.1 Safe and Idempotent Methods

9.1.1 Safe Methods

 Implementers should be aware that the software represents the user in
 their interactions over the Internet, and should be careful to allow
 the user to be aware of any actions they may take which may have an
 unexpected significance to themselves or others.

 In particular, the convention has been established that the GET and
 HEAD methods should never have the significance of taking an action
 other than retrieval. These methods should be considered "safe." This
 allows user agents to represent other methods, such as POST, PUT and
 DELETE, in a special way, so that the user is made aware of the fact
 that a possibly unsafe action is being requested.

 Naturally, it is not possible to ensure that the server does not
 generate side-effects as a result of performing a GET request; in

Fielding, et. al. Standards Track [Page 48]

C
om

pendium
 2 page 332

RFC 2068 HTTP/1.1 January 1997

 fact, some dynamic resources consider that a feature. The important
 distinction here is that the user did not request the side-effects,
 so therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

 Methods may also have the property of "idempotence" in that (aside
 from error or expiration issues) the side-effects of N > 0 identical
 requests is the same as for a single request. The methods GET, HEAD,
 PUT and DELETE share this property.

9.2 OPTIONS

 The OPTIONS method represents a request for information about the
 communication options available on the request/response chain
 identified by the Request-URI. This method allows the client to
 determine the options and/or requirements associated with a resource,
 or the capabilities of a server, without implying a resource action
 or initiating a resource retrieval.

 Unless the server's response is an error, the response MUST NOT
 include entity information other than what can be considered as
 communication options (e.g., Allow is appropriate, but Content-Type
 is not). Responses to this method are not cachable.

 If the Request-URI is an asterisk ("*"), the OPTIONS request is
 intended to apply to the server as a whole. A 200 response SHOULD
 include any header fields which indicate optional features
 implemented by the server (e.g., Public), including any extensions
 not defined by this specification, in addition to any applicable
 general or response-header fields. As described in section 5.1.2, an
 "OPTIONS *" request can be applied through a proxy by specifying the
 destination server in the Request-URI without any path information.

 If the Request-URI is not an asterisk, the OPTIONS request applies
 only to the options that are available when communicating with that
 resource. A 200 response SHOULD include any header fields which
 indicate optional features implemented by the server and applicable
 to that resource (e.g., Allow), including any extensions not defined
 by this specification, in addition to any applicable general or
 response-header fields. If the OPTIONS request passes through a
 proxy, the proxy MUST edit the response to exclude those options
 which apply to a proxy's capabilities and which are known to be
 unavailable through that proxy.

Fielding, et. al. Standards Track [Page 49]

RFC 2068 HTTP/1.1 January 1997

9.3 GET

 The GET method means retrieve whatever information (in the form of an
 entity) is identified by the Request-URI. If the Request-URI refers
 to a data-producing process, it is the produced data which shall be
 returned as the entity in the response and not the source text of the
 process, unless that text happens to be the output of the process.

 The semantics of the GET method change to a "conditional GET" if the
 request message includes an If-Modified-Since, If-Unmodified-Since,
 If-Match, If-None-Match, or If-Range header field. A conditional GET
 method requests that the entity be transferred only under the
 circumstances described by the conditional header field(s). The
 conditional GET method is intended to reduce unnecessary network
 usage by allowing cached entities to be refreshed without requiring
 multiple requests or transferring data already held by the client.

 The semantics of the GET method change to a "partial GET" if the
 request message includes a Range header field. A partial GET requests
 that only part of the entity be transferred, as described in section
 14.36. The partial GET method is intended to reduce unnecessary
 network usage by allowing partially-retrieved entities to be
 completed without transferring data already held by the client.

 The response to a GET request is cachable if and only if it meets the
 requirements for HTTP caching described in section 13.

9.4 HEAD

 The HEAD method is identical to GET except that the server MUST NOT
 return a message-body in the response. The metainformation contained
 in the HTTP headers in response to a HEAD request SHOULD be identical
 to the information sent in response to a GET request. This method can
 be used for obtaining metainformation about the entity implied by the
 request without transferring the entity-body itself. This method is
 often used for testing hypertext links for validity, accessibility,
 and recent modification.

 The response to a HEAD request may be cachable in the sense that the
 information contained in the response may be used to update a
 previously cached entity from that resource. If the new field values
 indicate that the cached entity differs from the current entity (as
 would be indicated by a change in Content-Length, Content-MD5, ETag
 or Last-Modified), then the cache MUST treat the cache entry as
 stale.

Fielding, et. al. Standards Track [Page 50]

C
om

pendium
 2 page 333

RFC 2068 HTTP/1.1 January 1997

9.5 POST

 The POST method is used to request that the destination server accept
 the entity enclosed in the request as a new subordinate of the
 resource identified by the Request-URI in the Request-Line. POST is
 designed to allow a uniform method to cover the following functions:

 o Annotation of existing resources;

 o Posting a message to a bulletin board, newsgroup, mailing list,
 or similar group of articles;

 o Providing a block of data, such as the result of submitting a
 form, to a data-handling process;

 o Extending a database through an append operation.

 The actual function performed by the POST method is determined by the
 server and is usually dependent on the Request-URI. The posted entity
 is subordinate to that URI in the same way that a file is subordinate
 to a directory containing it, a news article is subordinate to a
 newsgroup to which it is posted, or a record is subordinate to a
 database.

 The action performed by the POST method might not result in a
 resource that can be identified by a URI. In this case, either 200
 (OK) or 204 (No Content) is the appropriate response status,
 depending on whether or not the response includes an entity that
 describes the result.

 If a resource has been created on the origin server, the response
 SHOULD be 201 (Created) and contain an entity which describes the
 status of the request and refers to the new resource, and a Location
 header (see section 14.30).

 Responses to this method are not cachable, unless the response
 includes appropriate Cache-Control or Expires header fields. However,
 the 303 (See Other) response can be used to direct the user agent to
 retrieve a cachable resource.

 POST requests must obey the message transmission requirements set out
 in section 8.2.

Fielding, et. al. Standards Track [Page 51]

RFC 2068 HTTP/1.1 January 1997

9.6 PUT

 The PUT method requests that the enclosed entity be stored under the
 supplied Request-URI. If the Request-URI refers to an already
 existing resource, the enclosed entity SHOULD be considered as a
 modified version of the one residing on the origin server. If the
 Request-URI does not point to an existing resource, and that URI is
 capable of being defined as a new resource by the requesting user
 agent, the origin server can create the resource with that URI. If a
 new resource is created, the origin server MUST inform the user agent
 via the 201 (Created) response. If an existing resource is modified,
 either the 200 (OK) or 204 (No Content) response codes SHOULD be sent
 to indicate successful completion of the request. If the resource
 could not be created or modified with the Request-URI, an appropriate
 error response SHOULD be given that reflects the nature of the
 problem. The recipient of the entity MUST NOT ignore any Content-*
 (e.g. Content-Range) headers that it does not understand or implement
 and MUST return a 501 (Not Implemented) response in such cases.

 If the request passes through a cache and the Request-URI identifies
 one or more currently cached entities, those entries should be
 treated as stale. Responses to this method are not cachable.

 The fundamental difference between the POST and PUT requests is
 reflected in the different meaning of the Request-URI. The URI in a
 POST request identifies the resource that will handle the enclosed
 entity. That resource may be a data-accepting process, a gateway to
 some other protocol, or a separate entity that accepts annotations.
 In contrast, the URI in a PUT request identifies the entity enclosed
 with the request -- the user agent knows what URI is intended and the
 server MUST NOT attempt to apply the request to some other resource.
 If the server desires that the request be applied to a different URI,
 it MUST send a 301 (Moved Permanently) response; the user agent MAY
 then make its own decision regarding whether or not to redirect the
 request.

 A single resource MAY be identified by many different URIs. For
 example, an article may have a URI for identifying "the current
 version" which is separate from the URI identifying each particular
 version. In this case, a PUT request on a general URI may result in
 several other URIs being defined by the origin server.

 HTTP/1.1 does not define how a PUT method affects the state of an
 origin server.

 PUT requests must obey the message transmission requirements set out
 in section 8.2.

Fielding, et. al. Standards Track [Page 52]

C
om

pendium
 2 page 334

RFC 2068 HTTP/1.1 January 1997

9.7 DELETE

 The DELETE method requests that the origin server delete the resource
 identified by the Request-URI. This method MAY be overridden by human
 intervention (or other means) on the origin server. The client cannot
 be guaranteed that the operation has been carried out, even if the
 status code returned from the origin server indicates that the action
 has been completed successfully. However, the server SHOULD not
 indicate success unless, at the time the response is given, it
 intends to delete the resource or move it to an inaccessible
 location.

 A successful response SHOULD be 200 (OK) if the response includes an
 entity describing the status, 202 (Accepted) if the action has not
 yet been enacted, or 204 (No Content) if the response is OK but does
 not include an entity.

 If the request passes through a cache and the Request-URI identifies
 one or more currently cached entities, those entries should be
 treated as stale. Responses to this method are not cachable.

9.8 TRACE

 The TRACE method is used to invoke a remote, application-layer loop-
 back of the request message. The final recipient of the request
 SHOULD reflect the message received back to the client as the
 entity-body of a 200 (OK) response. The final recipient is either the
 origin server or the first proxy or gateway to receive a Max-Forwards
 value of zero (0) in the request (see section 14.31). A TRACE request
 MUST NOT include an entity.

 TRACE allows the client to see what is being received at the other
 end of the request chain and use that data for testing or diagnostic
 information. The value of the Via header field (section 14.44) is of
 particular interest, since it acts as a trace of the request chain.
 Use of the Max-Forwards header field allows the client to limit the
 length of the request chain, which is useful for testing a chain of
 proxies forwarding messages in an infinite loop.

 If successful, the response SHOULD contain the entire request message
 in the entity-body, with a Content-Type of "message/http". Responses
 to this method MUST NOT be cached.

10 Status Code Definitions

 Each Status-Code is described below, including a description of which
 method(s) it can follow and any metainformation required in the
 response.

Fielding, et. al. Standards Track [Page 53]

RFC 2068 HTTP/1.1 January 1997

10.1 Informational 1xx

 This class of status code indicates a provisional response,
 consisting only of the Status-Line and optional headers, and is
 terminated by an empty line. Since HTTP/1.0 did not define any 1xx
 status codes, servers MUST NOT send a 1xx response to an HTTP/1.0
 client except under experimental conditions.

10.1.1 100 Continue

 The client may continue with its request. This interim response is
 used to inform the client that the initial part of the request has
 been received and has not yet been rejected by the server. The client
 SHOULD continue by sending the remainder of the request or, if the
 request has already been completed, ignore this response. The server
 MUST send a final response after the request has been completed.

10.1.2 101 Switching Protocols

 The server understands and is willing to comply with the client's
 request, via the Upgrade message header field (section 14.41), for a
 change in the application protocol being used on this connection. The
 server will switch protocols to those defined by the response's
 Upgrade header field immediately after the empty line which
 terminates the 101 response.

 The protocol should only be switched when it is advantageous to do
 so. For example, switching to a newer version of HTTP is
 advantageous over older versions, and switching to a real-time,
 synchronous protocol may be advantageous when delivering resources
 that use such features.

10.2 Successful 2xx

 This class of status code indicates that the client's request was
 successfully received, understood, and accepted.

10.2.1 200 OK

 The request has succeeded. The information returned with the response
 is dependent on the method used in the request, for example:

 GET an entity corresponding to the requested resource is sent in the
 response;

 HEAD the entity-header fields corresponding to the requested resource
 are sent in the response without any message-body;

Fielding, et. al. Standards Track [Page 54]

C
om

pendium
 2 page 335

RFC 2068 HTTP/1.1 January 1997

 POST an entity describing or containing the result of the action;

 TRACE an entity containing the request message as received by the end
 server.

10.2.2 201 Created

 The request has been fulfilled and resulted in a new resource being
 created. The newly created resource can be referenced by the URI(s)
 returned in the entity of the response, with the most specific URL
 for the resource given by a Location header field. The origin server
 MUST create the resource before returning the 201 status code. If the
 action cannot be carried out immediately, the server should respond
 with 202 (Accepted) response instead.

10.2.3 202 Accepted

 The request has been accepted for processing, but the processing has
 not been completed. The request MAY or MAY NOT eventually be acted
 upon, as it MAY be disallowed when processing actually takes place.
 There is no facility for re-sending a status code from an
 asynchronous operation such as this.

 The 202 response is intentionally non-committal. Its purpose is to
 allow a server to accept a request for some other process (perhaps a
 batch-oriented process that is only run once per day) without
 requiring that the user agent's connection to the server persist
 until the process is completed. The entity returned with this
 response SHOULD include an indication of the request's current status
 and either a pointer to a status monitor or some estimate of when the
 user can expect the request to be fulfilled.

10.2.4 203 Non-Authoritative Information

 The returned metainformation in the entity-header is not the
 definitive set as available from the origin server, but is gathered
 from a local or a third-party copy. The set presented MAY be a subset
 or superset of the original version. For example, including local
 annotation information about the resource MAY result in a superset of
 the metainformation known by the origin server. Use of this response
 code is not required and is only appropriate when the response would
 otherwise be 200 (OK).

10.2.5 204 No Content

 The server has fulfilled the request but there is no new information
 to send back. If the client is a user agent, it SHOULD NOT change its
 document view from that which caused the request to be sent. This

Fielding, et. al. Standards Track [Page 55]

RFC 2068 HTTP/1.1 January 1997

 response is primarily intended to allow input for actions to take
 place without causing a change to the user agent's active document
 view. The response MAY include new metainformation in the form of
 entity-headers, which SHOULD apply to the document currently in the
 user agent's active view.

 The 204 response MUST NOT include a message-body, and thus is always
 terminated by the first empty line after the header fields.

10.2.6 205 Reset Content

 The server has fulfilled the request and the user agent SHOULD reset
 the document view which caused the request to be sent. This response
 is primarily intended to allow input for actions to take place via
 user input, followed by a clearing of the form in which the input is
 given so that the user can easily initiate another input action. The
 response MUST NOT include an entity.

10.2.7 206 Partial Content

 The server has fulfilled the partial GET request for the resource.
 The request must have included a Range header field (section 14.36)
 indicating the desired range. The response MUST include either a
 Content-Range header field (section 14.17) indicating the range
 included with this response, or a multipart/byteranges Content-Type
 including Content-Range fields for each part. If multipart/byteranges
 is not used, the Content-Length header field in the response MUST
 match the actual number of OCTETs transmitted in the message-body.

 A cache that does not support the Range and Content-Range headers
 MUST NOT cache 206 (Partial) responses.

10.3 Redirection 3xx

 This class of status code indicates that further action needs to be
 taken by the user agent in order to fulfill the request. The action
 required MAY be carried out by the user agent without interaction
 with the user if and only if the method used in the second request is
 GET or HEAD. A user agent SHOULD NOT automatically redirect a request
 more than 5 times, since such redirections usually indicate an
 infinite loop.

Fielding, et. al. Standards Track [Page 56]

C
om

pendium
 2 page 336

RFC 2068 HTTP/1.1 January 1997

10.3.1 300 Multiple Choices

 The requested resource corresponds to any one of a set of
 representations, each with its own specific location, and agent-
 driven negotiation information (section 12) is being provided so that
 the user (or user agent) can select a preferred representation and
 redirect its request to that location.

 Unless it was a HEAD request, the response SHOULD include an entity
 containing a list of resource characteristics and location(s) from
 which the user or user agent can choose the one most appropriate. The
 entity format is specified by the media type given in the Content-
 Type header field. Depending upon the format and the capabilities of
 the user agent, selection of the most appropriate choice may be
 performed automatically. However, this specification does not define
 any standard for such automatic selection.

 If the server has a preferred choice of representation, it SHOULD
 include the specific URL for that representation in the Location
 field; user agents MAY use the Location field value for automatic
 redirection. This response is cachable unless indicated otherwise.

10.3.2 301 Moved Permanently

 The requested resource has been assigned a new permanent URI and any
 future references to this resource SHOULD be done using one of the
 returned URIs. Clients with link editing capabilities SHOULD
 automatically re-link references to the Request-URI to one or more of
 the new references returned by the server, where possible. This
 response is cachable unless indicated otherwise.

 If the new URI is a location, its URL SHOULD be given by the Location
 field in the response. Unless the request method was HEAD, the entity
 of the response SHOULD contain a short hypertext note with a
 hyperlink to the new URI(s).

 If the 301 status code is received in response to a request other
 than GET or HEAD, the user agent MUST NOT automatically redirect the
 request unless it can be confirmed by the user, since this might
 change the conditions under which the request was issued.

 Note: When automatically redirecting a POST request after receiving
 a 301 status code, some existing HTTP/1.0 user agents will
 erroneously change it into a GET request.

Fielding, et. al. Standards Track [Page 57]

RFC 2068 HTTP/1.1 January 1997

10.3.3 302 Moved Temporarily

 The requested resource resides temporarily under a different URI.
 Since the redirection may be altered on occasion, the client SHOULD
 continue to use the Request-URI for future requests. This response is
 only cachable if indicated by a Cache-Control or Expires header
 field.

 If the new URI is a location, its URL SHOULD be given by the Location
 field in the response. Unless the request method was HEAD, the entity
 of the response SHOULD contain a short hypertext note with a
 hyperlink to the new URI(s).

 If the 302 status code is received in response to a request other
 than GET or HEAD, the user agent MUST NOT automatically redirect the
 request unless it can be confirmed by the user, since this might
 change the conditions under which the request was issued.

 Note: When automatically redirecting a POST request after receiving
 a 302 status code, some existing HTTP/1.0 user agents will
 erroneously change it into a GET request.

10.3.4 303 See Other

 The response to the request can be found under a different URI and
 SHOULD be retrieved using a GET method on that resource. This method
 exists primarily to allow the output of a POST-activated script to
 redirect the user agent to a selected resource. The new URI is not a
 substitute reference for the originally requested resource. The 303
 response is not cachable, but the response to the second (redirected)
 request MAY be cachable.

 If the new URI is a location, its URL SHOULD be given by the Location
 field in the response. Unless the request method was HEAD, the entity
 of the response SHOULD contain a short hypertext note with a
 hyperlink to the new URI(s).

10.3.5 304 Not Modified

 If the client has performed a conditional GET request and access is
 allowed, but the document has not been modified, the server SHOULD
 respond with this status code. The response MUST NOT contain a
 message-body.

Fielding, et. al. Standards Track [Page 58]

C
om

pendium
 2 page 337

RFC 2068 HTTP/1.1 January 1997

 The response MUST include the following header fields:

 o Date

 o ETag and/or Content-Location, if the header would have been sent in
 a 200 response to the same request

 o Expires, Cache-Control, and/or Vary, if the field-value might
 differ from that sent in any previous response for the same variant

 If the conditional GET used a strong cache validator (see section
 13.3.3), the response SHOULD NOT include other entity-headers.
 Otherwise (i.e., the conditional GET used a weak validator), the
 response MUST NOT include other entity-headers; this prevents
 inconsistencies between cached entity-bodies and updated headers.

 If a 304 response indicates an entity not currently cached, then the
 cache MUST disregard the response and repeat the request without the
 conditional.

 If a cache uses a received 304 response to update a cache entry, the
 cache MUST update the entry to reflect any new field values given in
 the response.

 The 304 response MUST NOT include a message-body, and thus is always
 terminated by the first empty line after the header fields.

10.3.6 305 Use Proxy

 The requested resource MUST be accessed through the proxy given by
 the Location field. The Location field gives the URL of the proxy.
 The recipient is expected to repeat the request via the proxy.

10.4 Client Error 4xx

 The 4xx class of status code is intended for cases in which the
 client seems to have erred. Except when responding to a HEAD request,
 the server SHOULD include an entity containing an explanation of the
 error situation, and whether it is a temporary or permanent
 condition. These status codes are applicable to any request method.
 User agents SHOULD display any included entity to the user.

 Note: If the client is sending data, a server implementation using
 TCP should be careful to ensure that the client acknowledges
 receipt of the packet(s) containing the response, before the server
 closes the input connection. If the client continues sending data
 to the server after the close, the server's TCP stack will send a
 reset packet to the client, which may erase the client's

Fielding, et. al. Standards Track [Page 59]

RFC 2068 HTTP/1.1 January 1997

 unacknowledged input buffers before they can be read and
 interpreted by the HTTP application.

10.4.1 400 Bad Request

 The request could not be understood by the server due to malformed
 syntax. The client SHOULD NOT repeat the request without
 modifications.

10.4.2 401 Unauthorized

 The request requires user authentication. The response MUST include a
 WWW-Authenticate header field (section 14.46) containing a challenge
 applicable to the requested resource. The client MAY repeat the
 request with a suitable Authorization header field (section 14.8). If
 the request already included Authorization credentials, then the 401
 response indicates that authorization has been refused for those
 credentials. If the 401 response contains the same challenge as the
 prior response, and the user agent has already attempted
 authentication at least once, then the user SHOULD be presented the
 entity that was given in the response, since that entity MAY include
 relevant diagnostic information. HTTP access authentication is
 explained in section 11.

10.4.3 402 Payment Required

 This code is reserved for future use.

10.4.4 403 Forbidden

 The server understood the request, but is refusing to fulfill it.
 Authorization will not help and the request SHOULD NOT be repeated.
 If the request method was not HEAD and the server wishes to make
 public why the request has not been fulfilled, it SHOULD describe the
 reason for the refusal in the entity. This status code is commonly
 used when the server does not wish to reveal exactly why the request
 has been refused, or when no other response is applicable.

10.4.5 404 Not Found

 The server has not found anything matching the Request-URI. No
 indication is given of whether the condition is temporary or
 permanent.

Fielding, et. al. Standards Track [Page 60]

C
om

pendium
 2 page 338

RFC 2068 HTTP/1.1 January 1997

 If the server does not wish to make this information available to the
 client, the status code 403 (Forbidden) can be used instead. The 410
 (Gone) status code SHOULD be used if the server knows, through some
 internally configurable mechanism, that an old resource is
 permanently unavailable and has no forwarding address.

10.4.6 405 Method Not Allowed

 The method specified in the Request-Line is not allowed for the
 resource identified by the Request-URI. The response MUST include an
 Allow header containing a list of valid methods for the requested
 resource.

10.4.7 406 Not Acceptable

 The resource identified by the request is only capable of generating
 response entities which have content characteristics not acceptable
 according to the accept headers sent in the request.

 Unless it was a HEAD request, the response SHOULD include an entity
 containing a list of available entity characteristics and location(s)
 from which the user or user agent can choose the one most
 appropriate. The entity format is specified by the media type given
 in the Content-Type header field. Depending upon the format and the
 capabilities of the user agent, selection of the most appropriate
 choice may be performed automatically. However, this specification
 does not define any standard for such automatic selection.

 Note: HTTP/1.1 servers are allowed to return responses which are
 not acceptable according to the accept headers sent in the request.
 In some cases, this may even be preferable to sending a 406
 response. User agents are encouraged to inspect the headers of an
 incoming response to determine if it is acceptable. If the response
 could be unacceptable, a user agent SHOULD temporarily stop receipt
 of more data and query the user for a decision on further actions.

10.4.8 407 Proxy Authentication Required

 This code is similar to 401 (Unauthorized), but indicates that the
 client MUST first authenticate itself with the proxy. The proxy MUST
 return a Proxy-Authenticate header field (section 14.33) containing a
 challenge applicable to the proxy for the requested resource. The
 client MAY repeat the request with a suitable Proxy-Authorization
 header field (section 14.34). HTTP access authentication is explained
 in section 11.

Fielding, et. al. Standards Track [Page 61]

RFC 2068 HTTP/1.1 January 1997

10.4.9 408 Request Timeout

 The client did not produce a request within the time that the server
 was prepared to wait. The client MAY repeat the request without
 modifications at any later time.

10.4.10 409 Conflict

 The request could not be completed due to a conflict with the current
 state of the resource. This code is only allowed in situations where
 it is expected that the user might be able to resolve the conflict
 and resubmit the request. The response body SHOULD include enough
 information for the user to recognize the source of the conflict.
 Ideally, the response entity would include enough information for the
 user or user agent to fix the problem; however, that may not be
 possible and is not required.

 Conflicts are most likely to occur in response to a PUT request. If
 versioning is being used and the entity being PUT includes changes to
 a resource which conflict with those made by an earlier (third-party)
 request, the server MAY use the 409 response to indicate that it
 can't complete the request. In this case, the response entity SHOULD
 contain a list of the differences between the two versions in a
 format defined by the response Content-Type.

10.4.11 410 Gone

 The requested resource is no longer available at the server and no
 forwarding address is known. This condition SHOULD be considered
 permanent. Clients with link editing capabilities SHOULD delete
 references to the Request-URI after user approval. If the server does
 not know, or has no facility to determine, whether or not the
 condition is permanent, the status code 404 (Not Found) SHOULD be
 used instead. This response is cachable unless indicated otherwise.

 The 410 response is primarily intended to assist the task of web
 maintenance by notifying the recipient that the resource is
 intentionally unavailable and that the server owners desire that
 remote links to that resource be removed. Such an event is common for
 limited-time, promotional services and for resources belonging to
 individuals no longer working at the server's site. It is not
 necessary to mark all permanently unavailable resources as "gone" or
 to keep the mark for any length of time -- that is left to the
 discretion of the server owner.

Fielding, et. al. Standards Track [Page 62]

C
om

pendium
 2 page 339

RFC 2068 HTTP/1.1 January 1997

10.4.12 411 Length Required

 The server refuses to accept the request without a defined Content-
 Length. The client MAY repeat the request if it adds a valid
 Content-Length header field containing the length of the message-body
 in the request message.

10.4.13 412 Precondition Failed

 The precondition given in one or more of the request-header fields
 evaluated to false when it was tested on the server. This response
 code allows the client to place preconditions on the current resource
 metainformation (header field data) and thus prevent the requested
 method from being applied to a resource other than the one intended.

10.4.14 413 Request Entity Too Large

 The server is refusing to process a request because the request
 entity is larger than the server is willing or able to process. The
 server may close the connection to prevent the client from continuing
 the request.

 If the condition is temporary, the server SHOULD include a Retry-
 After header field to indicate that it is temporary and after what
 time the client may try again.

10.4.15 414 Request-URI Too Long

 The server is refusing to service the request because the Request-URI
 is longer than the server is willing to interpret. This rare
 condition is only likely to occur when a client has improperly
 converted a POST request to a GET request with long query
 information, when the client has descended into a URL "black hole" of
 redirection (e.g., a redirected URL prefix that points to a suffix of
 itself), or when the server is under attack by a client attempting to
 exploit security holes present in some servers using fixed-length
 buffers for reading or manipulating the Request-URI.

10.4.16 415 Unsupported Media Type

 The server is refusing to service the request because the entity of
 the request is in a format not supported by the requested resource
 for the requested method.

Fielding, et. al. Standards Track [Page 63]

RFC 2068 HTTP/1.1 January 1997

10.5 Server Error 5xx

 Response status codes beginning with the digit "5" indicate cases in
 which the server is aware that it has erred or is incapable of
 performing the request. Except when responding to a HEAD request, the
 server SHOULD include an entity containing an explanation of the
 error situation, and whether it is a temporary or permanent
 condition. User agents SHOULD display any included entity to the
 user. These response codes are applicable to any request method.

10.5.1 500 Internal Server Error

 The server encountered an unexpected condition which prevented it
 from fulfilling the request.

10.5.2 501 Not Implemented

 The server does not support the functionality required to fulfill the
 request. This is the appropriate response when the server does not
 recognize the request method and is not capable of supporting it for
 any resource.

10.5.3 502 Bad Gateway

 The server, while acting as a gateway or proxy, received an invalid
 response from the upstream server it accessed in attempting to
 fulfill the request.

10.5.4 503 Service Unavailable

 The server is currently unable to handle the request due to a
 temporary overloading or maintenance of the server. The implication
 is that this is a temporary condition which will be alleviated after
 some delay. If known, the length of the delay may be indicated in a
 Retry-After header. If no Retry-After is given, the client SHOULD
 handle the response as it would for a 500 response.

 Note: The existence of the 503 status code does not imply that a
 server must use it when becoming overloaded. Some servers may wish
 to simply refuse the connection.

10.5.5 504 Gateway Timeout

 The server, while acting as a gateway or proxy, did not receive a
 timely response from the upstream server it accessed in attempting to
 complete the request.

Fielding, et. al. Standards Track [Page 64]

C
om

pendium
 2 page 340

RFC 2068 HTTP/1.1 January 1997

10.5.6 505 HTTP Version Not Supported

 The server does not support, or refuses to support, the HTTP protocol
 version that was used in the request message. The server is
 indicating that it is unable or unwilling to complete the request
 using the same major version as the client, as described in section
 3.1, other than with this error message. The response SHOULD contain
 an entity describing why that version is not supported and what other
 protocols are supported by that server.

11 Access Authentication

 HTTP provides a simple challenge-response authentication mechanism
 which MAY be used by a server to challenge a client request and by a
 client to provide authentication information. It uses an extensible,
 case-insensitive token to identify the authentication scheme,
 followed by a comma-separated list of attribute-value pairs which
 carry the parameters necessary for achieving authentication via that
 scheme.

 auth-scheme = token

 auth-param = token "=" quoted-string

 The 401 (Unauthorized) response message is used by an origin server
 to challenge the authorization of a user agent. This response MUST
 include a WWW-Authenticate header field containing at least one
 challenge applicable to the requested resource.

 challenge = auth-scheme 1*SP realm *("," auth-param)

 realm = "realm" "=" realm-value
 realm-value = quoted-string

 The realm attribute (case-insensitive) is required for all
 authentication schemes which issue a challenge. The realm value
 (case-sensitive), in combination with the canonical root URL (see
 section 5.1.2) of the server being accessed, defines the protection
 space. These realms allow the protected resources on a server to be
 partitioned into a set of protection spaces, each with its own
 authentication scheme and/or authorization database. The realm value
 is a string, generally assigned by the origin server, which may have
 additional semantics specific to the authentication scheme.

 A user agent that wishes to authenticate itself with a server--
 usually, but not necessarily, after receiving a 401 or 411 response-
 -MAY do so by including an Authorization header field with the
 request. The Authorization field value consists of credentials

Fielding, et. al. Standards Track [Page 65]

RFC 2068 HTTP/1.1 January 1997

 containing the authentication information of the user agent for the
 realm of the resource being requested.

 credentials = basic-credentials
 | auth-scheme #auth-param

 The domain over which credentials can be automatically applied by a
 user agent is determined by the protection space. If a prior request
 has been authorized, the same credentials MAY be reused for all other
 requests within that protection space for a period of time determined
 by the authentication scheme, parameters, and/or user preference.
 Unless otherwise defined by the authentication scheme, a single
 protection space cannot extend outside the scope of its server.

 If the server does not wish to accept the credentials sent with a
 request, it SHOULD return a 401 (Unauthorized) response. The response
 MUST include a WWW-Authenticate header field containing the (possibly
 new) challenge applicable to the requested resource and an entity
 explaining the refusal.

 The HTTP protocol does not restrict applications to this simple
 challenge-response mechanism for access authentication. Additional
 mechanisms MAY be used, such as encryption at the transport level or
 via message encapsulation, and with additional header fields
 specifying authentication information. However, these additional
 mechanisms are not defined by this specification.

 Proxies MUST be completely transparent regarding user agent
 authentication. That is, they MUST forward the WWW-Authenticate and
 Authorization headers untouched, and follow the rules found in
 section 14.8.

 HTTP/1.1 allows a client to pass authentication information to and
 from a proxy via the Proxy-Authenticate and Proxy-Authorization
 headers.

11.1 Basic Authentication Scheme

 The "basic" authentication scheme is based on the model that the user
 agent must authenticate itself with a user-ID and a password for each
 realm. The realm value should be considered an opaque string which
 can only be compared for equality with other realms on that server.
 The server will service the request only if it can validate the
 user-ID and password for the protection space of the Request-URI.
 There are no optional authentication parameters.

Fielding, et. al. Standards Track [Page 66]

C
om

pendium
 2 page 341

RFC 2068 HTTP/1.1 January 1997

 Upon receipt of an unauthorized request for a URI within the
 protection space, the server MAY respond with a challenge like the
 following:

 WWW-Authenticate: Basic realm="WallyWorld"

 where "WallyWorld" is the string assigned by the server to identify
 the protection space of the Request-URI.

 To receive authorization, the client sends the userid and password,
 separated by a single colon (":") character, within a base64 encoded
 string in the credentials.

 basic-credentials = "Basic" SP basic-cookie

 basic-cookie = <base64 [7] encoding of user-pass,
 except not limited to 76 char/line>

 user-pass = userid ":" password

 userid = *<TEXT excluding ":">

 password = *TEXT

 Userids might be case sensitive.

 If the user agent wishes to send the userid "Aladdin" and password
 "open sesame", it would use the following header field:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 See section 15 for security considerations associated with Basic
 authentication.

11.2 Digest Authentication Scheme

 A digest authentication for HTTP is specified in RFC 2069 [32].

12 Content Negotiation

 Most HTTP responses include an entity which contains information for
 interpretation by a human user. Naturally, it is desirable to supply
 the user with the "best available" entity corresponding to the
 request. Unfortunately for servers and caches, not all users have
 the same preferences for what is "best," and not all user agents are
 equally capable of rendering all entity types. For that reason, HTTP
 has provisions for several mechanisms for "content negotiation" --
 the process of selecting the best representation for a given response

Fielding, et. al. Standards Track [Page 67]

RFC 2068 HTTP/1.1 January 1997

 when there are multiple representations available.

 Note: This is not called "format negotiation" because the alternate
 representations may be of the same media type, but use different
 capabilities of that type, be in different languages, etc.

 Any response containing an entity-body MAY be subject to negotiation,
 including error responses.

 There are two kinds of content negotiation which are possible in
 HTTP: server-driven and agent-driven negotiation. These two kinds of
 negotiation are orthogonal and thus may be used separately or in
 combination. One method of combination, referred to as transparent
 negotiation, occurs when a cache uses the agent-driven negotiation
 information provided by the origin server in order to provide
 server-driven negotiation for subsequent requests.

12.1 Server-driven Negotiation

 If the selection of the best representation for a response is made by
 an algorithm located at the server, it is called server-driven
 negotiation. Selection is based on the available representations of
 the response (the dimensions over which it can vary; e.g. language,
 content-coding, etc.) and the contents of particular header fields in
 the request message or on other information pertaining to the request
 (such as the network address of the client).

 Server-driven negotiation is advantageous when the algorithm for
 selecting from among the available representations is difficult to
 describe to the user agent, or when the server desires to send its
 "best guess" to the client along with the first response (hoping to
 avoid the round-trip delay of a subsequent request if the "best
 guess" is good enough for the user). In order to improve the server's
 guess, the user agent MAY include request header fields (Accept,
 Accept-Language, Accept-Encoding, etc.) which describe its
 preferences for such a response.

 Server-driven negotiation has disadvantages:

1. It is impossible for the server to accurately determine what might be
 "best" for any given user, since that would require complete
 knowledge of both the capabilities of the user agent and the intended
 use for the response (e.g., does the user want to view it on screen
 or print it on paper?).

2. Having the user agent describe its capabilities in every request can
 be both very inefficient (given that only a small percentage of
 responses have multiple representations) and a potential violation of

Fielding, et. al. Standards Track [Page 68]

C
om

pendium
 2 page 342

RFC 2068 HTTP/1.1 January 1997

 the user's privacy.

3. It complicates the implementation of an origin server and the
 algorithms for generating responses to a request.

4. It may limit a public cache's ability to use the same response for
 multiple user's requests.

 HTTP/1.1 includes the following request-header fields for enabling
 server-driven negotiation through description of user agent
 capabilities and user preferences: Accept (section 14.1), Accept-
 Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
 Language (section 14.4), and User-Agent (section 14.42). However, an
 origin server is not limited to these dimensions and MAY vary the
 response based on any aspect of the request, including information
 outside the request-header fields or within extension header fields
 not defined by this specification.

 HTTP/1.1 origin servers MUST include an appropriate Vary header field
 (section 14.43) in any cachable response based on server-driven
 negotiation. The Vary header field describes the dimensions over
 which the response might vary (i.e. the dimensions over which the
 origin server picks its "best guess" response from multiple
 representations).

 HTTP/1.1 public caches MUST recognize the Vary header field when it
 is included in a response and obey the requirements described in
 section 13.6 that describes the interactions between caching and
 content negotiation.

12.2 Agent-driven Negotiation

 With agent-driven negotiation, selection of the best representation
 for a response is performed by the user agent after receiving an
 initial response from the origin server. Selection is based on a list
 of the available representations of the response included within the
 header fields (this specification reserves the field-name Alternates,
 as described in appendix 19.6.2.1) or entity-body of the initial
 response, with each representation identified by its own URI.
 Selection from among the representations may be performed
 automatically (if the user agent is capable of doing so) or manually
 by the user selecting from a generated (possibly hypertext) menu.

 Agent-driven negotiation is advantageous when the response would vary
 over commonly-used dimensions (such as type, language, or encoding),
 when the origin server is unable to determine a user agent's
 capabilities from examining the request, and generally when public
 caches are used to distribute server load and reduce network usage.

Fielding, et. al. Standards Track [Page 69]

RFC 2068 HTTP/1.1 January 1997

 Agent-driven negotiation suffers from the disadvantage of needing a
 second request to obtain the best alternate representation. This
 second request is only efficient when caching is used. In addition,
 this specification does not define any mechanism for supporting
 automatic selection, though it also does not prevent any such
 mechanism from being developed as an extension and used within
 HTTP/1.1.

 HTTP/1.1 defines the 300 (Multiple Choices) and 406 (Not Acceptable)
 status codes for enabling agent-driven negotiation when the server is
 unwilling or unable to provide a varying response using server-driven
 negotiation.

12.3 Transparent Negotiation

 Transparent negotiation is a combination of both server-driven and
 agent-driven negotiation. When a cache is supplied with a form of the
 list of available representations of the response (as in agent-driven
 negotiation) and the dimensions of variance are completely understood
 by the cache, then the cache becomes capable of performing server-
 driven negotiation on behalf of the origin server for subsequent
 requests on that resource.

 Transparent negotiation has the advantage of distributing the
 negotiation work that would otherwise be required of the origin
 server and also removing the second request delay of agent-driven
 negotiation when the cache is able to correctly guess the right
 response.

 This specification does not define any mechanism for transparent
 negotiation, though it also does not prevent any such mechanism from
 being developed as an extension and used within HTTP/1.1. An HTTP/1.1
 cache performing transparent negotiation MUST include a Vary header
 field in the response (defining the dimensions of its variance) if it
 is cachable to ensure correct interoperation with all HTTP/1.1
 clients. The agent-driven negotiation information supplied by the
 origin server SHOULD be included with the transparently negotiated
 response.

13 Caching in HTTP

 HTTP is typically used for distributed information systems, where
 performance can be improved by the use of response caches. The
 HTTP/1.1 protocol includes a number of elements intended to make
 caching work as well as possible. Because these elements are
 inextricable from other aspects of the protocol, and because they
 interact with each other, it is useful to describe the basic caching
 design of HTTP separately from the detailed descriptions of methods,

Fielding, et. al. Standards Track [Page 70]

C
om

pendium
 2 page 343

RFC 2068 HTTP/1.1 January 1997

 headers, response codes, etc.

 Caching would be useless if it did not significantly improve
 performance. The goal of caching in HTTP/1.1 is to eliminate the need
 to send requests in many cases, and to eliminate the need to send
 full responses in many other cases. The former reduces the number of
 network round-trips required for many operations; we use an
 "expiration" mechanism for this purpose (see section 13.2). The
 latter reduces network bandwidth requirements; we use a "validation"
 mechanism for this purpose (see section 13.3).

 Requirements for performance, availability, and disconnected
 operation require us to be able to relax the goal of semantic
 transparency. The HTTP/1.1 protocol allows origin servers, caches,
 and clients to explicitly reduce transparency when necessary.
 However, because non-transparent operation may confuse non-expert
 users, and may be incompatible with certain server applications (such
 as those for ordering merchandise), the protocol requires that
 transparency be relaxed

 o only by an explicit protocol-level request when relaxed by client
 or origin server

 o only with an explicit warning to the end user when relaxed by cache
 or client

Fielding, et. al. Standards Track [Page 71]

RFC 2068 HTTP/1.1 January 1997

 Therefore, the HTTP/1.1 protocol provides these important elements:

 1. Protocol features that provide full semantic transparency when this
 is required by all parties.

 2. Protocol features that allow an origin server or user agent to
 explicitly request and control non-transparent operation.

 3. Protocol features that allow a cache to attach warnings to
 responses that do not preserve the requested approximation of
 semantic transparency.

 A basic principle is that it must be possible for the clients to
 detect any potential relaxation of semantic transparency.

 Note: The server, cache, or client implementer may be faced with
 design decisions not explicitly discussed in this specification. If
 a decision may affect semantic transparency, the implementer ought
 to err on the side of maintaining transparency unless a careful and
 complete analysis shows significant benefits in breaking
 transparency.

13.1.1 Cache Correctness

 A correct cache MUST respond to a request with the most up-to-date
 response held by the cache that is appropriate to the request (see
 sections 13.2.5, 13.2.6, and 13.12) which meets one of the following
 conditions:

 1. It has been checked for equivalence with what the origin server
 would have returned by revalidating the response with the origin
 server (section 13.3);

 2. It is "fresh enough" (see section 13.2). In the default case, this
 means it meets the least restrictive freshness requirement of the
 client, server, and cache (see section 14.9); if the origin server
 so specifies, it is the freshness requirement of the origin server
 alone.

 3. It includes a warning if the freshness demand of the client or the
 origin server is violated (see section 13.1.5 and 14.45).

 4. It is an appropriate 304 (Not Modified), 305 (Proxy Redirect), or
 error (4xx or 5xx) response message.

 If the cache can not communicate with the origin server, then a
 correct cache SHOULD respond as above if the response can be
 correctly served from the cache; if not it MUST return an error or

Fielding, et. al. Standards Track [Page 72]

C
om

pendium
 2 page 344

RFC 2068 HTTP/1.1 January 1997

 warning indicating that there was a communication failure.

 If a cache receives a response (either an entire response, or a 304
 (Not Modified) response) that it would normally forward to the
 requesting client, and the received response is no longer fresh, the
 cache SHOULD forward it to the requesting client without adding a new
 Warning (but without removing any existing Warning headers). A cache
 SHOULD NOT attempt to revalidate a response simply because that
 response became stale in transit; this might lead to an infinite
 loop. An user agent that receives a stale response without a Warning
 MAY display a warning indication to the user.

13.1.2 Warnings

 Whenever a cache returns a response that is neither first-hand nor
 "fresh enough" (in the sense of condition 2 in section 13.1.1), it
 must attach a warning to that effect, using a Warning response-
 header. This warning allows clients to take appropriate action.

 Warnings may be used for other purposes, both cache-related and
 otherwise. The use of a warning, rather than an error status code,
 distinguish these responses from true failures.

 Warnings are always cachable, because they never weaken the
 transparency of a response. This means that warnings can be passed to
 HTTP/1.0 caches without danger; such caches will simply pass the
 warning along as an entity-header in the response.

 Warnings are assigned numbers between 0 and 99. This specification
 defines the code numbers and meanings of each currently assigned
 warnings, allowing a client or cache to take automated action in some
 (but not all) cases.

 Warnings also carry a warning text. The text may be in any
 appropriate natural language (perhaps based on the client's Accept
 headers), and include an optional indication of what character set is
 used.

 Multiple warnings may be attached to a response (either by the origin
 server or by a cache), including multiple warnings with the same code
 number. For example, a server may provide the same warning with texts
 in both English and Basque.

 When multiple warnings are attached to a response, it may not be
 practical or reasonable to display all of them to the user. This
 version of HTTP does not specify strict priority rules for deciding
 which warnings to display and in what order, but does suggest some
 heuristics.

Fielding, et. al. Standards Track [Page 73]

RFC 2068 HTTP/1.1 January 1997

 The Warning header and the currently defined warnings are described
 in section 14.45.

13.1.3 Cache-control Mechanisms

 The basic cache mechanisms in HTTP/1.1 (server-specified expiration
 times and validators) are implicit directives to caches. In some
 cases, a server or client may need to provide explicit directives to
 the HTTP caches. We use the Cache-Control header for this purpose.

 The Cache-Control header allows a client or server to transmit a
 variety of directives in either requests or responses. These
 directives typically override the default caching algorithms. As a
 general rule, if there is any apparent conflict between header
 values, the most restrictive interpretation should be applied (that
 is, the one that is most likely to preserve semantic transparency).
 However, in some cases, Cache-Control directives are explicitly
 specified as weakening the approximation of semantic transparency
 (for example, "max-stale" or "public").

 The Cache-Control directives are described in detail in section 14.9.

13.1.4 Explicit User Agent Warnings

 Many user agents make it possible for users to override the basic
 caching mechanisms. For example, the user agent may allow the user to
 specify that cached entities (even explicitly stale ones) are never
 validated. Or the user agent might habitually add "Cache-Control:
 max-stale=3600" to every request. The user should have to explicitly
 request either non-transparent behavior, or behavior that results in
 abnormally ineffective caching.

 If the user has overridden the basic caching mechanisms, the user
 agent should explicitly indicate to the user whenever this results in
 the display of information that might not meet the server's
 transparency requirements (in particular, if the displayed entity is
 known to be stale). Since the protocol normally allows the user agent
 to determine if responses are stale or not, this indication need only
 be displayed when this actually happens. The indication need not be a
 dialog box; it could be an icon (for example, a picture of a rotting
 fish) or some other visual indicator.

 If the user has overridden the caching mechanisms in a way that would
 abnormally reduce the effectiveness of caches, the user agent should
 continually display an indication (for example, a picture of currency
 in flames) so that the user does not inadvertently consume excess
 resources or suffer from excessive latency.

Fielding, et. al. Standards Track [Page 74]

C
om

pendium
 2 page 345

RFC 2068 HTTP/1.1 January 1997

13.1.5 Exceptions to the Rules and Warnings

 In some cases, the operator of a cache may choose to configure it to
 return stale responses even when not requested by clients. This
 decision should not be made lightly, but may be necessary for reasons
 of availability or performance, especially when the cache is poorly
 connected to the origin server. Whenever a cache returns a stale
 response, it MUST mark it as such (using a Warning header). This
 allows the client software to alert the user that there may be a
 potential problem.

 It also allows the user agent to take steps to obtain a first-hand or
 fresh response. For this reason, a cache SHOULD NOT return a stale
 response if the client explicitly requests a first-hand or fresh one,
 unless it is impossible to comply for technical or policy reasons.

13.1.6 Client-controlled Behavior

 While the origin server (and to a lesser extent, intermediate caches,
 by their contribution to the age of a response) are the primary
 source of expiration information, in some cases the client may need
 to control a cache's decision about whether to return a cached
 response without validating it. Clients do this using several
 directives of the Cache-Control header.

 A client's request may specify the maximum age it is willing to
 accept of an unvalidated response; specifying a value of zero forces
 the cache(s) to revalidate all responses. A client may also specify
 the minimum time remaining before a response expires. Both of these
 options increase constraints on the behavior of caches, and so cannot
 further relax the cache's approximation of semantic transparency.

 A client may also specify that it will accept stale responses, up to
 some maximum amount of staleness. This loosens the constraints on the
 caches, and so may violate the origin server's specified constraints
 on semantic transparency, but may be necessary to support
 disconnected operation, or high availability in the face of poor
 connectivity.

13.2 Expiration Model

13.2.1 Server-Specified Expiration

 HTTP caching works best when caches can entirely avoid making
 requests to the origin server. The primary mechanism for avoiding
 requests is for an origin server to provide an explicit expiration
 time in the future, indicating that a response may be used to satisfy
 subsequent requests. In other words, a cache can return a fresh

Fielding, et. al. Standards Track [Page 75]

RFC 2068 HTTP/1.1 January 1997

 response without first contacting the server.

 Our expectation is that servers will assign future explicit
 expiration times to responses in the belief that the entity is not
 likely to change, in a semantically significant way, before the
 expiration time is reached. This normally preserves semantic
 transparency, as long as the server's expiration times are carefully
 chosen.

 The expiration mechanism applies only to responses taken from a cache
 and not to first-hand responses forwarded immediately to the
 requesting client.

 If an origin server wishes to force a semantically transparent cache
 to validate every request, it may assign an explicit expiration time
 in the past. This means that the response is always stale, and so the
 cache SHOULD validate it before using it for subsequent requests. See
 section 14.9.4 for a more restrictive way to force revalidation.

 If an origin server wishes to force any HTTP/1.1 cache, no matter how
 it is configured, to validate every request, it should use the
 "must-revalidate" Cache-Control directive (see section 14.9).

 Servers specify explicit expiration times using either the Expires
 header, or the max-age directive of the Cache-Control header.

 An expiration time cannot be used to force a user agent to refresh
 its display or reload a resource; its semantics apply only to caching
 mechanisms, and such mechanisms need only check a resource's
 expiration status when a new request for that resource is initiated.
 See section 13.13 for explanation of the difference between caches
 and history mechanisms.

13.2.2 Heuristic Expiration

 Since origin servers do not always provide explicit expiration times,
 HTTP caches typically assign heuristic expiration times, employing
 algorithms that use other header values (such as the Last-Modified
 time) to estimate a plausible expiration time. The HTTP/1.1
 specification does not provide specific algorithms, but does impose
 worst-case constraints on their results. Since heuristic expiration
 times may compromise semantic transparency, they should be used
 cautiously, and we encourage origin servers to provide explicit
 expiration times as much as possible.

Fielding, et. al. Standards Track [Page 76]

C
om

pendium
 2 page 346

RFC 2068 HTTP/1.1 January 1997

13.2.3 Age Calculations

 In order to know if a cached entry is fresh, a cache needs to know if
 its age exceeds its freshness lifetime. We discuss how to calculate
 the latter in section 13.2.4; this section describes how to calculate
 the age of a response or cache entry.

 In this discussion, we use the term "now" to mean "the current value
 of the clock at the host performing the calculation." Hosts that use
 HTTP, but especially hosts running origin servers and caches, should
 use NTP [28] or some similar protocol to synchronize their clocks to
 a globally accurate time standard.

 Also note that HTTP/1.1 requires origin servers to send a Date header
 with every response, giving the time at which the response was
 generated. We use the term "date_value" to denote the value of the
 Date header, in a form appropriate for arithmetic operations.

 HTTP/1.1 uses the Age response-header to help convey age information
 between caches. The Age header value is the sender's estimate of the
 amount of time since the response was generated at the origin server.
 In the case of a cached response that has been revalidated with the
 origin server, the Age value is based on the time of revalidation,
 not of the original response.

 In essence, the Age value is the sum of the time that the response
 has been resident in each of the caches along the path from the
 origin server, plus the amount of time it has been in transit along
 network paths.

 We use the term "age_value" to denote the value of the Age header, in
 a form appropriate for arithmetic operations.

 A response's age can be calculated in two entirely independent ways:

 1. now minus date_value, if the local clock is reasonably well
 synchronized to the origin server's clock. If the result is
 negative, the result is replaced by zero.

 2. age_value, if all of the caches along the response path
 implement HTTP/1.1.

 Given that we have two independent ways to compute the age of a
 response when it is received, we can combine these as

 corrected_received_age = max(now - date_value, age_value)

 and as long as we have either nearly synchronized clocks or all-

Fielding, et. al. Standards Track [Page 77]

RFC 2068 HTTP/1.1 January 1997

 HTTP/1.1 paths, one gets a reliable (conservative) result.

 Note that this correction is applied at each HTTP/1.1 cache along the
 path, so that if there is an HTTP/1.0 cache in the path, the correct
 received age is computed as long as the receiving cache's clock is
 nearly in sync. We don't need end-to-end clock synchronization
 (although it is good to have), and there is no explicit clock
 synchronization step.

 Because of network-imposed delays, some significant interval may pass
 from the time that a server generates a response and the time it is
 received at the next outbound cache or client. If uncorrected, this
 delay could result in improperly low ages.

 Because the request that resulted in the returned Age value must have
 been initiated prior to that Age value's generation, we can correct
 for delays imposed by the network by recording the time at which the
 request was initiated. Then, when an Age value is received, it MUST
 be interpreted relative to the time the request was initiated, not
 the time that the response was received. This algorithm results in
 conservative behavior no matter how much delay is experienced. So, we
 compute:

 corrected_initial_age = corrected_received_age
 + (now - request_time)

 where "request_time" is the time (according to the local clock) when
 the request that elicited this response was sent.

 Summary of age calculation algorithm, when a cache receives a
 response:

 /*
 * age_value
 * is the value of Age: header received by the cache with
 * this response.
 * date_value
 * is the value of the origin server's Date: header
 * request_time
 * is the (local) time when the cache made the request
 * that resulted in this cached response
 * response_time
 * is the (local) time when the cache received the
 * response
 * now
 * is the current (local) time
 */
 apparent_age = max(0, response_time - date_value);

Fielding, et. al. Standards Track [Page 78]

C
om

pendium
 2 page 347

RFC 2068 HTTP/1.1 January 1997

 corrected_received_age = max(apparent_age, age_value);
 response_delay = response_time - request_time;
 corrected_initial_age = corrected_received_age + response_delay;
 resident_time = now - response_time;
 current_age = corrected_initial_age + resident_time;

 When a cache sends a response, it must add to the
 corrected_initial_age the amount of time that the response was
 resident locally. It must then transmit this total age, using the Age
 header, to the next recipient cache.

 Note that a client cannot reliably tell that a response is first-
 hand, but the presence of an Age header indicates that a response
 is definitely not first-hand. Also, if the Date in a response is
 earlier than the client's local request time, the response is
 probably not first-hand (in the absence of serious clock skew).

13.2.4 Expiration Calculations

 In order to decide whether a response is fresh or stale, we need to
 compare its freshness lifetime to its age. The age is calculated as
 described in section 13.2.3; this section describes how to calculate
 the freshness lifetime, and to determine if a response has expired.
 In the discussion below, the values can be represented in any form
 appropriate for arithmetic operations.

 We use the term "expires_value" to denote the value of the Expires
 header. We use the term "max_age_value" to denote an appropriate
 value of the number of seconds carried by the max-age directive of
 the Cache-Control header in a response (see section 14.10.

 The max-age directive takes priority over Expires, so if max-age is
 present in a response, the calculation is simply:

 freshness_lifetime = max_age_value

 Otherwise, if Expires is present in the response, the calculation is:

 freshness_lifetime = expires_value - date_value

 Note that neither of these calculations is vulnerable to clock skew,
 since all of the information comes from the origin server.

 If neither Expires nor Cache-Control: max-age appears in the
 response, and the response does not include other restrictions on
 caching, the cache MAY compute a freshness lifetime using a
 heuristic. If the value is greater than 24 hours, the cache must
 attach Warning 13 to any response whose age is more than 24 hours if

Fielding, et. al. Standards Track [Page 79]

RFC 2068 HTTP/1.1 January 1997

 such warning has not already been added.

 Also, if the response does have a Last-Modified time, the heuristic
 expiration value SHOULD be no more than some fraction of the interval
 since that time. A typical setting of this fraction might be 10%.

 The calculation to determine if a response has expired is quite
 simple:

 response_is_fresh = (freshness_lifetime > current_age)

13.2.5 Disambiguating Expiration Values

 Because expiration values are assigned optimistically, it is possible
 for two caches to contain fresh values for the same resource that are
 different.

 If a client performing a retrieval receives a non-first-hand response
 for a request that was already fresh in its own cache, and the Date
 header in its existing cache entry is newer than the Date on the new
 response, then the client MAY ignore the response. If so, it MAY
 retry the request with a "Cache-Control: max-age=0" directive (see
 section 14.9), to force a check with the origin server.

 If a cache has two fresh responses for the same representation with
 different validators, it MUST use the one with the more recent Date
 header. This situation may arise because the cache is pooling
 responses from other caches, or because a client has asked for a
 reload or a revalidation of an apparently fresh cache entry.

13.2.6 Disambiguating Multiple Responses

 Because a client may be receiving responses via multiple paths, so
 that some responses flow through one set of caches and other
 responses flow through a different set of caches, a client may
 receive responses in an order different from that in which the origin
 server sent them. We would like the client to use the most recently
 generated response, even if older responses are still apparently
 fresh.

 Neither the entity tag nor the expiration value can impose an
 ordering on responses, since it is possible that a later response
 intentionally carries an earlier expiration time. However, the
 HTTP/1.1 specification requires the transmission of Date headers on
 every response, and the Date values are ordered to a granularity of
 one second.

Fielding, et. al. Standards Track [Page 80]

C
om

pendium
 2 page 348

RFC 2068 HTTP/1.1 January 1997

 When a client tries to revalidate a cache entry, and the response it
 receives contains a Date header that appears to be older than the one
 for the existing entry, then the client SHOULD repeat the request
 unconditionally, and include

 Cache-Control: max-age=0

 to force any intermediate caches to validate their copies directly
 with the origin server, or

 Cache-Control: no-cache

 to force any intermediate caches to obtain a new copy from the origin
 server.

 If the Date values are equal, then the client may use either response
 (or may, if it is being extremely prudent, request a new response).
 Servers MUST NOT depend on clients being able to choose
 deterministically between responses generated during the same second,
 if their expiration times overlap.

13.3 Validation Model

 When a cache has a stale entry that it would like to use as a
 response to a client's request, it first has to check with the origin
 server (or possibly an intermediate cache with a fresh response) to
 see if its cached entry is still usable. We call this "validating"
 the cache entry. Since we do not want to have to pay the overhead of
 retransmitting the full response if the cached entry is good, and we
 do not want to pay the overhead of an extra round trip if the cached
 entry is invalid, the HTTP/1.1 protocol supports the use of
 conditional methods.

 The key protocol features for supporting conditional methods are
 those concerned with "cache validators." When an origin server
 generates a full response, it attaches some sort of validator to it,
 which is kept with the cache entry. When a client (user agent or
 proxy cache) makes a conditional request for a resource for which it
 has a cache entry, it includes the associated validator in the
 request.

 The server then checks that validator against the current validator
 for the entity, and, if they match, it responds with a special status
 code (usually, 304 (Not Modified)) and no entity-body. Otherwise, it
 returns a full response (including entity-body). Thus, we avoid
 transmitting the full response if the validator matches, and we avoid
 an extra round trip if it does not match.

Fielding, et. al. Standards Track [Page 81]

RFC 2068 HTTP/1.1 January 1997

 Note: the comparison functions used to decide if validators match
 are defined in section 13.3.3.

 In HTTP/1.1, a conditional request looks exactly the same as a normal
 request for the same resource, except that it carries a special
 header (which includes the validator) that implicitly turns the
 method (usually, GET) into a conditional.

 The protocol includes both positive and negative senses of cache-
 validating conditions. That is, it is possible to request either that
 a method be performed if and only if a validator matches or if and
 only if no validators match.

 Note: a response that lacks a validator may still be cached, and
 served from cache until it expires, unless this is explicitly
 prohibited by a Cache-Control directive. However, a cache cannot do
 a conditional retrieval if it does not have a validator for the
 entity, which means it will not be refreshable after it expires.

13.3.1 Last-modified Dates

 The Last-Modified entity-header field value is often used as a cache
 validator. In simple terms, a cache entry is considered to be valid
 if the entity has not been modified since the Last-Modified value.

13.3.2 Entity Tag Cache Validators

 The ETag entity-header field value, an entity tag, provides for an
 "opaque" cache validator. This may allow more reliable validation in
 situations where it is inconvenient to store modification dates,
 where the one-second resolution of HTTP date values is not
 sufficient, or where the origin server wishes to avoid certain
 paradoxes that may arise from the use of modification dates.

 Entity Tags are described in section 3.11. The headers used with
 entity tags are described in sections 14.20, 14.25, 14.26 and 14.43.

13.3.3 Weak and Strong Validators

 Since both origin servers and caches will compare two validators to
 decide if they represent the same or different entities, one normally
 would expect that if the entity (the entity-body or any entity-
 headers) changes in any way, then the associated validator would
 change as well. If this is true, then we call this validator a
 "strong validator."

 However, there may be cases when a server prefers to change the
 validator only on semantically significant changes, and not when

Fielding, et. al. Standards Track [Page 82]

C
om

pendium
 2 page 349

RFC 2068 HTTP/1.1 January 1997

 insignificant aspects of the entity change. A validator that does not
 always change when the resource changes is a "weak validator."

 Entity tags are normally "strong validators," but the protocol
 provides a mechanism to tag an entity tag as "weak." One can think of
 a strong validator as one that changes whenever the bits of an entity
 changes, while a weak value changes whenever the meaning of an entity
 changes. Alternatively, one can think of a strong validator as part
 of an identifier for a specific entity, while a weak validator is
 part of an identifier for a set of semantically equivalent entities.

 Note: One example of a strong validator is an integer that is
 incremented in stable storage every time an entity is changed.

 An entity's modification time, if represented with one-second
 resolution, could be a weak validator, since it is possible that
 the resource may be modified twice during a single second.

 Support for weak validators is optional; however, weak validators
 allow for more efficient caching of equivalent objects; for
 example, a hit counter on a site is probably good enough if it is
 updated every few days or weeks, and any value during that period
 is likely "good enough" to be equivalent.

 A "use" of a validator is either when a client generates a request
 and includes the validator in a validating header field, or when a
 server compares two validators.

 Strong validators are usable in any context. Weak validators are only
 usable in contexts that do not depend on exact equality of an entity.
 For example, either kind is usable for a conditional GET of a full
 entity. However, only a strong validator is usable for a sub-range
 retrieval, since otherwise the client may end up with an internally
 inconsistent entity.

 The only function that the HTTP/1.1 protocol defines on validators is
 comparison. There are two validator comparison functions, depending
 on whether the comparison context allows the use of weak validators
 or not:

 o The strong comparison function: in order to be considered equal,
 both validators must be identical in every way, and neither may be
 weak.
 o The weak comparison function: in order to be considered equal, both
 validators must be identical in every way, but either or both of
 them may be tagged as "weak" without affecting the result.

 The weak comparison function MAY be used for simple (non-subrange)

Fielding, et. al. Standards Track [Page 83]

RFC 2068 HTTP/1.1 January 1997

 GET requests. The strong comparison function MUST be used in all
 other cases.

 An entity tag is strong unless it is explicitly tagged as weak.
 Section 3.11 gives the syntax for entity tags.

 A Last-Modified time, when used as a validator in a request, is
 implicitly weak unless it is possible to deduce that it is strong,
 using the following rules:

 o The validator is being compared by an origin server to the actual
 current validator for the entity and,
 o That origin server reliably knows that the associated entity did
 not change twice during the second covered by the presented
 validator.
or

 o The validator is about to be used by a client in an If-Modified-
 Since or If-Unmodified-Since header, because the client has a cache
 entry for the associated entity, and
 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and
 o The presented Last-Modified time is at least 60 seconds before the
 Date value.
or

 o The validator is being compared by an intermediate cache to the
 validator stored in its cache entry for the entity, and
 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and
 o The presented Last-Modified time is at least 60 seconds before the
 Date value.

 This method relies on the fact that if two different responses were
 sent by the origin server during the same second, but both had the
 same Last-Modified time, then at least one of those responses would
 have a Date value equal to its Last-Modified time. The arbitrary 60-
 second limit guards against the possibility that the Date and Last-
 Modified values are generated from different clocks, or at somewhat
 different times during the preparation of the response. An
 implementation may use a value larger than 60 seconds, if it is
 believed that 60 seconds is too short.

 If a client wishes to perform a sub-range retrieval on a value for
 which it has only a Last-Modified time and no opaque validator, it
 may do this only if the Last-Modified time is strong in the sense
 described here.

Fielding, et. al. Standards Track [Page 84]

C
om

pendium
 2 page 350

RFC 2068 HTTP/1.1 January 1997

 A cache or origin server receiving a cache-conditional request, other
 than a full-body GET request, MUST use the strong comparison function
 to evaluate the condition.

 These rules allow HTTP/1.1 caches and clients to safely perform sub-
 range retrievals on values that have been obtained from HTTP/1.0
 servers.

13.3.4 Rules for When to Use Entity Tags and Last-modified Dates

 We adopt a set of rules and recommendations for origin servers,
 clients, and caches regarding when various validator types should be
 used, and for what purposes.

 HTTP/1.1 origin servers:

 o SHOULD send an entity tag validator unless it is not feasible to
 generate one.
 o MAY send a weak entity tag instead of a strong entity tag, if
 performance considerations support the use of weak entity tags, or
 if it is unfeasible to send a strong entity tag.
 o SHOULD send a Last-Modified value if it is feasible to send one,
 unless the risk of a breakdown in semantic transparency that could
 result from using this date in an If-Modified-Since header would
 lead to serious problems.

 In other words, the preferred behavior for an HTTP/1.1 origin server
 is to send both a strong entity tag and a Last-Modified value.

 In order to be legal, a strong entity tag MUST change whenever the
 associated entity value changes in any way. A weak entity tag SHOULD
 change whenever the associated entity changes in a semantically
 significant way.

 Note: in order to provide semantically transparent caching, an
 origin server must avoid reusing a specific strong entity tag value
 for two different entities, or reusing a specific weak entity tag
 value for two semantically different entities. Cache entries may
 persist for arbitrarily long periods, regardless of expiration
 times, so it may be inappropriate to expect that a cache will never
 again attempt to validate an entry using a validator that it
 obtained at some point in the past.

 HTTP/1.1 clients:

 o If an entity tag has been provided by the origin server, MUST
 use that entity tag in any cache-conditional request (using
 If-Match or If-None-Match).

Fielding, et. al. Standards Track [Page 85]

RFC 2068 HTTP/1.1 January 1997

 o If only a Last-Modified value has been provided by the origin
 server, SHOULD use that value in non-subrange cache-conditional
 requests (using If-Modified-Since).
 o If only a Last-Modified value has been provided by an HTTP/1.0
 origin server, MAY use that value in subrange cache-conditional
 requests (using If-Unmodified-Since:). The user agent should
 provide a way to disable this, in case of difficulty.
 o If both an entity tag and a Last-Modified value have been
 provided by the origin server, SHOULD use both validators in
 cache-conditional requests. This allows both HTTP/1.0 and
 HTTP/1.1 caches to respond appropriately.

 An HTTP/1.1 cache, upon receiving a request, MUST use the most
 restrictive validator when deciding whether the client's cache entry
 matches the cache's own cache entry. This is only an issue when the
 request contains both an entity tag and a last-modified-date
 validator (If-Modified-Since or If-Unmodified-Since).

 A note on rationale: The general principle behind these rules is
 that HTTP/1.1 servers and clients should transmit as much non-
 redundant information as is available in their responses and
 requests. HTTP/1.1 systems receiving this information will make the
 most conservative assumptions about the validators they receive.

 HTTP/1.0 clients and caches will ignore entity tags. Generally,
 last-modified values received or used by these systems will support
 transparent and efficient caching, and so HTTP/1.1 origin servers
 should provide Last-Modified values. In those rare cases where the
 use of a Last-Modified value as a validator by an HTTP/1.0 system
 could result in a serious problem, then HTTP/1.1 origin servers
 should not provide one.

13.3.5 Non-validating Conditionals

 The principle behind entity tags is that only the service author
 knows the semantics of a resource well enough to select an
 appropriate cache validation mechanism, and the specification of any
 validator comparison function more complex than byte-equality would
 open up a can of worms. Thus, comparisons of any other headers
 (except Last-Modified, for compatibility with HTTP/1.0) are never
 used for purposes of validating a cache entry.

13.4 Response Cachability

 Unless specifically constrained by a Cache-Control (section 14.9)
 directive, a caching system may always store a successful response
 (see section 13.8) as a cache entry, may return it without validation
 if it is fresh, and may return it after successful validation. If

Fielding, et. al. Standards Track [Page 86]

C
om

pendium
 2 page 351

RFC 2068 HTTP/1.1 January 1997

 there is neither a cache validator nor an explicit expiration time
 associated with a response, we do not expect it to be cached, but
 certain caches may violate this expectation (for example, when little
 or no network connectivity is available). A client can usually detect
 that such a response was taken from a cache by comparing the Date
 header to the current time.

 Note that some HTTP/1.0 caches are known to violate this
 expectation without providing any Warning.

 However, in some cases it may be inappropriate for a cache to retain
 an entity, or to return it in response to a subsequent request. This
 may be because absolute semantic transparency is deemed necessary by
 the service author, or because of security or privacy considerations.
 Certain Cache-Control directives are therefore provided so that the
 server can indicate that certain resource entities, or portions
 thereof, may not be cached regardless of other considerations.

 Note that section 14.8 normally prevents a shared cache from saving
 and returning a response to a previous request if that request
 included an Authorization header.

 A response received with a status code of 200, 203, 206, 300, 301 or
 410 may be stored by a cache and used in reply to a subsequent
 request, subject to the expiration mechanism, unless a Cache-Control
 directive prohibits caching. However, a cache that does not support
 the Range and Content-Range headers MUST NOT cache 206 (Partial
 Content) responses.

 A response received with any other status code MUST NOT be returned
 in a reply to a subsequent request unless there are Cache-Control
 directives or another header(s) that explicitly allow it. For
 example, these include the following: an Expires header (section
 14.21); a "max-age", "must-revalidate", "proxy-revalidate", "public"
 or "private" Cache-Control directive (section 14.9).

13.5 Constructing Responses From Caches

 The purpose of an HTTP cache is to store information received in
 response to requests, for use in responding to future requests. In
 many cases, a cache simply returns the appropriate parts of a
 response to the requester. However, if the cache holds a cache entry
 based on a previous response, it may have to combine parts of a new
 response with what is held in the cache entry.

Fielding, et. al. Standards Track [Page 87]

RFC 2068 HTTP/1.1 January 1997

13.5.1 End-to-end and Hop-by-hop Headers

 For the purpose of defining the behavior of caches and non-caching
 proxies, we divide HTTP headers into two categories:

 o End-to-end headers, which must be transmitted to the
 ultimate recipient of a request or response. End-to-end
 headers in responses must be stored as part of a cache entry
 and transmitted in any response formed from a cache entry.
 o Hop-by-hop headers, which are meaningful only for a single
 transport-level connection, and are not stored by caches or
 forwarded by proxies.

 The following HTTP/1.1 headers are hop-by-hop headers:

 o Connection
 o Keep-Alive
 o Public
 o Proxy-Authenticate
 o Transfer-Encoding
 o Upgrade

 All other headers defined by HTTP/1.1 are end-to-end headers.

 Hop-by-hop headers introduced in future versions of HTTP MUST be
 listed in a Connection header, as described in section 14.10.

13.5.2 Non-modifiable Headers

 Some features of the HTTP/1.1 protocol, such as Digest
 Authentication, depend on the value of certain end-to-end headers. A
 cache or non-caching proxy SHOULD NOT modify an end-to-end header
 unless the definition of that header requires or specifically allows
 that.

 A cache or non-caching proxy MUST NOT modify any of the following
 fields in a request or response, nor may it add any of these fields
 if not already present:

 o Content-Location
 o ETag
 o Expires
 o Last-Modified

Fielding, et. al. Standards Track [Page 88]

C
om

pendium
 2 page 352

RFC 2068 HTTP/1.1 January 1997

 A cache or non-caching proxy MUST NOT modify or add any of the
 following fields in a response that contains the no-transform Cache-
 Control directive, or in any request:

 o Content-Encoding
 o Content-Length
 o Content-Range
 o Content-Type

 A cache or non-caching proxy MAY modify or add these fields in a
 response that does not include no-transform, but if it does so, it
 MUST add a Warning 14 (Transformation applied) if one does not
 already appear in the response.

 Warning: unnecessary modification of end-to-end headers may cause
 authentication failures if stronger authentication mechanisms are
 introduced in later versions of HTTP. Such authentication
 mechanisms may rely on the values of header fields not listed here.

13.5.3 Combining Headers

 When a cache makes a validating request to a server, and the server
 provides a 304 (Not Modified) response, the cache must construct a
 response to send to the requesting client. The cache uses the
 entity-body stored in the cache entry as the entity-body of this
 outgoing response. The end-to-end headers stored in the cache entry
 are used for the constructed response, except that any end-to-end
 headers provided in the 304 response MUST replace the corresponding
 headers from the cache entry. Unless the cache decides to remove the
 cache entry, it MUST also replace the end-to-end headers stored with
 the cache entry with corresponding headers received in the incoming
 response.

 In other words, the set of end-to-end headers received in the
 incoming response overrides all corresponding end-to-end headers
 stored with the cache entry. The cache may add Warning headers (see
 section 14.45) to this set.

 If a header field-name in the incoming response matches more than one
 header in the cache entry, all such old headers are replaced.

 Note: this rule allows an origin server to use a 304 (Not Modified)
 response to update any header associated with a previous response
 for the same entity, although it might not always be meaningful or
 correct to do so. This rule does not allow an origin server to use
 a 304 (not Modified) response to entirely delete a header that it
 had provided with a previous response.

Fielding, et. al. Standards Track [Page 89]

RFC 2068 HTTP/1.1 January 1997

13.5.4 Combining Byte Ranges

 A response may transfer only a subrange of the bytes of an entity-
 body, either because the request included one or more Range
 specifications, or because a connection was broken prematurely. After
 several such transfers, a cache may have received several ranges of
 the same entity-body.

 If a cache has a stored non-empty set of subranges for an entity, and
 an incoming response transfers another subrange, the cache MAY
 combine the new subrange with the existing set if both the following
 conditions are met:

 o Both the incoming response and the cache entry must have a cache
 validator.
 o The two cache validators must match using the strong comparison
 function (see section 13.3.3).

 If either requirement is not meant, the cache must use only the most
 recent partial response (based on the Date values transmitted with
 every response, and using the incoming response if these values are
 equal or missing), and must discard the other partial information.

13.6 Caching Negotiated Responses

 Use of server-driven content negotiation (section 12), as indicated
 by the presence of a Vary header field in a response, alters the
 conditions and procedure by which a cache can use the response for
 subsequent requests.

 A server MUST use the Vary header field (section 14.43) to inform a
 cache of what header field dimensions are used to select among
 multiple representations of a cachable response. A cache may use the
 selected representation (the entity included with that particular
 response) for replying to subsequent requests on that resource only
 when the subsequent requests have the same or equivalent values for
 all header fields specified in the Vary response-header. Requests
 with a different value for one or more of those header fields would
 be forwarded toward the origin server.

 If an entity tag was assigned to the representation, the forwarded
 request SHOULD be conditional and include the entity tags in an If-
 None-Match header field from all its cache entries for the Request-
 URI. This conveys to the server the set of entities currently held by
 the cache, so that if any one of these entities matches the requested
 entity, the server can use the ETag header in its 304 (Not Modified)
 response to tell the cache which entry is appropriate. If the
 entity-tag of the new response matches that of an existing entry, the

Fielding, et. al. Standards Track [Page 90]

C
om

pendium
 2 page 353

RFC 2068 HTTP/1.1 January 1997

 new response SHOULD be used to update the header fields of the
 existing entry, and the result MUST be returned to the client.

 The Vary header field may also inform the cache that the
 representation was selected using criteria not limited to the
 request-headers; in this case, a cache MUST NOT use the response in a
 reply to a subsequent request unless the cache relays the new request
 to the origin server in a conditional request and the server responds
 with 304 (Not Modified), including an entity tag or Content-Location
 that indicates which entity should be used.

 If any of the existing cache entries contains only partial content
 for the associated entity, its entity-tag SHOULD NOT be included in
 the If-None-Match header unless the request is for a range that would
 be fully satisfied by that entry.

 If a cache receives a successful response whose Content-Location
 field matches that of an existing cache entry for the same Request-
 URI, whose entity-tag differs from that of the existing entry, and
 whose Date is more recent than that of the existing entry, the
 existing entry SHOULD NOT be returned in response to future requests,
 and should be deleted from the cache.

13.7 Shared and Non-Shared Caches

 For reasons of security and privacy, it is necessary to make a
 distinction between "shared" and "non-shared" caches. A non-shared
 cache is one that is accessible only to a single user. Accessibility
 in this case SHOULD be enforced by appropriate security mechanisms.
 All other caches are considered to be "shared." Other sections of
 this specification place certain constraints on the operation of
 shared caches in order to prevent loss of privacy or failure of
 access controls.

13.8 Errors or Incomplete Response Cache Behavior

 A cache that receives an incomplete response (for example, with fewer
 bytes of data than specified in a Content-Length header) may store
 the response. However, the cache MUST treat this as a partial
 response. Partial responses may be combined as described in section
 13.5.4; the result might be a full response or might still be
 partial. A cache MUST NOT return a partial response to a client
 without explicitly marking it as such, using the 206 (Partial
 Content) status code. A cache MUST NOT return a partial response
 using a status code of 200 (OK).

 If a cache receives a 5xx response while attempting to revalidate an
 entry, it may either forward this response to the requesting client,

Fielding, et. al. Standards Track [Page 91]

RFC 2068 HTTP/1.1 January 1997

 or act as if the server failed to respond. In the latter case, it MAY
 return a previously received response unless the cached entry
 includes the "must-revalidate" Cache-Control directive (see section
 14.9).

13.9 Side Effects of GET and HEAD

 Unless the origin server explicitly prohibits the caching of their
 responses, the application of GET and HEAD methods to any resources
 SHOULD NOT have side effects that would lead to erroneous behavior if
 these responses are taken from a cache. They may still have side
 effects, but a cache is not required to consider such side effects in
 its caching decisions. Caches are always expected to observe an
 origin server's explicit restrictions on caching.

 We note one exception to this rule: since some applications have
 traditionally used GETs and HEADs with query URLs (those containing a
 "?" in the rel_path part) to perform operations with significant side
 effects, caches MUST NOT treat responses to such URLs as fresh unless
 the server provides an explicit expiration time. This specifically
 means that responses from HTTP/1.0 servers for such URIs should not
 be taken from a cache. See section 9.1.1 for related information.

13.10 Invalidation After Updates or Deletions

 The effect of certain methods at the origin server may cause one or
 more existing cache entries to become non-transparently invalid. That
 is, although they may continue to be "fresh," they do not accurately
 reflect what the origin server would return for a new request.

 There is no way for the HTTP protocol to guarantee that all such
 cache entries are marked invalid. For example, the request that
 caused the change at the origin server may not have gone through the
 proxy where a cache entry is stored. However, several rules help
 reduce the likelihood of erroneous behavior.

 In this section, the phrase "invalidate an entity" means that the
 cache should either remove all instances of that entity from its
 storage, or should mark these as "invalid" and in need of a mandatory
 revalidation before they can be returned in response to a subsequent
 request.

Fielding, et. al. Standards Track [Page 92]

C
om

pendium
 2 page 354

RFC 2068 HTTP/1.1 January 1997

 Some HTTP methods may invalidate an entity. This is either the entity
 referred to by the Request-URI, or by the Location or Content-
 Location response-headers (if present). These methods are:

 o PUT
 o DELETE
 o POST

 In order to prevent denial of service attacks, an invalidation based
 on the URI in a Location or Content-Location header MUST only be
 performed if the host part is the same as in the Request-URI.

13.11 Write-Through Mandatory

 All methods that may be expected to cause modifications to the origin
 server's resources MUST be written through to the origin server. This
 currently includes all methods except for GET and HEAD. A cache MUST
 NOT reply to such a request from a client before having transmitted
 the request to the inbound server, and having received a
 corresponding response from the inbound server. This does not prevent
 a cache from sending a 100 (Continue) response before the inbound
 server has replied.

 The alternative (known as "write-back" or "copy-back" caching) is not
 allowed in HTTP/1.1, due to the difficulty of providing consistent
 updates and the problems arising from server, cache, or network
 failure prior to write-back.

13.12 Cache Replacement

 If a new cachable (see sections 14.9.2, 13.2.5, 13.2.6 and 13.8)
 response is received from a resource while any existing responses for
 the same resource are cached, the cache SHOULD use the new response
 to reply to the current request. It may insert it into cache storage
 and may, if it meets all other requirements, use it to respond to any
 future requests that would previously have caused the old response to
 be returned. If it inserts the new response into cache storage it
 should follow the rules in section 13.5.3.

 Note: a new response that has an older Date header value than
 existing cached responses is not cachable.

13.13 History Lists

 User agents often have history mechanisms, such as "Back" buttons and
 history lists, which can be used to redisplay an entity retrieved
 earlier in a session.

Fielding, et. al. Standards Track [Page 93]

RFC 2068 HTTP/1.1 January 1997

 History mechanisms and caches are different. In particular history
 mechanisms SHOULD NOT try to show a semantically transparent view of
 the current state of a resource. Rather, a history mechanism is meant
 to show exactly what the user saw at the time when the resource was
 retrieved.

 By default, an expiration time does not apply to history mechanisms.
 If the entity is still in storage, a history mechanism should display
 it even if the entity has expired, unless the user has specifically
 configured the agent to refresh expired history documents.

 This should not be construed to prohibit the history mechanism from
 telling the user that a view may be stale.

 Note: if history list mechanisms unnecessarily prevent users from
 viewing stale resources, this will tend to force service authors to
 avoid using HTTP expiration controls and cache controls when they
 would otherwise like to. Service authors may consider it important
 that users not be presented with error messages or warning messages
 when they use navigation controls (such as BACK) to view previously
 fetched resources. Even though sometimes such resources ought not
 to cached, or ought to expire quickly, user interface
 considerations may force service authors to resort to other means
 of preventing caching (e.g. "once-only" URLs) in order not to
 suffer the effects of improperly functioning history mechanisms.

14 Header Field Definitions

 This section defines the syntax and semantics of all standard
 HTTP/1.1 header fields. For entity-header fields, both sender and
 recipient refer to either the client or the server, depending on who
 sends and who receives the entity.

Fielding, et. al. Standards Track [Page 94]

C
om

pendium
 2 page 355

RFC 2068 HTTP/1.1 January 1997

14.1 Accept

 The Accept request-header field can be used to specify certain media
 types which are acceptable for the response. Accept headers can be
 used to indicate that the request is specifically limited to a small
 set of desired types, as in the case of a request for an in-line
 image.

 Accept = "Accept" ":"
 #(media-range [accept-params])

 media-range = ("*/*"
 | (type "/" "*")
 | (type "/" subtype)
) *(";" parameter)

 accept-params = ";" "q" "=" qvalue *(accept-extension)

 accept-extension = ";" token ["=" (token | quoted-string)]

 The asterisk "*" character is used to group media types into ranges,
 with "*/*" indicating all media types and "type/*" indicating all
 subtypes of that type. The media-range MAY include media type
 parameters that are applicable to that range.

 Each media-range MAY be followed by one or more accept-params,
 beginning with the "q" parameter for indicating a relative quality
 factor. The first "q" parameter (if any) separates the media-range
 parameter(s) from the accept-params. Quality factors allow the user
 or user agent to indicate the relative degree of preference for that
 media-range, using the qvalue scale from 0 to 1 (section 3.9). The
 default value is q=1.

 Note: Use of the "q" parameter name to separate media type
 parameters from Accept extension parameters is due to historical
 practice. Although this prevents any media type parameter named
 "q" from being used with a media range, such an event is believed
 to be unlikely given the lack of any "q" parameters in the IANA
 media type registry and the rare usage of any media type parameters
 in Accept. Future media types should be discouraged from
 registering any parameter named "q".

 The example

 Accept: audio/*; q=0.2, audio/basic

 SHOULD be interpreted as "I prefer audio/basic, but send me any audio
 type if it is the best available after an 80% mark-down in quality."

Fielding, et. al. Standards Track [Page 95]

RFC 2068 HTTP/1.1 January 1997

 If no Accept header field is present, then it is assumed that the
 client accepts all media types. If an Accept header field is present,
 and if the server cannot send a response which is acceptable
 according to the combined Accept field value, then the server SHOULD
 send a 406 (not acceptable) response.

 A more elaborate example is

 Accept: text/plain; q=0.5, text/html,
 text/x-dvi; q=0.8, text/x-c

 Verbally, this would be interpreted as "text/html and text/x-c are
 the preferred media types, but if they do not exist, then send the
 text/x-dvi entity, and if that does not exist, send the text/plain
 entity."

 Media ranges can be overridden by more specific media ranges or
 specific media types. If more than one media range applies to a given
 type, the most specific reference has precedence. For example,

 Accept: text/*, text/html, text/html;level=1, */*

 have the following precedence:

 1) text/html;level=1
 2) text/html
 3) text/*
 4) */*

 The media type quality factor associated with a given type is
 determined by finding the media range with the highest precedence
 which matches that type. For example,

 Accept: text/*;q=0.3, text/html;q=0.7, text/html;level=1,
 text/html;level=2;q=0.4, */*;q=0.5

 would cause the following values to be associated:

 text/html;level=1 = 1
 text/html = 0.7
 text/plain = 0.3
 image/jpeg = 0.5
 text/html;level=2 = 0.4
 text/html;level=3 = 0.7

 Note: A user agent may be provided with a default set of quality
 values for certain media ranges. However, unless the user agent is
 a closed system which cannot interact with other rendering agents,

Fielding, et. al. Standards Track [Page 96]

C
om

pendium
 2 page 356

RFC 2068 HTTP/1.1 January 1997

 this default set should be configurable by the user.

14.2 Accept-Charset

 The Accept-Charset request-header field can be used to indicate what
 character sets are acceptable for the response. This field allows
 clients capable of understanding more comprehensive or special-
 purpose character sets to signal that capability to a server which is
 capable of representing documents in those character sets. The ISO-
 8859-1 character set can be assumed to be acceptable to all user
 agents.

 Accept-Charset = "Accept-Charset" ":"
 1#(charset [";" "q" "=" qvalue])

 Character set values are described in section 3.4. Each charset may
 be given an associated quality value which represents the user's
 preference for that charset. The default value is q=1. An example is

 Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

 If no Accept-Charset header is present, the default is that any
 character set is acceptable. If an Accept-Charset header is present,
 and if the server cannot send a response which is acceptable
 according to the Accept-Charset header, then the server SHOULD send
 an error response with the 406 (not acceptable) status code, though
 the sending of an unacceptable response is also allowed.

14.3 Accept-Encoding

 The Accept-Encoding request-header field is similar to Accept, but
 restricts the content-coding values (section 14.12) which are
 acceptable in the response.

 Accept-Encoding = "Accept-Encoding" ":"
 #(content-coding)

 An example of its use is

 Accept-Encoding: compress, gzip

 If no Accept-Encoding header is present in a request, the server MAY
 assume that the client will accept any content coding. If an Accept-
 Encoding header is present, and if the server cannot send a response
 which is acceptable according to the Accept-Encoding header, then the
 server SHOULD send an error response with the 406 (Not Acceptable)
 status code.

Fielding, et. al. Standards Track [Page 97]

RFC 2068 HTTP/1.1 January 1997

 An empty Accept-Encoding value indicates none are acceptable.

14.4 Accept-Language

 The Accept-Language request-header field is similar to Accept, but
 restricts the set of natural languages that are preferred as a
 response to the request.

 Accept-Language = "Accept-Language" ":"
 1#(language-range [";" "q" "=" qvalue])

 language-range = ((1*8ALPHA *("-" 1*8ALPHA)) | "*")

 Each language-range MAY be given an associated quality value which
 represents an estimate of the user's preference for the languages
 specified by that range. The quality value defaults to "q=1". For
 example,

 Accept-Language: da, en-gb;q=0.8, en;q=0.7

 would mean: "I prefer Danish, but will accept British English and
 other types of English." A language-range matches a language-tag if
 it exactly equals the tag, or if it exactly equals a prefix of the
 tag such that the first tag character following the prefix is "-".
 The special range "*", if present in the Accept-Language field,
 matches every tag not matched by any other range present in the
 Accept-Language field.

 Note: This use of a prefix matching rule does not imply that
 language tags are assigned to languages in such a way that it is
 always true that if a user understands a language with a certain
 tag, then this user will also understand all languages with tags
 for which this tag is a prefix. The prefix rule simply allows the
 use of prefix tags if this is the case.

 The language quality factor assigned to a language-tag by the
 Accept-Language field is the quality value of the longest language-
 range in the field that matches the language-tag. If no language-
 range in the field matches the tag, the language quality factor
 assigned is 0. If no Accept-Language header is present in the
 request, the server SHOULD assume that all languages are equally
 acceptable. If an Accept-Language header is present, then all
 languages which are assigned a quality factor greater than 0 are
 acceptable.

 It may be contrary to the privacy expectations of the user to send an
 Accept-Language header with the complete linguistic preferences of
 the user in every request. For a discussion of this issue, see

Fielding, et. al. Standards Track [Page 98]

C
om

pendium
 2 page 357

RFC 2068 HTTP/1.1 January 1997

 section 15.7.

 Note: As intelligibility is highly dependent on the individual
 user, it is recommended that client applications make the choice of
 linguistic preference available to the user. If the choice is not
 made available, then the Accept-Language header field must not be
 given in the request.

14.5 Accept-Ranges

 The Accept-Ranges response-header field allows the server to indicate
 its acceptance of range requests for a resource:

 Accept-Ranges = "Accept-Ranges" ":" acceptable-ranges

 acceptable-ranges = 1#range-unit | "none"

 Origin servers that accept byte-range requests MAY send

 Accept-Ranges: bytes

 but are not required to do so. Clients MAY generate byte-range
 requests without having received this header for the resource
 involved.

 Servers that do not accept any kind of range request for a resource
 MAY send

 Accept-Ranges: none

 to advise the client not to attempt a range request.

14.6 Age

 The Age response-header field conveys the sender's estimate of the
 amount of time since the response (or its revalidation) was generated
 at the origin server. A cached response is "fresh" if its age does
 not exceed its freshness lifetime. Age values are calculated as
 specified in section 13.2.3.

 Age = "Age" ":" age-value

 age-value = delta-seconds

 Age values are non-negative decimal integers, representing time in
 seconds.

Fielding, et. al. Standards Track [Page 99]

RFC 2068 HTTP/1.1 January 1997

 If a cache receives a value larger than the largest positive integer
 it can represent, or if any of its age calculations overflows, it
 MUST transmit an Age header with a value of 2147483648 (2^31).
 HTTP/1.1 caches MUST send an Age header in every response. Caches
 SHOULD use an arithmetic type of at least 31 bits of range.

14.7 Allow

 The Allow entity-header field lists the set of methods supported by
 the resource identified by the Request-URI. The purpose of this field
 is strictly to inform the recipient of valid methods associated with
 the resource. An Allow header field MUST be present in a 405 (Method
 Not Allowed) response.

 Allow = "Allow" ":" 1#method

 Example of use:

 Allow: GET, HEAD, PUT

 This field cannot prevent a client from trying other methods.
 However, the indications given by the Allow header field value SHOULD
 be followed. The actual set of allowed methods is defined by the
 origin server at the time of each request.

 The Allow header field MAY be provided with a PUT request to
 recommend the methods to be supported by the new or modified
 resource. The server is not required to support these methods and
 SHOULD include an Allow header in the response giving the actual
 supported methods.

 A proxy MUST NOT modify the Allow header field even if it does not
 understand all the methods specified, since the user agent MAY have
 other means of communicating with the origin server.

 The Allow header field does not indicate what methods are implemented
 at the server level. Servers MAY use the Public response-header field
 (section 14.35) to describe what methods are implemented on the
 server as a whole.

14.8 Authorization

 A user agent that wishes to authenticate itself with a server--
 usually, but not necessarily, after receiving a 401 response--MAY do
 so by including an Authorization request-header field with the
 request. The Authorization field value consists of credentials
 containing the authentication information of the user agent for the
 realm of the resource being requested.

Fielding, et. al. Standards Track [Page 100]

C
om

pendium
 2 page 358

RFC 2068 HTTP/1.1 January 1997

 Authorization = "Authorization" ":" credentials

 HTTP access authentication is described in section 11. If a request
 is authenticated and a realm specified, the same credentials SHOULD
 be valid for all other requests within this realm.

 When a shared cache (see section 13.7) receives a request containing
 an Authorization field, it MUST NOT return the corresponding response
 as a reply to any other request, unless one of the following specific
 exceptions holds:

 1. If the response includes the "proxy-revalidate" Cache-Control
 directive, the cache MAY use that response in replying to a
 subsequent request, but a proxy cache MUST first revalidate it with
 the origin server, using the request-headers from the new request
 to allow the origin server to authenticate the new request.
 2. If the response includes the "must-revalidate" Cache-Control
 directive, the cache MAY use that response in replying to a
 subsequent request, but all caches MUST first revalidate it with
 the origin server, using the request-headers from the new request
 to allow the origin server to authenticate the new request.
 3. If the response includes the "public" Cache-Control directive, it
 may be returned in reply to any subsequent request.

14.9 Cache-Control

 The Cache-Control general-header field is used to specify directives
 that MUST be obeyed by all caching mechanisms along the
 request/response chain. The directives specify behavior intended to
 prevent caches from adversely interfering with the request or
 response. These directives typically override the default caching
 algorithms. Cache directives are unidirectional in that the presence
 of a directive in a request does not imply that the same directive
 should be given in the response.

 Note that HTTP/1.0 caches may not implement Cache-Control and may
 only implement Pragma: no-cache (see section 14.32).

 Cache directives must be passed through by a proxy or gateway
 application, regardless of their significance to that application,
 since the directives may be applicable to all recipients along the
 request/response chain. It is not possible to specify a cache-
 directive for a specific cache.

 Cache-Control = "Cache-Control" ":" 1#cache-directive

 cache-directive = cache-request-directive
 | cache-response-directive

Fielding, et. al. Standards Track [Page 101]

RFC 2068 HTTP/1.1 January 1997

 cache-request-directive =
 "no-cache" ["=" <"> 1#field-name <">]
 | "no-store"
 | "max-age" "=" delta-seconds
 | "max-stale" ["=" delta-seconds]
 | "min-fresh" "=" delta-seconds
 | "only-if-cached"
 | cache-extension

 cache-response-directive =
 "public"
 | "private" ["=" <"> 1#field-name <">]
 | "no-cache" ["=" <"> 1#field-name <">]
 | "no-store"
 | "no-transform"
 | "must-revalidate"
 | "proxy-revalidate"
 | "max-age" "=" delta-seconds
 | cache-extension

 cache-extension = token ["=" (token | quoted-string)]

 When a directive appears without any 1#field-name parameter, the
 directive applies to the entire request or response. When such a
 directive appears with a 1#field-name parameter, it applies only to
 the named field or fields, and not to the rest of the request or
 response. This mechanism supports extensibility; implementations of
 future versions of the HTTP protocol may apply these directives to
 header fields not defined in HTTP/1.1.

 The cache-control directives can be broken down into these general
 categories:

 o Restrictions on what is cachable; these may only be imposed by the
 origin server.
 o Restrictions on what may be stored by a cache; these may be imposed
 by either the origin server or the user agent.
 o Modifications of the basic expiration mechanism; these may be
 imposed by either the origin server or the user agent.
 o Controls over cache revalidation and reload; these may only be
 imposed by a user agent.
 o Control over transformation of entities.
 o Extensions to the caching system.

Fielding, et. al. Standards Track [Page 102]

C
om

pendium
 2 page 359

RFC 2068 HTTP/1.1 January 1997

14.9.1 What is Cachable

 By default, a response is cachable if the requirements of the request
 method, request header fields, and the response status indicate that
 it is cachable. Section 13.4 summarizes these defaults for
 cachability. The following Cache-Control response directives allow an
 origin server to override the default cachability of a response:

public
 Indicates that the response is cachable by any cache, even if it
 would normally be non-cachable or cachable only within a non-shared
 cache. (See also Authorization, section 14.8, for additional
 details.)

private
 Indicates that all or part of the response message is intended for a
 single user and MUST NOT be cached by a shared cache. This allows an
 origin server to state that the specified parts of the response are
 intended for only one user and are not a valid response for requests
 by other users. A private (non-shared) cache may cache the response.

 Note: This usage of the word private only controls where the
 response may be cached, and cannot ensure the privacy of the
 message content.

no-cache
 Indicates that all or part of the response message MUST NOT be cached
 anywhere. This allows an origin server to prevent caching even by
 caches that have been configured to return stale responses to client
 requests.

 Note: Most HTTP/1.0 caches will not recognize or obey this
 directive.

14.9.2 What May be Stored by Caches

 The purpose of the no-store directive is to prevent the inadvertent
 release or retention of sensitive information (for example, on backup
 tapes). The no-store directive applies to the entire message, and may
 be sent either in a response or in a request. If sent in a request, a
 cache MUST NOT store any part of either this request or any response
 to it. If sent in a response, a cache MUST NOT store any part of
 either this response or the request that elicited it. This directive
 applies to both non-shared and shared caches. "MUST NOT store" in
 this context means that the cache MUST NOT intentionally store the
 information in non-volatile storage, and MUST make a best-effort
 attempt to remove the information from volatile storage as promptly
 as possible after forwarding it.

Fielding, et. al. Standards Track [Page 103]

RFC 2068 HTTP/1.1 January 1997

 Even when this directive is associated with a response, users may
 explicitly store such a response outside of the caching system (e.g.,
 with a "Save As" dialog). History buffers may store such responses as
 part of their normal operation.

 The purpose of this directive is to meet the stated requirements of
 certain users and service authors who are concerned about accidental
 releases of information via unanticipated accesses to cache data
 structures. While the use of this directive may improve privacy in
 some cases, we caution that it is NOT in any way a reliable or
 sufficient mechanism for ensuring privacy. In particular, malicious
 or compromised caches may not recognize or obey this directive; and
 communications networks may be vulnerable to eavesdropping.

14.9.3 Modifications of the Basic Expiration Mechanism

 The expiration time of an entity may be specified by the origin
 server using the Expires header (see section 14.21). Alternatively,
 it may be specified using the max-age directive in a response.

 If a response includes both an Expires header and a max-age
 directive, the max-age directive overrides the Expires header, even
 if the Expires header is more restrictive. This rule allows an origin
 server to provide, for a given response, a longer expiration time to
 an HTTP/1.1 (or later) cache than to an HTTP/1.0 cache. This may be
 useful if certain HTTP/1.0 caches improperly calculate ages or
 expiration times, perhaps due to desynchronized clocks.

 Note: most older caches, not compliant with this specification, do
 not implement any Cache-Control directives. An origin server
 wishing to use a Cache-Control directive that restricts, but does
 not prevent, caching by an HTTP/1.1-compliant cache may exploit the
 requirement that the max-age directive overrides the Expires
 header, and the fact that non-HTTP/1.1-compliant caches do not
 observe the max-age directive.

 Other directives allow an user agent to modify the basic expiration
 mechanism. These directives may be specified on a request:

 max-age
 Indicates that the client is willing to accept a response whose age
 is no greater than the specified time in seconds. Unless max-stale
 directive is also included, the client is not willing to accept a
 stale response.

 min-fresh
 Indicates that the client is willing to accept a response whose
 freshness lifetime is no less than its current age plus the

Fielding, et. al. Standards Track [Page 104]

C
om

pendium
 2 page 360

RFC 2068 HTTP/1.1 January 1997

 specified time in seconds. That is, the client wants a response
 that will still be fresh for at least the specified number of
 seconds.

 max-stale
 Indicates that the client is willing to accept a response that has
 exceeded its expiration time. If max-stale is assigned a value,
 then the client is willing to accept a response that has exceeded
 its expiration time by no more than the specified number of
 seconds. If no value is assigned to max-stale, then the client is
 willing to accept a stale response of any age.

 If a cache returns a stale response, either because of a max-stale
 directive on a request, or because the cache is configured to
 override the expiration time of a response, the cache MUST attach a
 Warning header to the stale response, using Warning 10 (Response is
 stale).

14.9.4 Cache Revalidation and Reload Controls

 Sometimes an user agent may want or need to insist that a cache
 revalidate its cache entry with the origin server (and not just with
 the next cache along the path to the origin server), or to reload its
 cache entry from the origin server. End-to-end revalidation may be
 necessary if either the cache or the origin server has overestimated
 the expiration time of the cached response. End-to-end reload may be
 necessary if the cache entry has become corrupted for some reason.

 End-to-end revalidation may be requested either when the client does
 not have its own local cached copy, in which case we call it
 "unspecified end-to-end revalidation", or when the client does have a
 local cached copy, in which case we call it "specific end-to-end
 revalidation."

 The client can specify these three kinds of action using Cache-
 Control request directives:

 End-to-end reload
 The request includes a "no-cache" Cache-Control directive or, for
 compatibility with HTTP/1.0 clients, "Pragma: no-cache". No field
 names may be included with the no-cache directive in a request. The
 server MUST NOT use a cached copy when responding to such a
 request.

 Specific end-to-end revalidation
 The request includes a "max-age=0" Cache-Control directive, which
 forces each cache along the path to the origin server to revalidate
 its own entry, if any, with the next cache or server. The initial

Fielding, et. al. Standards Track [Page 105]

RFC 2068 HTTP/1.1 January 1997

 request includes a cache-validating conditional with the client's
 current validator.

 Unspecified end-to-end revalidation
 The request includes "max-age=0" Cache-Control directive, which
 forces each cache along the path to the origin server to revalidate
 its own entry, if any, with the next cache or server. The initial
 request does not include a cache-validating conditional; the first
 cache along the path (if any) that holds a cache entry for this
 resource includes a cache-validating conditional with its current
 validator.

 When an intermediate cache is forced, by means of a max-age=0
 directive, to revalidate its own cache entry, and the client has
 supplied its own validator in the request, the supplied validator may
 differ from the validator currently stored with the cache entry. In
 this case, the cache may use either validator in making its own
 request without affecting semantic transparency.

 However, the choice of validator may affect performance. The best
 approach is for the intermediate cache to use its own validator when
 making its request. If the server replies with 304 (Not Modified),
 then the cache should return its now validated copy to the client
 with a 200 (OK) response. If the server replies with a new entity and
 cache validator, however, the intermediate cache should compare the
 returned validator with the one provided in the client's request,
 using the strong comparison function. If the client's validator is
 equal to the origin server's, then the intermediate cache simply
 returns 304 (Not Modified). Otherwise, it returns the new entity with
 a 200 (OK) response.

 If a request includes the no-cache directive, it should not include
 min-fresh, max-stale, or max-age.

 In some cases, such as times of extremely poor network connectivity,
 a client may want a cache to return only those responses that it
 currently has stored, and not to reload or revalidate with the origin
 server. To do this, the client may include the only-if-cached
 directive in a request. If it receives this directive, a cache SHOULD
 either respond using a cached entry that is consistent with the other
 constraints of the request, or respond with a 504 (Gateway Timeout)
 status. However, if a group of caches is being operated as a unified
 system with good internal connectivity, such a request MAY be
 forwarded within that group of caches.

 Because a cache may be configured to ignore a server's specified
 expiration time, and because a client request may include a max-stale
 directive (which has a similar effect), the protocol also includes a

Fielding, et. al. Standards Track [Page 106]

C
om

pendium
 2 page 361

RFC 2068 HTTP/1.1 January 1997

 mechanism for the origin server to require revalidation of a cache
 entry on any subsequent use. When the must-revalidate directive is
 present in a response received by a cache, that cache MUST NOT use
 the entry after it becomes stale to respond to a subsequent request
 without first revalidating it with the origin server. (I.e., the
 cache must do an end-to-end revalidation every time, if, based solely
 on the origin server's Expires or max-age value, the cached response
 is stale.)

 The must-revalidate directive is necessary to support reliable
 operation for certain protocol features. In all circumstances an
 HTTP/1.1 cache MUST obey the must-revalidate directive; in
 particular, if the cache cannot reach the origin server for any
 reason, it MUST generate a 504 (Gateway Timeout) response.

 Servers should send the must-revalidate directive if and only if
 failure to revalidate a request on the entity could result in
 incorrect operation, such as a silently unexecuted financial
 transaction. Recipients MUST NOT take any automated action that
 violates this directive, and MUST NOT automatically provide an
 unvalidated copy of the entity if revalidation fails.

 Although this is not recommended, user agents operating under severe
 connectivity constraints may violate this directive but, if so, MUST
 explicitly warn the user that an unvalidated response has been
 provided. The warning MUST be provided on each unvalidated access,
 and SHOULD require explicit user confirmation.

 The proxy-revalidate directive has the same meaning as the must-
 revalidate directive, except that it does not apply to non-shared
 user agent caches. It can be used on a response to an authenticated
 request to permit the user's cache to store and later return the
 response without needing to revalidate it (since it has already been
 authenticated once by that user), while still requiring proxies that
 service many users to revalidate each time (in order to make sure
 that each user has been authenticated). Note that such authenticated
 responses also need the public cache control directive in order to
 allow them to be cached at all.

14.9.5 No-Transform Directive

 Implementers of intermediate caches (proxies) have found it useful to
 convert the media type of certain entity bodies. A proxy might, for
 example, convert between image formats in order to save cache space
 or to reduce the amount of traffic on a slow link. HTTP has to date
 been silent on these transformations.

Fielding, et. al. Standards Track [Page 107]

RFC 2068 HTTP/1.1 January 1997

 Serious operational problems have already occurred, however, when
 these transformations have been applied to entity bodies intended for
 certain kinds of applications. For example, applications for medical
 imaging, scientific data analysis and those using end-to-end
 authentication, all depend on receiving an entity body that is bit
 for bit identical to the original entity-body.

 Therefore, if a response includes the no-transform directive, an
 intermediate cache or proxy MUST NOT change those headers that are
 listed in section 13.5.2 as being subject to the no-transform
 directive. This implies that the cache or proxy must not change any
 aspect of the entity-body that is specified by these headers.

14.9.6 Cache Control Extensions

 The Cache-Control header field can be extended through the use of one
 or more cache-extension tokens, each with an optional assigned value.
 Informational extensions (those which do not require a change in
 cache behavior) may be added without changing the semantics of other
 directives. Behavioral extensions are designed to work by acting as
 modifiers to the existing base of cache directives. Both the new
 directive and the standard directive are supplied, such that
 applications which do not understand the new directive will default
 to the behavior specified by the standard directive, and those that
 understand the new directive will recognize it as modifying the
 requirements associated with the standard directive. In this way,
 extensions to the Cache-Control directives can be made without
 requiring changes to the base protocol.

 This extension mechanism depends on a HTTP cache obeying all of the
 cache-control directives defined for its native HTTP-version, obeying
 certain extensions, and ignoring all directives that it does not
 understand.

 For example, consider a hypothetical new response directive called
 "community" which acts as a modifier to the "private" directive. We
 define this new directive to mean that, in addition to any non-shared
 cache, any cache which is shared only by members of the community
 named within its value may cache the response. An origin server
 wishing to allow the "UCI" community to use an otherwise private
 response in their shared cache(s) may do so by including

 Cache-Control: private, community="UCI"

 A cache seeing this header field will act correctly even if the cache
 does not understand the "community" cache-extension, since it will
 also see and understand the "private" directive and thus default to
 the safe behavior.

Fielding, et. al. Standards Track [Page 108]

C
om

pendium
 2 page 362

RFC 2068 HTTP/1.1 January 1997

 Unrecognized cache-directives MUST be ignored; it is assumed that any
 cache-directive likely to be unrecognized by an HTTP/1.1 cache will
 be combined with standard directives (or the response's default
 cachability) such that the cache behavior will remain minimally
 correct even if the cache does not understand the extension(s).

14.10 Connection

 The Connection general-header field allows the sender to specify
 options that are desired for that particular connection and MUST NOT
 be communicated by proxies over further connections.

 The Connection header has the following grammar:

 Connection-header = "Connection" ":" 1#(connection-token)
 connection-token = token

 HTTP/1.1 proxies MUST parse the Connection header field before a
 message is forwarded and, for each connection-token in this field,
 remove any header field(s) from the message with the same name as the
 connection-token. Connection options are signaled by the presence of
 a connection-token in the Connection header field, not by any
 corresponding additional header field(s), since the additional header
 field may not be sent if there are no parameters associated with that
 connection option. HTTP/1.1 defines the "close" connection option
 for the sender to signal that the connection will be closed after
 completion of the response. For example,

 Connection: close

 in either the request or the response header fields indicates that
 the connection should not be considered `persistent' (section 8.1)
 after the current request/response is complete.

 HTTP/1.1 applications that do not support persistent connections MUST
 include the "close" connection option in every message.

14.11 Content-Base

 The Content-Base entity-header field may be used to specify the base
 URI for resolving relative URLs within the entity. This header field
 is described as Base in RFC 1808, which is expected to be revised.

 Content-Base = "Content-Base" ":" absoluteURI

 If no Content-Base field is present, the base URI of an entity is
 defined either by its Content-Location (if that Content-Location URI
 is an absolute URI) or the URI used to initiate the request, in that

Fielding, et. al. Standards Track [Page 109]

RFC 2068 HTTP/1.1 January 1997

 order of precedence. Note, however, that the base URI of the contents
 within the entity-body may be redefined within that entity-body.

14.12 Content-Encoding

 The Content-Encoding entity-header field is used as a modifier to the
 media-type. When present, its value indicates what additional content
 codings have been applied to the entity-body, and thus what decoding
 mechanisms MUST be applied in order to obtain the media-type
 referenced by the Content-Type header field. Content-Encoding is
 primarily used to allow a document to be compressed without losing
 the identity of its underlying media type.

 Content-Encoding = "Content-Encoding" ":" 1#content-coding

 Content codings are defined in section 3.5. An example of its use is

 Content-Encoding: gzip

 The Content-Encoding is a characteristic of the entity identified by
 the Request-URI. Typically, the entity-body is stored with this
 encoding and is only decoded before rendering or analogous usage.

 If multiple encodings have been applied to an entity, the content
 codings MUST be listed in the order in which they were applied.

 Additional information about the encoding parameters MAY be provided
 by other entity-header fields not defined by this specification.

14.13 Content-Language

 The Content-Language entity-header field describes the natural
 language(s) of the intended audience for the enclosed entity. Note
 that this may not be equivalent to all the languages used within the
 entity-body.

 Content-Language = "Content-Language" ":" 1#language-tag

 Language tags are defined in section 3.10. The primary purpose of
 Content-Language is to allow a user to identify and differentiate
 entities according to the user's own preferred language. Thus, if the
 body content is intended only for a Danish-literate audience, the
 appropriate field is

 Content-Language: da

 If no Content-Language is specified, the default is that the content
 is intended for all language audiences. This may mean that the sender

Fielding, et. al. Standards Track [Page 110]

C
om

pendium
 2 page 363

RFC 2068 HTTP/1.1 January 1997

 does not consider it to be specific to any natural language, or that
 the sender does not know for which language it is intended.

 Multiple languages MAY be listed for content that is intended for
 multiple audiences. For example, a rendition of the "Treaty of
 Waitangi," presented simultaneously in the original Maori and English
 versions, would call for

 Content-Language: mi, en

 However, just because multiple languages are present within an entity
 does not mean that it is intended for multiple linguistic audiences.
 An example would be a beginner's language primer, such as "A First
 Lesson in Latin," which is clearly intended to be used by an
 English-literate audience. In this case, the Content-Language should
 only include "en".

 Content-Language may be applied to any media type -- it is not
 limited to textual documents.

14.14 Content-Length

 The Content-Length entity-header field indicates the size of the
 message-body, in decimal number of octets, sent to the recipient or,
 in the case of the HEAD method, the size of the entity-body that
 would have been sent had the request been a GET.

 Content-Length = "Content-Length" ":" 1*DIGIT

 An example is

 Content-Length: 3495

 Applications SHOULD use this field to indicate the size of the
 message-body to be transferred, regardless of the media type of the
 entity. It must be possible for the recipient to reliably determine
 the end of HTTP/1.1 requests containing an entity-body, e.g., because
 the request has a valid Content-Length field, uses Transfer-Encoding:
 chunked or a multipart body.

 Any Content-Length greater than or equal to zero is a valid value.
 Section 4.4 describes how to determine the length of a message-body
 if a Content-Length is not given.

Fielding, et. al. Standards Track [Page 111]

RFC 2068 HTTP/1.1 January 1997

 Note: The meaning of this field is significantly different from the
 corresponding definition in MIME, where it is an optional field
 used within the "message/external-body" content-type. In HTTP, it
 SHOULD be sent whenever the message's length can be determined
 prior to being transferred.

14.15 Content-Location

 The Content-Location entity-header field may be used to supply the
 resource location for the entity enclosed in the message. In the case
 where a resource has multiple entities associated with it, and those
 entities actually have separate locations by which they might be
 individually accessed, the server should provide a Content-Location
 for the particular variant which is returned. In addition, a server
 SHOULD provide a Content-Location for the resource corresponding to
 the response entity.

 Content-Location = "Content-Location" ":"
 (absoluteURI | relativeURI)

 If no Content-Base header field is present, the value of Content-
 Location also defines the base URL for the entity (see section
 14.11).

 The Content-Location value is not a replacement for the original
 requested URI; it is only a statement of the location of the resource
 corresponding to this particular entity at the time of the request.
 Future requests MAY use the Content-Location URI if the desire is to
 identify the source of that particular entity.

 A cache cannot assume that an entity with a Content-Location
 different from the URI used to retrieve it can be used to respond to
 later requests on that Content-Location URI. However, the Content-
 Location can be used to differentiate between multiple entities
 retrieved from a single requested resource, as described in section
 13.6.

 If the Content-Location is a relative URI, the URI is interpreted
 relative to any Content-Base URI provided in the response. If no
 Content-Base is provided, the relative URI is interpreted relative to
 the Request-URI.

Fielding, et. al. Standards Track [Page 112]

C
om

pendium
 2 page 364

RFC 2068 HTTP/1.1 January 1997

14.16 Content-MD5

 The Content-MD5 entity-header field, as defined in RFC 1864 [23], is
 an MD5 digest of the entity-body for the purpose of providing an
 end-to-end message integrity check (MIC) of the entity-body. (Note: a
 MIC is good for detecting accidental modification of the entity-body
 in transit, but is not proof against malicious attacks.)

 Content-MD5 = "Content-MD5" ":" md5-digest

 md5-digest = <base64 of 128 bit MD5 digest as per RFC 1864>

 The Content-MD5 header field may be generated by an origin server to
 function as an integrity check of the entity-body. Only origin
 servers may generate the Content-MD5 header field; proxies and
 gateways MUST NOT generate it, as this would defeat its value as an
 end-to-end integrity check. Any recipient of the entity-body,
 including gateways and proxies, MAY check that the digest value in
 this header field matches that of the entity-body as received.

 The MD5 digest is computed based on the content of the entity-body,
 including any Content-Encoding that has been applied, but not
 including any Transfer-Encoding that may have been applied to the
 message-body. If the message is received with a Transfer-Encoding,
 that encoding must be removed prior to checking the Content-MD5 value
 against the received entity.

 This has the result that the digest is computed on the octets of the
 entity-body exactly as, and in the order that, they would be sent if
 no Transfer-Encoding were being applied.

 HTTP extends RFC 1864 to permit the digest to be computed for MIME
 composite media-types (e.g., multipart/* and message/rfc822), but
 this does not change how the digest is computed as defined in the
 preceding paragraph.

 Note: There are several consequences of this. The entity-body for
 composite types may contain many body-parts, each with its own MIME
 and HTTP headers (including Content-MD5, Content-Transfer-Encoding,
 and Content-Encoding headers). If a body-part has a Content-
 Transfer-Encoding or Content-Encoding header, it is assumed that
 the content of the body-part has had the encoding applied, and the
 body-part is included in the Content-MD5 digest as is -- i.e.,
 after the application. The Transfer-Encoding header field is not
 allowed within body-parts.

 Note: while the definition of Content-MD5 is exactly the same for
 HTTP as in RFC 1864 for MIME entity-bodies, there are several ways

Fielding, et. al. Standards Track [Page 113]

RFC 2068 HTTP/1.1 January 1997

 in which the application of Content-MD5 to HTTP entity-bodies
 differs from its application to MIME entity-bodies. One is that
 HTTP, unlike MIME, does not use Content-Transfer-Encoding, and does
 use Transfer-Encoding and Content-Encoding. Another is that HTTP
 more frequently uses binary content types than MIME, so it is worth
 noting that, in such cases, the byte order used to compute the
 digest is the transmission byte order defined for the type. Lastly,
 HTTP allows transmission of text types with any of several line
 break conventions and not just the canonical form using CRLF.
 Conversion of all line breaks to CRLF should not be done before
 computing or checking the digest: the line break convention used in
 the text actually transmitted should be left unaltered when
 computing the digest.

14.17 Content-Range

 The Content-Range entity-header is sent with a partial entity-body to
 specify where in the full entity-body the partial body should be
 inserted. It also indicates the total size of the full entity-body.
 When a server returns a partial response to a client, it must
 describe both the extent of the range covered by the response, and
 the length of the entire entity-body.

 Content-Range = "Content-Range" ":" content-range-spec

 content-range-spec = byte-content-range-spec

 byte-content-range-spec = bytes-unit SP first-byte-pos "-"
 last-byte-pos "/" entity-length

 entity-length = 1*DIGIT

 Unlike byte-ranges-specifier values, a byte-content-range-spec may
 only specify one range, and must contain absolute byte positions for
 both the first and last byte of the range.

 A byte-content-range-spec whose last-byte-pos value is less than its
 first-byte-pos value, or whose entity-length value is less than or
 equal to its last-byte-pos value, is invalid. The recipient of an
 invalid byte-content-range-spec MUST ignore it and any content
 transferred along with it.

Fielding, et. al. Standards Track [Page 114]

C
om

pendium
 2 page 365

RFC 2068 HTTP/1.1 January 1997

 Examples of byte-content-range-spec values, assuming that the entity
 contains a total of 1234 bytes:

 o The first 500 bytes:

 bytes 0-499/1234

 o The second 500 bytes:

 bytes 500-999/1234

 o All except for the first 500 bytes:

 bytes 500-1233/1234

 o The last 500 bytes:

 bytes 734-1233/1234

 When an HTTP message includes the content of a single range (for
 example, a response to a request for a single range, or to a request
 for a set of ranges that overlap without any holes), this content is
 transmitted with a Content-Range header, and a Content-Length header
 showing the number of bytes actually transferred. For example,

 HTTP/1.1 206 Partial content
 Date: Wed, 15 Nov 1995 06:25:24 GMT
 Last-modified: Wed, 15 Nov 1995 04:58:08 GMT
 Content-Range: bytes 21010-47021/47022
 Content-Length: 26012
 Content-Type: image/gif

 When an HTTP message includes the content of multiple ranges (for
 example, a response to a request for multiple non-overlapping
 ranges), these are transmitted as a multipart MIME message. The
 multipart MIME content-type used for this purpose is defined in this
 specification to be "multipart/byteranges". See appendix 19.2 for its
 definition.

 A client that cannot decode a MIME multipart/byteranges message
 should not ask for multiple byte-ranges in a single request.

 When a client requests multiple byte-ranges in one request, the
 server SHOULD return them in the order that they appeared in the
 request.

 If the server ignores a byte-range-spec because it is invalid, the
 server should treat the request as if the invalid Range header field

Fielding, et. al. Standards Track [Page 115]

RFC 2068 HTTP/1.1 January 1997

 did not exist. (Normally, this means return a 200 response containing
 the full entity). The reason is that the only time a client will make
 such an invalid request is when the entity is smaller than the entity
 retrieved by a prior request.

14.18 Content-Type

 The Content-Type entity-header field indicates the media type of the
 entity-body sent to the recipient or, in the case of the HEAD method,
 the media type that would have been sent had the request been a GET.

 Content-Type = "Content-Type" ":" media-type
 Media types are defined in section 3.7. An example of the field is

 Content-Type: text/html; charset=ISO-8859-4

 Further discussion of methods for identifying the media type of an
 entity is provided in section 7.2.1.

14.19 Date

 The Date general-header field represents the date and time at which
 the message was originated, having the same semantics as orig-date in
 RFC 822. The field value is an HTTP-date, as described in section
 3.3.1.

 Date = "Date" ":" HTTP-date

 An example is

 Date: Tue, 15 Nov 1994 08:12:31 GMT

 If a message is received via direct connection with the user agent
 (in the case of requests) or the origin server (in the case of
 responses), then the date can be assumed to be the current date at
 the receiving end. However, since the date--as it is believed by the
 origin--is important for evaluating cached responses, origin servers
 MUST include a Date header field in all responses. Clients SHOULD
 only send a Date header field in messages that include an entity-
 body, as in the case of the PUT and POST requests, and even then it
 is optional. A received message which does not have a Date header
 field SHOULD be assigned one by the recipient if the message will be
 cached by that recipient or gatewayed via a protocol which requires a
 Date.

Fielding, et. al. Standards Track [Page 116]

C
om

pendium
 2 page 366

RFC 2068 HTTP/1.1 January 1997

 In theory, the date SHOULD represent the moment just before the
 entity is generated. In practice, the date can be generated at any
 time during the message origination without affecting its semantic
 value.

 The format of the Date is an absolute date and time as defined by
 HTTP-date in section 3.3; it MUST be sent in RFC1123 [8]-date format.

14.20 ETag

 The ETag entity-header field defines the entity tag for the
 associated entity. The headers used with entity tags are described in
 sections 14.20, 14.25, 14.26 and 14.43. The entity tag may be used
 for comparison with other entities from the same resource (see
 section 13.3.2).

 ETag = "ETag" ":" entity-tag

 Examples:

 ETag: "xyzzy"
 ETag: W/"xyzzy"
 ETag: ""

14.21 Expires

 The Expires entity-header field gives the date/time after which the
 response should be considered stale. A stale cache entry may not
 normally be returned by a cache (either a proxy cache or an user
 agent cache) unless it is first validated with the origin server (or
 with an intermediate cache that has a fresh copy of the entity). See
 section 13.2 for further discussion of the expiration model.

 The presence of an Expires field does not imply that the original
 resource will change or cease to exist at, before, or after that
 time.

 The format is an absolute date and time as defined by HTTP-date in
 section 3.3; it MUST be in RFC1123-date format:

 Expires = "Expires" ":" HTTP-date

Fielding, et. al. Standards Track [Page 117]

RFC 2068 HTTP/1.1 January 1997

 An example of its use is

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

 Note: if a response includes a Cache-Control field with the max-age
 directive, that directive overrides the Expires field.

 HTTP/1.1 clients and caches MUST treat other invalid date formats,
 especially including the value "0", as in the past (i.e., "already
 expired").

 To mark a response as "already expired," an origin server should use
 an Expires date that is equal to the Date header value. (See the
 rules for expiration calculations in section 13.2.4.)

 To mark a response as "never expires," an origin server should use an
 Expires date approximately one year from the time the response is
 sent. HTTP/1.1 servers should not send Expires dates more than one
 year in the future.

 The presence of an Expires header field with a date value of some
 time in the future on an response that otherwise would by default be
 non-cacheable indicates that the response is cachable, unless
 indicated otherwise by a Cache-Control header field (section 14.9).

14.22 From

 The From request-header field, if given, SHOULD contain an Internet
 e-mail address for the human user who controls the requesting user
 agent. The address SHOULD be machine-usable, as defined by mailbox
 in RFC 822 (as updated by RFC 1123):

 From = "From" ":" mailbox

 An example is:

 From: webmaster@w3.org

 This header field MAY be used for logging purposes and as a means for
 identifying the source of invalid or unwanted requests. It SHOULD NOT
 be used as an insecure form of access protection. The interpretation
 of this field is that the request is being performed on behalf of the
 person given, who accepts responsibility for the method performed. In
 particular, robot agents SHOULD include this header so that the
 person responsible for running the robot can be contacted if problems
 occur on the receiving end.

Fielding, et. al. Standards Track [Page 118]

C
om

pendium
 2 page 367

RFC 2068 HTTP/1.1 January 1997

 The Internet e-mail address in this field MAY be separate from the
 Internet host which issued the request. For example, when a request
 is passed through a proxy the original issuer's address SHOULD be
 used.

 Note: The client SHOULD not send the From header field without the
 user's approval, as it may conflict with the user's privacy
 interests or their site's security policy. It is strongly
 recommended that the user be able to disable, enable, and modify
 the value of this field at any time prior to a request.

14.23 Host

 The Host request-header field specifies the Internet host and port
 number of the resource being requested, as obtained from the original
 URL given by the user or referring resource (generally an HTTP URL,
 as described in section 3.2.2). The Host field value MUST represent
 the network location of the origin server or gateway given by the
 original URL. This allows the origin server or gateway to
 differentiate between internally-ambiguous URLs, such as the root "/"
 URL of a server for multiple host names on a single IP address.

 Host = "Host" ":" host [":" port] ; Section 3.2.2

 A "host" without any trailing port information implies the default
 port for the service requested (e.g., "80" for an HTTP URL). For
 example, a request on the origin server for
 <http://www.w3.org/pub/WWW/> MUST include:

 GET /pub/WWW/ HTTP/1.1
 Host: www.w3.org

 A client MUST include a Host header field in all HTTP/1.1 request
 messages on the Internet (i.e., on any message corresponding to a
 request for a URL which includes an Internet host address for the
 service being requested). If the Host field is not already present,
 an HTTP/1.1 proxy MUST add a Host field to the request message prior
 to forwarding it on the Internet. All Internet-based HTTP/1.1 servers
 MUST respond with a 400 status code to any HTTP/1.1 request message
 which lacks a Host header field.

 See sections 5.2 and 19.5.1 for other requirements relating to Host.

14.24 If-Modified-Since

 The If-Modified-Since request-header field is used with the GET
 method to make it conditional: if the requested variant has not been
 modified since the time specified in this field, an entity will not

Fielding, et. al. Standards Track [Page 119]

RFC 2068 HTTP/1.1 January 1997

 be returned from the server; instead, a 304 (not modified) response
 will be returned without any message-body.

 If-Modified-Since = "If-Modified-Since" ":" HTTP-date

 An example of the field is:

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 A GET method with an If-Modified-Since header and no Range header
 requests that the identified entity be transferred only if it has
 been modified since the date given by the If-Modified-Since header.
 The algorithm for determining this includes the following cases:

 a)If the request would normally result in anything other than a 200
 (OK) status, or if the passed If-Modified-Since date is invalid, the
 response is exactly the same as for a normal GET. A date which is
 later than the server's current time is invalid.

 b)If the variant has been modified since the If-Modified-Since date,
 the response is exactly the same as for a normal GET.

 c)If the variant has not been modified since a valid If-Modified-Since
 date, the server MUST return a 304 (Not Modified) response.

 The purpose of this feature is to allow efficient updates of cached
 information with a minimum amount of transaction overhead.

 Note that the Range request-header field modifies the meaning of
 If-Modified-Since; see section 14.36 for full details.

 Note that If-Modified-Since times are interpreted by the server,
 whose clock may not be synchronized with the client.

 Note that if a client uses an arbitrary date in the If-Modified-Since
 header instead of a date taken from the Last-Modified header for the
 same request, the client should be aware of the fact that this date
 is interpreted in the server's understanding of time. The client
 should consider unsynchronized clocks and rounding problems due to
 the different encodings of time between the client and server. This
 includes the possibility of race conditions if the document has
 changed between the time it was first requested and the If-Modified-
 Since date of a subsequent request, and the possibility of clock-
 skew-related problems if the If-Modified-Since date is derived from
 the client's clock without correction to the server's clock.
 Corrections for different time bases between client and server are at
 best approximate due to network latency.

Fielding, et. al. Standards Track [Page 120]

C
om

pendium
 2 page 368

RFC 2068 HTTP/1.1 January 1997

14.25 If-Match

 The If-Match request-header field is used with a method to make it
 conditional. A client that has one or more entities previously
 obtained from the resource can verify that one of those entities is
 current by including a list of their associated entity tags in the
 If-Match header field. The purpose of this feature is to allow
 efficient updates of cached information with a minimum amount of
 transaction overhead. It is also used, on updating requests, to
 prevent inadvertent modification of the wrong version of a resource.
 As a special case, the value "*" matches any current entity of the
 resource.

 If-Match = "If-Match" ":" ("*" | 1#entity-tag)

 If any of the entity tags match the entity tag of the entity that
 would have been returned in the response to a similar GET request
 (without the If-Match header) on that resource, or if "*" is given
 and any current entity exists for that resource, then the server MAY
 perform the requested method as if the If-Match header field did not
 exist.

 A server MUST use the strong comparison function (see section 3.11)
 to compare the entity tags in If-Match.

 If none of the entity tags match, or if "*" is given and no current
 entity exists, the server MUST NOT perform the requested method, and
 MUST return a 412 (Precondition Failed) response. This behavior is
 most useful when the client wants to prevent an updating method, such
 as PUT, from modifying a resource that has changed since the client
 last retrieved it.

 If the request would, without the If-Match header field, result in
 anything other than a 2xx status, then the If-Match header MUST be
 ignored.

 The meaning of "If-Match: *" is that the method SHOULD be performed
 if the representation selected by the origin server (or by a cache,
 possibly using the Vary mechanism, see section 14.43) exists, and
 MUST NOT be performed if the representation does not exist.

Fielding, et. al. Standards Track [Page 121]

RFC 2068 HTTP/1.1 January 1997

 A request intended to update a resource (e.g., a PUT) MAY include an
 If-Match header field to signal that the request method MUST NOT be
 applied if the entity corresponding to the If-Match value (a single
 entity tag) is no longer a representation of that resource. This
 allows the user to indicate that they do not wish the request to be
 successful if the resource has been changed without their knowledge.
 Examples:

 If-Match: "xyzzy"
 If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-Match: *

14.26 If-None-Match

 The If-None-Match request-header field is used with a method to make
 it conditional. A client that has one or more entities previously
 obtained from the resource can verify that none of those entities is
 current by including a list of their associated entity tags in the
 If-None-Match header field. The purpose of this feature is to allow
 efficient updates of cached information with a minimum amount of
 transaction overhead. It is also used, on updating requests, to
 prevent inadvertent modification of a resource which was not known to
 exist.

 As a special case, the value "*" matches any current entity of the
 resource.

 If-None-Match = "If-None-Match" ":" ("*" | 1#entity-tag)

 If any of the entity tags match the entity tag of the entity that
 would have been returned in the response to a similar GET request
 (without the If-None-Match header) on that resource, or if "*" is
 given and any current entity exists for that resource, then the
 server MUST NOT perform the requested method. Instead, if the request
 method was GET or HEAD, the server SHOULD respond with a 304 (Not
 Modified) response, including the cache-related entity-header fields
 (particularly ETag) of one of the entities that matched. For all
 other request methods, the server MUST respond with a status of 412
 (Precondition Failed).

 See section 13.3.3 for rules on how to determine if two entity tags
 match. The weak comparison function can only be used with GET or HEAD
 requests.

 If none of the entity tags match, or if "*" is given and no current
 entity exists, then the server MAY perform the requested method as if
 the If-None-Match header field did not exist.

Fielding, et. al. Standards Track [Page 122]

C
om

pendium
 2 page 369

RFC 2068 HTTP/1.1 January 1997

 If the request would, without the If-None-Match header field, result
 in anything other than a 2xx status, then the If-None-Match header
 MUST be ignored.

 The meaning of "If-None-Match: *" is that the method MUST NOT be
 performed if the representation selected by the origin server (or by
 a cache, possibly using the Vary mechanism, see section 14.43)
 exists, and SHOULD be performed if the representation does not exist.
 This feature may be useful in preventing races between PUT
 operations.

 Examples:

 If-None-Match: "xyzzy"
 If-None-Match: W/"xyzzy"
 If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"
 If-None-Match: *

14.27 If-Range

 If a client has a partial copy of an entity in its cache, and wishes
 to have an up-to-date copy of the entire entity in its cache, it
 could use the Range request-header with a conditional GET (using
 either or both of If-Unmodified-Since and If-Match.) However, if the
 condition fails because the entity has been modified, the client
 would then have to make a second request to obtain the entire current
 entity-body.

 The If-Range header allows a client to "short-circuit" the second
 request. Informally, its meaning is `if the entity is unchanged, send
 me the part(s) that I am missing; otherwise, send me the entire new
 entity.'

 If-Range = "If-Range" ":" (entity-tag | HTTP-date)

 If the client has no entity tag for an entity, but does have a Last-
 Modified date, it may use that date in a If-Range header. (The server
 can distinguish between a valid HTTP-date and any form of entity-tag
 by examining no more than two characters.) The If-Range header should
 only be used together with a Range header, and must be ignored if the
 request does not include a Range header, or if the server does not
 support the sub-range operation.

Fielding, et. al. Standards Track [Page 123]

RFC 2068 HTTP/1.1 January 1997

 If the entity tag given in the If-Range header matches the current
 entity tag for the entity, then the server should provide the
 specified sub-range of the entity using a 206 (Partial content)
 response. If the entity tag does not match, then the server should
 return the entire entity using a 200 (OK) response.

14.28 If-Unmodified-Since

 The If-Unmodified-Since request-header field is used with a method to
 make it conditional. If the requested resource has not been modified
 since the time specified in this field, the server should perform the
 requested operation as if the If-Unmodified-Since header were not
 present.

 If the requested variant has been modified since the specified time,
 the server MUST NOT perform the requested operation, and MUST return
 a 412 (Precondition Failed).

 If-Unmodified-Since = "If-Unmodified-Since" ":" HTTP-date

 An example of the field is:

 If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 If the request normally (i.e., without the If-Unmodified-Since
 header) would result in anything other than a 2xx status, the If-
 Unmodified-Since header should be ignored.

 If the specified date is invalid, the header is ignored.

14.29 Last-Modified

 The Last-Modified entity-header field indicates the date and time at
 which the origin server believes the variant was last modified.

 Last-Modified = "Last-Modified" ":" HTTP-date

 An example of its use is

 Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

 The exact meaning of this header field depends on the implementation
 of the origin server and the nature of the original resource. For
 files, it may be just the file system last-modified time. For
 entities with dynamically included parts, it may be the most recent
 of the set of last-modify times for its component parts. For database
 gateways, it may be the last-update time stamp of the record. For
 virtual objects, it may be the last time the internal state changed.

Fielding, et. al. Standards Track [Page 124]

C
om

pendium
 2 page 370

RFC 2068 HTTP/1.1 January 1997

 An origin server MUST NOT send a Last-Modified date which is later
 than the server's time of message origination. In such cases, where
 the resource's last modification would indicate some time in the
 future, the server MUST replace that date with the message
 origination date.

 An origin server should obtain the Last-Modified value of the entity
 as close as possible to the time that it generates the Date value of
 its response. This allows a recipient to make an accurate assessment
 of the entity's modification time, especially if the entity changes
 near the time that the response is generated.

 HTTP/1.1 servers SHOULD send Last-Modified whenever feasible.

14.30 Location

 The Location response-header field is used to redirect the recipient
 to a location other than the Request-URI for completion of the
 request or identification of a new resource. For 201 (Created)
 responses, the Location is that of the new resource which was created
 by the request. For 3xx responses, the location SHOULD indicate the
 server's preferred URL for automatic redirection to the resource. The
 field value consists of a single absolute URL.

 Location = "Location" ":" absoluteURI

 An example is

 Location: http://www.w3.org/pub/WWW/People.html

 Note: The Content-Location header field (section 14.15) differs
 from Location in that the Content-Location identifies the original
 location of the entity enclosed in the request. It is therefore
 possible for a response to contain header fields for both Location
 and Content-Location. Also see section 13.10 for cache requirements
 of some methods.

14.31 Max-Forwards

 The Max-Forwards request-header field may be used with the TRACE
 method (section 14.31) to limit the number of proxies or gateways
 that can forward the request to the next inbound server. This can be
 useful when the client is attempting to trace a request chain which
 appears to be failing or looping in mid-chain.

 Max-Forwards = "Max-Forwards" ":" 1*DIGIT

Fielding, et. al. Standards Track [Page 125]

RFC 2068 HTTP/1.1 January 1997

 The Max-Forwards value is a decimal integer indicating the remaining
 number of times this request message may be forwarded.

 Each proxy or gateway recipient of a TRACE request containing a Max-
 Forwards header field SHOULD check and update its value prior to
 forwarding the request. If the received value is zero (0), the
 recipient SHOULD NOT forward the request; instead, it SHOULD respond
 as the final recipient with a 200 (OK) response containing the
 received request message as the response entity-body (as described in
 section 9.8). If the received Max-Forwards value is greater than
 zero, then the forwarded message SHOULD contain an updated Max-
 Forwards field with a value decremented by one (1).

 The Max-Forwards header field SHOULD be ignored for all other methods
 defined by this specification and for any extension methods for which
 it is not explicitly referred to as part of that method definition.

14.32 Pragma

 The Pragma general-header field is used to include implementation-
 specific directives that may apply to any recipient along the
 request/response chain. All pragma directives specify optional
 behavior from the viewpoint of the protocol; however, some systems
 MAY require that behavior be consistent with the directives.

 Pragma = "Pragma" ":" 1#pragma-directive

 pragma-directive = "no-cache" | extension-pragma
 extension-pragma = token ["=" (token | quoted-string)]

 When the no-cache directive is present in a request message, an
 application SHOULD forward the request toward the origin server even
 if it has a cached copy of what is being requested. This pragma
 directive has the same semantics as the no-cache cache-directive (see
 section 14.9) and is defined here for backwards compatibility with
 HTTP/1.0. Clients SHOULD include both header fields when a no-cache
 request is sent to a server not known to be HTTP/1.1 compliant.

 Pragma directives MUST be passed through by a proxy or gateway
 application, regardless of their significance to that application,
 since the directives may be applicable to all recipients along the
 request/response chain. It is not possible to specify a pragma for a
 specific recipient; however, any pragma directive not relevant to a
 recipient SHOULD be ignored by that recipient.

Fielding, et. al. Standards Track [Page 126]

C
om

pendium
 2 page 371

RFC 2068 HTTP/1.1 January 1997

 HTTP/1.1 clients SHOULD NOT send the Pragma request-header. HTTP/1.1
 caches SHOULD treat "Pragma: no-cache" as if the client had sent
 "Cache-Control: no-cache". No new Pragma directives will be defined
 in HTTP.

14.33 Proxy-Authenticate

 The Proxy-Authenticate response-header field MUST be included as part
 of a 407 (Proxy Authentication Required) response. The field value
 consists of a challenge that indicates the authentication scheme and
 parameters applicable to the proxy for this Request-URI.

 Proxy-Authenticate = "Proxy-Authenticate" ":" challenge

 The HTTP access authentication process is described in section 11.
 Unlike WWW-Authenticate, the Proxy-Authenticate header field applies
 only to the current connection and SHOULD NOT be passed on to
 downstream clients. However, an intermediate proxy may need to obtain
 its own credentials by requesting them from the downstream client,
 which in some circumstances will appear as if the proxy is forwarding
 the Proxy-Authenticate header field.

14.34 Proxy-Authorization

 The Proxy-Authorization request-header field allows the client to
 identify itself (or its user) to a proxy which requires
 authentication. The Proxy-Authorization field value consists of
 credentials containing the authentication information of the user
 agent for the proxy and/or realm of the resource being requested.

 Proxy-Authorization = "Proxy-Authorization" ":" credentials

 The HTTP access authentication process is described in section 11.
 Unlike Authorization, the Proxy-Authorization header field applies
 only to the next outbound proxy that demanded authentication using
 the Proxy-Authenticate field. When multiple proxies are used in a
 chain, the Proxy-Authorization header field is consumed by the first
 outbound proxy that was expecting to receive credentials. A proxy MAY
 relay the credentials from the client request to the next proxy if
 that is the mechanism by which the proxies cooperatively authenticate
 a given request.

14.35 Public

 The Public response-header field lists the set of methods supported
 by the server. The purpose of this field is strictly to inform the
 recipient of the capabilities of the server regarding unusual
 methods. The methods listed may or may not be applicable to the

Fielding, et. al. Standards Track [Page 127]

RFC 2068 HTTP/1.1 January 1997

 Request-URI; the Allow header field (section 14.7) MAY be used to
 indicate methods allowed for a particular URI.

 Public = "Public" ":" 1#method

 Example of use:

 Public: OPTIONS, MGET, MHEAD, GET, HEAD

 This header field applies only to the server directly connected to
 the client (i.e., the nearest neighbor in a chain of connections). If
 the response passes through a proxy, the proxy MUST either remove the
 Public header field or replace it with one applicable to its own
 capabilities.

14.36 Range

14.36.1 Byte Ranges

 Since all HTTP entities are represented in HTTP messages as sequences
 of bytes, the concept of a byte range is meaningful for any HTTP
 entity. (However, not all clients and servers need to support byte-
 range operations.)

 Byte range specifications in HTTP apply to the sequence of bytes in
 the entity-body (not necessarily the same as the message-body).

 A byte range operation may specify a single range of bytes, or a set
 of ranges within a single entity.

 ranges-specifier = byte-ranges-specifier

 byte-ranges-specifier = bytes-unit "=" byte-range-set

 byte-range-set = 1#(byte-range-spec | suffix-byte-range-spec)

 byte-range-spec = first-byte-pos "-" [last-byte-pos]

 first-byte-pos = 1*DIGIT

 last-byte-pos = 1*DIGIT

 The first-byte-pos value in a byte-range-spec gives the byte-offset
 of the first byte in a range. The last-byte-pos value gives the
 byte-offset of the last byte in the range; that is, the byte
 positions specified are inclusive. Byte offsets start at zero.

Fielding, et. al. Standards Track [Page 128]

C
om

pendium
 2 page 372

RFC 2068 HTTP/1.1 January 1997

 If the last-byte-pos value is present, it must be greater than or
 equal to the first-byte-pos in that byte-range-spec, or the byte-
 range-spec is invalid. The recipient of an invalid byte-range-spec
 must ignore it.

 If the last-byte-pos value is absent, or if the value is greater than
 or equal to the current length of the entity-body, last-byte-pos is
 taken to be equal to one less than the current length of the entity-
 body in bytes.

 By its choice of last-byte-pos, a client can limit the number of
 bytes retrieved without knowing the size of the entity.

 suffix-byte-range-spec = "-" suffix-length

 suffix-length = 1*DIGIT

 A suffix-byte-range-spec is used to specify the suffix of the
 entity-body, of a length given by the suffix-length value. (That is,
 this form specifies the last N bytes of an entity-body.) If the
 entity is shorter than the specified suffix-length, the entire
 entity-body is used.

 Examples of byte-ranges-specifier values (assuming an entity-body of
 length 10000):

 o The first 500 bytes (byte offsets 0-499, inclusive):

 bytes=0-499

 o The second 500 bytes (byte offsets 500-999, inclusive):

 bytes=500-999

 o The final 500 bytes (byte offsets 9500-9999, inclusive):

 bytes=-500

 o Or

 bytes=9500-

 o The first and last bytes only (bytes 0 and 9999):

 bytes=0-0,-1

Fielding, et. al. Standards Track [Page 129]

RFC 2068 HTTP/1.1 January 1997

 o Several legal but not canonical specifications of the second
 500 bytes (byte offsets 500-999, inclusive):

 bytes=500-600,601-999

 bytes=500-700,601-999

14.36.2 Range Retrieval Requests

 HTTP retrieval requests using conditional or unconditional GET
 methods may request one or more sub-ranges of the entity, instead of
 the entire entity, using the Range request header, which applies to
 the entity returned as the result of the request:

 Range = "Range" ":" ranges-specifier

 A server MAY ignore the Range header. However, HTTP/1.1 origin
 servers and intermediate caches SHOULD support byte ranges when
 possible, since Range supports efficient recovery from partially
 failed transfers, and supports efficient partial retrieval of large
 entities.

 If the server supports the Range header and the specified range or
 ranges are appropriate for the entity:

 o The presence of a Range header in an unconditional GET modifies
 what is returned if the GET is otherwise successful. In other
 words, the response carries a status code of 206 (Partial
 Content) instead of 200 (OK).

 o The presence of a Range header in a conditional GET (a request
 using one or both of If-Modified-Since and If-None-Match, or
 one or both of If-Unmodified-Since and If-Match) modifies what
 is returned if the GET is otherwise successful and the condition
 is true. It does not affect the 304 (Not Modified) response
 returned if the conditional is false.

 In some cases, it may be more appropriate to use the If-Range header
 (see section 14.27) in addition to the Range header.

 If a proxy that supports ranges receives a Range request, forwards
 the request to an inbound server, and receives an entire entity in
 reply, it SHOULD only return the requested range to its client. It
 SHOULD store the entire received response in its cache, if that is
 consistent with its cache allocation policies.

Fielding, et. al. Standards Track [Page 130]

C
om

pendium
 2 page 373

RFC 2068 HTTP/1.1 January 1997

14.37 Referer

 The Referer[sic] request-header field allows the client to specify,
 for the server's benefit, the address (URI) of the resource from
 which the Request-URI was obtained (the "referrer", although the
 header field is misspelled.) The Referer request-header allows a
 server to generate lists of back-links to resources for interest,
 logging, optimized caching, etc. It also allows obsolete or mistyped
 links to be traced for maintenance. The Referer field MUST NOT be
 sent if the Request-URI was obtained from a source that does not have
 its own URI, such as input from the user keyboard.

 Referer = "Referer" ":" (absoluteURI | relativeURI)

 Example:

 Referer: http://www.w3.org/hypertext/DataSources/Overview.html

 If the field value is a partial URI, it SHOULD be interpreted
 relative to the Request-URI. The URI MUST NOT include a fragment.

 Note: Because the source of a link may be private information or
 may reveal an otherwise private information source, it is strongly
 recommended that the user be able to select whether or not the
 Referer field is sent. For example, a browser client could have a
 toggle switch for browsing openly/anonymously, which would
 respectively enable/disable the sending of Referer and From
 information.

14.38 Retry-After

 The Retry-After response-header field can be used with a 503 (Service
 Unavailable) response to indicate how long the service is expected to
 be unavailable to the requesting client. The value of this field can
 be either an HTTP-date or an integer number of seconds (in decimal)
 after the time of the response.

 Retry-After = "Retry-After" ":" (HTTP-date | delta-seconds)

 Two examples of its use are

 Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
 Retry-After: 120

 In the latter example, the delay is 2 minutes.

Fielding, et. al. Standards Track [Page 131]

RFC 2068 HTTP/1.1 January 1997

14.39 Server

 The Server response-header field contains information about the
 software used by the origin server to handle the request. The field
 can contain multiple product tokens (section 3.8) and comments
 identifying the server and any significant subproducts. The product
 tokens are listed in order of their significance for identifying the
 application.

 Server = "Server" ":" 1*(product | comment)

 Example:

 Server: CERN/3.0 libwww/2.17

 If the response is being forwarded through a proxy, the proxy
 application MUST NOT modify the Server response-header. Instead, it
 SHOULD include a Via field (as described in section 14.44).

 Note: Revealing the specific software version of the server may
 allow the server machine to become more vulnerable to attacks
 against software that is known to contain security holes. Server
 implementers are encouraged to make this field a configurable
 option.

14.40 Transfer-Encoding

 The Transfer-Encoding general-header field indicates what (if any)
 type of transformation has been applied to the message body in order
 to safely transfer it between the sender and the recipient. This
 differs from the Content-Encoding in that the transfer coding is a
 property of the message, not of the entity.

 Transfer-Encoding = "Transfer-Encoding" ":" 1#transfer-
 coding

 Transfer codings are defined in section 3.6. An example is:

 Transfer-Encoding: chunked

 Many older HTTP/1.0 applications do not understand the Transfer-
 Encoding header.

14.41 Upgrade

 The Upgrade general-header allows the client to specify what
 additional communication protocols it supports and would like to use
 if the server finds it appropriate to switch protocols. The server

Fielding, et. al. Standards Track [Page 132]

C
om

pendium
 2 page 374

RFC 2068 HTTP/1.1 January 1997

 MUST use the Upgrade header field within a 101 (Switching Protocols)
 response to indicate which protocol(s) are being switched.

 Upgrade = "Upgrade" ":" 1#product

 For example,

 Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

 The Upgrade header field is intended to provide a simple mechanism
 for transition from HTTP/1.1 to some other, incompatible protocol. It
 does so by allowing the client to advertise its desire to use another
 protocol, such as a later version of HTTP with a higher major version
 number, even though the current request has been made using HTTP/1.1.
 This eases the difficult transition between incompatible protocols by
 allowing the client to initiate a request in the more commonly
 supported protocol while indicating to the server that it would like
 to use a "better" protocol if available (where "better" is determined
 by the server, possibly according to the nature of the method and/or
 resource being requested).

 The Upgrade header field only applies to switching application-layer
 protocols upon the existing transport-layer connection. Upgrade
 cannot be used to insist on a protocol change; its acceptance and use
 by the server is optional. The capabilities and nature of the
 application-layer communication after the protocol change is entirely
 dependent upon the new protocol chosen, although the first action
 after changing the protocol MUST be a response to the initial HTTP
 request containing the Upgrade header field.

 The Upgrade header field only applies to the immediate connection.
 Therefore, the upgrade keyword MUST be supplied within a Connection
 header field (section 14.10) whenever Upgrade is present in an
 HTTP/1.1 message.

 The Upgrade header field cannot be used to indicate a switch to a
 protocol on a different connection. For that purpose, it is more
 appropriate to use a 301, 302, 303, or 305 redirection response.

 This specification only defines the protocol name "HTTP" for use by
 the family of Hypertext Transfer Protocols, as defined by the HTTP
 version rules of section 3.1 and future updates to this
 specification. Any token can be used as a protocol name; however, it
 will only be useful if both the client and server associate the name
 with the same protocol.

Fielding, et. al. Standards Track [Page 133]

RFC 2068 HTTP/1.1 January 1997

14.42 User-Agent

 The User-Agent request-header field contains information about the
 user agent originating the request. This is for statistical purposes,
 the tracing of protocol violations, and automated recognition of user
 agents for the sake of tailoring responses to avoid particular user
 agent limitations. User agents SHOULD include this field with
 requests. The field can contain multiple product tokens (section 3.8)
 and comments identifying the agent and any subproducts which form a
 significant part of the user agent. By convention, the product tokens
 are listed in order of their significance for identifying the
 application.

 User-Agent = "User-Agent" ":" 1*(product | comment)

 Example:

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3

14.43 Vary

 The Vary response-header field is used by a server to signal that the
 response entity was selected from the available representations of
 the response using server-driven negotiation (section 12). Field-
 names listed in Vary headers are those of request-headers. The Vary
 field value indicates either that the given set of header fields
 encompass the dimensions over which the representation might vary, or
 that the dimensions of variance are unspecified ("*") and thus may
 vary over any aspect of future requests.

 Vary = "Vary" ":" ("*" | 1#field-name)

 An HTTP/1.1 server MUST include an appropriate Vary header field with
 any cachable response that is subject to server-driven negotiation.
 Doing so allows a cache to properly interpret future requests on that
 resource and informs the user agent about the presence of negotiation
 on that resource. A server SHOULD include an appropriate Vary header
 field with a non-cachable response that is subject to server-driven
 negotiation, since this might provide the user agent with useful
 information about the dimensions over which the response might vary.

 The set of header fields named by the Vary field value is known as
 the "selecting" request-headers.

 When the cache receives a subsequent request whose Request-URI
 specifies one or more cache entries including a Vary header, the
 cache MUST NOT use such a cache entry to construct a response to the
 new request unless all of the headers named in the cached Vary header

Fielding, et. al. Standards Track [Page 134]

C
om

pendium
 2 page 375

RFC 2068 HTTP/1.1 January 1997

 are present in the new request, and all of the stored selecting
 request-headers from the previous request match the corresponding
 headers in the new request.

 The selecting request-headers from two requests are defined to match
 if and only if the selecting request-headers in the first request can
 be transformed to the selecting request-headers in the second request
 by adding or removing linear whitespace (LWS) at places where this is
 allowed by the corresponding BNF, and/or combining multiple message-
 header fields with the same field name following the rules about
 message headers in section 4.2.

 A Vary field value of "*" signals that unspecified parameters,
 possibly other than the contents of request-header fields (e.g., the
 network address of the client), play a role in the selection of the
 response representation. Subsequent requests on that resource can
 only be properly interpreted by the origin server, and thus a cache
 MUST forward a (possibly conditional) request even when it has a
 fresh response cached for the resource. See section 13.6 for use of
 the Vary header by caches.

 A Vary field value consisting of a list of field-names signals that
 the representation selected for the response is based on a selection
 algorithm which considers ONLY the listed request-header field values
 in selecting the most appropriate representation. A cache MAY assume
 that the same selection will be made for future requests with the
 same values for the listed field names, for the duration of time in
 which the response is fresh.

 The field-names given are not limited to the set of standard
 request-header fields defined by this specification. Field names are
 case-insensitive.

14.44 Via

 The Via general-header field MUST be used by gateways and proxies to
 indicate the intermediate protocols and recipients between the user
 agent and the server on requests, and between the origin server and
 the client on responses. It is analogous to the "Received" field of
 RFC 822 and is intended to be used for tracking message forwards,
 avoiding request loops, and identifying the protocol capabilities of
 all senders along the request/response chain.

Fielding, et. al. Standards Track [Page 135]

RFC 2068 HTTP/1.1 January 1997

 Via = "Via" ":" 1#(received-protocol received-by [comment])

 received-protocol = [protocol-name "/"] protocol-version
 protocol-name = token
 protocol-version = token
 received-by = (host [":" port]) | pseudonym
 pseudonym = token

 The received-protocol indicates the protocol version of the message
 received by the server or client along each segment of the
 request/response chain. The received-protocol version is appended to
 the Via field value when the message is forwarded so that information
 about the protocol capabilities of upstream applications remains
 visible to all recipients.

 The protocol-name is optional if and only if it would be "HTTP". The
 received-by field is normally the host and optional port number of a
 recipient server or client that subsequently forwarded the message.
 However, if the real host is considered to be sensitive information,
 it MAY be replaced by a pseudonym. If the port is not given, it MAY
 be assumed to be the default port of the received-protocol.

 Multiple Via field values represent each proxy or gateway that has
 forwarded the message. Each recipient MUST append its information
 such that the end result is ordered according to the sequence of
 forwarding applications.

 Comments MAY be used in the Via header field to identify the software
 of the recipient proxy or gateway, analogous to the User-Agent and
 Server header fields. However, all comments in the Via field are
 optional and MAY be removed by any recipient prior to forwarding the
 message.

 For example, a request message could be sent from an HTTP/1.0 user
 agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
 forward the request to a public proxy at nowhere.com, which completes
 the request by forwarding it to the origin server at www.ics.uci.edu.
 The request received by www.ics.uci.edu would then have the following
 Via header field:

 Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

 Proxies and gateways used as a portal through a network firewall
 SHOULD NOT, by default, forward the names and ports of hosts within
 the firewall region. This information SHOULD only be propagated if
 explicitly enabled. If not enabled, the received-by host of any host
 behind the firewall SHOULD be replaced by an appropriate pseudonym
 for that host.

Fielding, et. al. Standards Track [Page 136]

C
om

pendium
 2 page 376

RFC 2068 HTTP/1.1 January 1997

 For organizations that have strong privacy requirements for hiding
 internal structures, a proxy MAY combine an ordered subsequence of
 Via header field entries with identical received-protocol values into
 a single such entry. For example,

 Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

 could be collapsed to

 Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

 Applications SHOULD NOT combine multiple entries unless they are all
 under the same organizational control and the hosts have already been
 replaced by pseudonyms. Applications MUST NOT combine entries which
 have different received-protocol values.

14.45 Warning

 The Warning response-header field is used to carry additional
 information about the status of a response which may not be reflected
 by the response status code. This information is typically, though
 not exclusively, used to warn about a possible lack of semantic
 transparency from caching operations.

 Warning headers are sent with responses using:

 Warning = "Warning" ":" 1#warning-value

 warning-value = warn-code SP warn-agent SP warn-text
 warn-code = 2DIGIT
 warn-agent = (host [":" port]) | pseudonym
 ; the name or pseudonym of the server adding
 ; the Warning header, for use in debugging
 warn-text = quoted-string

 A response may carry more than one Warning header.

 The warn-text should be in a natural language and character set that
 is most likely to be intelligible to the human user receiving the
 response. This decision may be based on any available knowledge,
 such as the location of the cache or user, the Accept-Language field
 in a request, the Content-Language field in a response, etc. The
 default language is English and the default character set is ISO-
 8859-1.

 If a character set other than ISO-8859-1 is used, it MUST be encoded
 in the warn-text using the method described in RFC 1522 [14].

Fielding, et. al. Standards Track [Page 137]

RFC 2068 HTTP/1.1 January 1997

 Any server or cache may add Warning headers to a response. New
 Warning headers should be added after any existing Warning headers. A
 cache MUST NOT delete any Warning header that it received with a
 response. However, if a cache successfully validates a cache entry,
 it SHOULD remove any Warning headers previously attached to that
 entry except as specified for specific Warning codes. It MUST then
 add any Warning headers received in the validating response. In other
 words, Warning headers are those that would be attached to the most
 recent relevant response.

 When multiple Warning headers are attached to a response, the user
 agent SHOULD display as many of them as possible, in the order that
 they appear in the response. If it is not possible to display all of
 the warnings, the user agent should follow these heuristics:

 o Warnings that appear early in the response take priority over those
 appearing later in the response.
 o Warnings in the user's preferred character set take priority over
 warnings in other character sets but with identical warn-codes and
 warn-agents.

 Systems that generate multiple Warning headers should order them with
 this user agent behavior in mind.

 This is a list of the currently-defined warn-codes, each with a
 recommended warn-text in English, and a description of its meaning.

10 Response is stale
 MUST be included whenever the returned response is stale. A cache may
 add this warning to any response, but may never remove it until the
 response is known to be fresh.

11 Revalidation failed
 MUST be included if a cache returns a stale response because an
 attempt to revalidate the response failed, due to an inability to
 reach the server. A cache may add this warning to any response, but
 may never remove it until the response is successfully revalidated.

12 Disconnected operation
 SHOULD be included if the cache is intentionally disconnected from
 the rest of the network for a period of time.

13 Heuristic expiration
 MUST be included if the cache heuristically chose a freshness
 lifetime greater than 24 hours and the response's age is greater than
 24 hours.

Fielding, et. al. Standards Track [Page 138]

C
om

pendium
 2 page 377

RFC 2068 HTTP/1.1 January 1997

14 Transformation applied
 MUST be added by an intermediate cache or proxy if it applies any
 transformation changing the content-coding (as specified in the
 Content-Encoding header) or media-type (as specified in the
 Content-Type header) of the response, unless this Warning code
 already appears in the response. MUST NOT be deleted from a response
 even after revalidation.

99 Miscellaneous warning
 The warning text may include arbitrary information to be presented to
 a human user, or logged. A system receiving this warning MUST NOT
 take any automated action.

14.46 WWW-Authenticate

 The WWW-Authenticate response-header field MUST be included in 401
 (Unauthorized) response messages. The field value consists of at
 least one challenge that indicates the authentication scheme(s) and
 parameters applicable to the Request-URI.

 WWW-Authenticate = "WWW-Authenticate" ":" 1#challenge

 The HTTP access authentication process is described in section 11.
 User agents MUST take special care in parsing the WWW-Authenticate
 field value if it contains more than one challenge, or if more than
 one WWW-Authenticate header field is provided, since the contents of
 a challenge may itself contain a comma-separated list of
 authentication parameters.

15 Security Considerations

 This section is meant to inform application developers, information
 providers, and users of the security limitations in HTTP/1.1 as
 described by this document. The discussion does not include
 definitive solutions to the problems revealed, though it does make
 some suggestions for reducing security risks.

15.1 Authentication of Clients

 The Basic authentication scheme is not a secure method of user
 authentication, nor does it in any way protect the entity, which is
 transmitted in clear text across the physical network used as the
 carrier. HTTP does not prevent additional authentication schemes and
 encryption mechanisms from being employed to increase security or the
 addition of enhancements (such as schemes to use one-time passwords)
 to Basic authentication.

Fielding, et. al. Standards Track [Page 139]

RFC 2068 HTTP/1.1 January 1997

 The most serious flaw in Basic authentication is that it results in
 the essentially clear text transmission of the user's password over
 the physical network. It is this problem which Digest Authentication
 attempts to address.

 Because Basic authentication involves the clear text transmission of
 passwords it SHOULD never be used (without enhancements) to protect
 sensitive or valuable information.

 A common use of Basic authentication is for identification purposes
 -- requiring the user to provide a user name and password as a means
 of identification, for example, for purposes of gathering accurate
 usage statistics on a server. When used in this way it is tempting to
 think that there is no danger in its use if illicit access to the
 protected documents is not a major concern. This is only correct if
 the server issues both user name and password to the users and in
 particular does not allow the user to choose his or her own password.
 The danger arises because naive users frequently reuse a single
 password to avoid the task of maintaining multiple passwords.

 If a server permits users to select their own passwords, then the
 threat is not only illicit access to documents on the server but also
 illicit access to the accounts of all users who have chosen to use
 their account password. If users are allowed to choose their own
 password that also means the server must maintain files containing
 the (presumably encrypted) passwords. Many of these may be the
 account passwords of users perhaps at distant sites. The owner or
 administrator of such a system could conceivably incur liability if
 this information is not maintained in a secure fashion.

 Basic Authentication is also vulnerable to spoofing by counterfeit
 servers. If a user can be led to believe that he is connecting to a
 host containing information protected by basic authentication when in
 fact he is connecting to a hostile server or gateway then the
 attacker can request a password, store it for later use, and feign an
 error. This type of attack is not possible with Digest Authentication
 [32]. Server implementers SHOULD guard against the possibility of
 this sort of counterfeiting by gateways or CGI scripts. In particular
 it is very dangerous for a server to simply turn over a connection to
 a gateway since that gateway can then use the persistent connection
 mechanism to engage in multiple transactions with the client while
 impersonating the original server in a way that is not detectable by
 the client.

15.2 Offering a Choice of Authentication Schemes

 An HTTP/1.1 server may return multiple challenges with a 401
 (Authenticate) response, and each challenge may use a different

Fielding, et. al. Standards Track [Page 140]

C
om

pendium
 2 page 378

RFC 2068 HTTP/1.1 January 1997

 scheme. The order of the challenges returned to the user agent is in
 the order that the server would prefer they be chosen. The server
 should order its challenges with the "most secure" authentication
 scheme first. A user agent should choose as the challenge to be made
 to the user the first one that the user agent understands.

 When the server offers choices of authentication schemes using the
 WWW-Authenticate header, the "security" of the authentication is only
 as malicious user could capture the set of challenges and try to
 authenticate him/herself using the weakest of the authentication
 schemes. Thus, the ordering serves more to protect the user's
 credentials than the server's information.

 A possible man-in-the-middle (MITM) attack would be to add a weak
 authentication scheme to the set of choices, hoping that the client
 will use one that exposes the user's credentials (e.g. password). For
 this reason, the client should always use the strongest scheme that
 it understands from the choices accepted.

 An even better MITM attack would be to remove all offered choices,
 and to insert a challenge that requests Basic authentication. For
 this reason, user agents that are concerned about this kind of attack
 could remember the strongest authentication scheme ever requested by
 a server and produce a warning message that requires user
 confirmation before using a weaker one. A particularly insidious way
 to mount such a MITM attack would be to offer a "free" proxy caching
 service to gullible users.

15.3 Abuse of Server Log Information

 A server is in the position to save personal data about a user's
 requests which may identify their reading patterns or subjects of
 interest. This information is clearly confidential in nature and its
 handling may be constrained by law in certain countries. People using
 the HTTP protocol to provide data are responsible for ensuring that
 such material is not distributed without the permission of any
 individuals that are identifiable by the published results.

15.4 Transfer of Sensitive Information

 Like any generic data transfer protocol, HTTP cannot regulate the
 content of the data that is transferred, nor is there any a priori
 method of determining the sensitivity of any particular piece of
 information within the context of any given request. Therefore,
 applications SHOULD supply as much control over this information as
 possible to the provider of that information. Four header fields are
 worth special mention in this context: Server, Via, Referer and From.

Fielding, et. al. Standards Track [Page 141]

RFC 2068 HTTP/1.1 January 1997

 Revealing the specific software version of the server may allow the
 server machine to become more vulnerable to attacks against software
 that is known to contain security holes. Implementers SHOULD make the
 Server header field a configurable option.

 Proxies which serve as a portal through a network firewall SHOULD
 take special precautions regarding the transfer of header information
 that identifies the hosts behind the firewall. In particular, they
 SHOULD remove, or replace with sanitized versions, any Via fields
 generated behind the firewall.

 The Referer field allows reading patterns to be studied and reverse
 links drawn. Although it can be very useful, its power can be abused
 if user details are not separated from the information contained in
 the Referer. Even when the personal information has been removed, the
 Referer field may indicate a private document's URI whose publication
 would be inappropriate.

 The information sent in the From field might conflict with the user's
 privacy interests or their site's security policy, and hence it
 SHOULD NOT be transmitted without the user being able to disable,
 enable, and modify the contents of the field. The user MUST be able
 to set the contents of this field within a user preference or
 application defaults configuration.

 We suggest, though do not require, that a convenient toggle interface
 be provided for the user to enable or disable the sending of From and
 Referer information.

15.5 Attacks Based On File and Path Names

 Implementations of HTTP origin servers SHOULD be careful to restrict
 the documents returned by HTTP requests to be only those that were
 intended by the server administrators. If an HTTP server translates
 HTTP URIs directly into file system calls, the server MUST take
 special care not to serve files that were not intended to be
 delivered to HTTP clients. For example, UNIX, Microsoft Windows, and
 other operating systems use ".." as a path component to indicate a
 directory level above the current one. On such a system, an HTTP
 server MUST disallow any such construct in the Request-URI if it
 would otherwise allow access to a resource outside those intended to
 be accessible via the HTTP server. Similarly, files intended for
 reference only internally to the server (such as access control
 files, configuration files, and script code) MUST be protected from
 inappropriate retrieval, since they might contain sensitive
 information. Experience has shown that minor bugs in such HTTP server
 implementations have turned into security risks.

Fielding, et. al. Standards Track [Page 142]

C
om

pendium
 2 page 379

RFC 2068 HTTP/1.1 January 1997

15.6 Personal Information

 HTTP clients are often privy to large amounts of personal information
 (e.g. the user's name, location, mail address, passwords, encryption
 keys, etc.), and SHOULD be very careful to prevent unintentional
 leakage of this information via the HTTP protocol to other sources.
 We very strongly recommend that a convenient interface be provided
 for the user to control dissemination of such information, and that
 designers and implementers be particularly careful in this area.
 History shows that errors in this area are often both serious
 security and/or privacy problems, and often generate highly adverse
 publicity for the implementer's company.

15.7 Privacy Issues Connected to Accept Headers

 Accept request-headers can reveal information about the user to all
 servers which are accessed. The Accept-Language header in particular
 can reveal information the user would consider to be of a private
 nature, because the understanding of particular languages is often
 strongly correlated to the membership of a particular ethnic group.
 User agents which offer the option to configure the contents of an
 Accept-Language header to be sent in every request are strongly
 encouraged to let the configuration process include a message which
 makes the user aware of the loss of privacy involved.

 An approach that limits the loss of privacy would be for a user agent
 to omit the sending of Accept-Language headers by default, and to ask
 the user whether it should start sending Accept-Language headers to a
 server if it detects, by looking for any Vary response-header fields
 generated by the server, that such sending could improve the quality
 of service.

 Elaborate user-customized accept header fields sent in every request,
 in particular if these include quality values, can be used by servers
 as relatively reliable and long-lived user identifiers. Such user
 identifiers would allow content providers to do click-trail tracking,
 and would allow collaborating content providers to match cross-server
 click-trails or form submissions of individual users. Note that for
 many users not behind a proxy, the network address of the host
 running the user agent will also serve as a long-lived user
 identifier. In environments where proxies are used to enhance
 privacy, user agents should be conservative in offering accept header
 configuration options to end users. As an extreme privacy measure,
 proxies could filter the accept headers in relayed requests. General
 purpose user agents which provide a high degree of header
 configurability should warn users about the loss of privacy which can
 be involved.

Fielding, et. al. Standards Track [Page 143]

RFC 2068 HTTP/1.1 January 1997

15.8 DNS Spoofing

 Clients using HTTP rely heavily on the Domain Name Service, and are
 thus generally prone to security attacks based on the deliberate
 mis-association of IP addresses and DNS names. Clients need to be
 cautious in assuming the continuing validity of an IP number/DNS name
 association.

 In particular, HTTP clients SHOULD rely on their name resolver for
 confirmation of an IP number/DNS name association, rather than
 caching the result of previous host name lookups. Many platforms
 already can cache host name lookups locally when appropriate, and
 they SHOULD be configured to do so. These lookups should be cached,
 however, only when the TTL (Time To Live) information reported by the
 name server makes it likely that the cached information will remain
 useful.

 If HTTP clients cache the results of host name lookups in order to
 achieve a performance improvement, they MUST observe the TTL
 information reported by DNS.

 If HTTP clients do not observe this rule, they could be spoofed when
 a previously-accessed server's IP address changes. As network
 renumbering is expected to become increasingly common, the
 possibility of this form of attack will grow. Observing this
 requirement thus reduces this potential security vulnerability.

 This requirement also improves the load-balancing behavior of clients
 for replicated servers using the same DNS name and reduces the
 likelihood of a user's experiencing failure in accessing sites which
 use that strategy.

15.9 Location Headers and Spoofing

 If a single server supports multiple organizations that do not trust
 one another, then it must check the values of Location and Content-
 Location headers in responses that are generated under control of
 said organizations to make sure that they do not attempt to
 invalidate resources over which they have no authority.

16 Acknowledgments

 This specification makes heavy use of the augmented BNF and generic
 constructs defined by David H. Crocker for RFC 822. Similarly, it
 reuses many of the definitions provided by Nathaniel Borenstein and
 Ned Freed for MIME. We hope that their inclusion in this
 specification will help reduce past confusion over the relationship
 between HTTP and Internet mail message formats.

Fielding, et. al. Standards Track [Page 144]

C
om

pendium
 2 page 380

RFC 2068 HTTP/1.1 January 1997

 The HTTP protocol has evolved considerably over the past four years.
 It has benefited from a large and active developer community--the
 many people who have participated on the www-talk mailing list--and
 it is that community which has been most responsible for the success
 of HTTP and of the World-Wide Web in general. Marc Andreessen, Robert
 Cailliau, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois
 Groff, Phillip M. Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob
 McCool, Lou Montulli, Dave Raggett, Tony Sanders, and Marc
 VanHeyningen deserve special recognition for their efforts in
 defining early aspects of the protocol.

 This document has benefited greatly from the comments of all those
 participating in the HTTP-WG. In addition to those already mentioned,
 the following individuals have contributed to this specification:

 Gary Adams Albert Lunde
 Harald Tveit Alvestrand John C. Mallery
 Keith Ball Jean-Philippe Martin-Flatin
 Brian Behlendorf Larry Masinter
 Paul Burchard Mitra
 Maurizio Codogno David Morris
 Mike Cowlishaw Gavin Nicol
 Roman Czyborra Bill Perry
 Michael A. Dolan Jeffrey Perry
 David J. Fiander Scott Powers
 Alan Freier Owen Rees
 Marc Hedlund Luigi Rizzo
 Greg Herlihy David Robinson
 Koen Holtman Marc Salomon
 Alex Hopmann Rich Salz
 Bob Jernigan Allan M. Schiffman
 Shel Kaphan Jim Seidman
 Rohit Khare Chuck Shotton
 John Klensin Eric W. Sink
 Martijn Koster Simon E. Spero
 Alexei Kosut Richard N. Taylor
 David M. Kristol Robert S. Thau
 Daniel LaLiberte Bill (BearHeart) Weinman
 Ben Laurie Francois Yergeau
 Paul J. Leach Mary Ellen Zurko
 Daniel DuBois

 Much of the content and presentation of the caching design is due to
 suggestions and comments from individuals including: Shel Kaphan,
 Paul Leach, Koen Holtman, David Morris, and Larry Masinter.

Fielding, et. al. Standards Track [Page 145]

RFC 2068 HTTP/1.1 January 1997

 Most of the specification of ranges is based on work originally done
 by Ari Luotonen and John Franks, with additional input from Steve
 Zilles.

 Thanks to the "cave men" of Palo Alto. You know who you are.

 Jim Gettys (the current editor of this document) wishes particularly
 to thank Roy Fielding, the previous editor of this document, along
 with John Klensin, Jeff Mogul, Paul Leach, Dave Kristol, Koen
 Holtman, John Franks, Alex Hopmann, and Larry Masinter for their
 help.

17 References

 [1] Alvestrand, H., "Tags for the identification of languages", RFC
 1766, UNINETT, March 1995.

 [2] Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey,
 D., and B. Alberti. "The Internet Gopher Protocol: (a distributed
 document search and retrieval protocol)", RFC 1436, University of
 Minnesota, March 1993.

 [3] Berners-Lee, T., "Universal Resource Identifiers in WWW", A
 Unifying Syntax for the Expression of Names and Addresses of Objects
 on the Network as used in the World-Wide Web", RFC 1630, CERN, June
 1994.

 [4] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform Resource
 Locators (URL)", RFC 1738, CERN, Xerox PARC, University of Minnesota,
 December 1994.

 [5] Berners-Lee, T., and D. Connolly, "HyperText Markup Language
 Specification - 2.0", RFC 1866, MIT/LCS, November 1995.

 [6] Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0.", RFC 1945 MIT/LCS, UC Irvine, May
 1996.

 [7] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies", RFC
 2045, Innosoft, First Virtual, November 1996.

 [8] Braden, R., "Requirements for Internet hosts - application and
 support", STD 3, RFC 1123, IETF, October 1989.

 [9] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982.

Fielding, et. al. Standards Track [Page 146]

C
om

pendium
 2 page 381

RFC 2068 HTTP/1.1 January 1997

 [10] Davis, F., Kahle, B., Morris, H., Salem, J., Shen, T., Wang, R.,
 Sui, J., and M. Grinbaum. "WAIS Interface Protocol Prototype
 Functional Specification", (v1.5), Thinking Machines Corporation,
 April 1990.

 [11] Fielding, R., "Relative Uniform Resource Locators", RFC 1808, UC
 Irvine, June 1995.

 [12] Horton, M., and R. Adams. "Standard for interchange of USENET
 messages", RFC 1036, AT&T Bell Laboratories, Center for Seismic
 Studies, December 1987.

 [13] Kantor, B., and P. Lapsley. "Network News Transfer Protocol." A
 Proposed Standard for the Stream-Based Transmission of News", RFC
 977, UC San Diego, UC Berkeley, February 1986.

 [14] Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part
 Three: Message Header Extensions for Non-ASCII Text", RFC 2047,
 University of Tennessee, November 1996.

 [15] Nebel, E., and L. Masinter. "Form-based File Upload in HTML",
 RFC 1867, Xerox Corporation, November 1995.

 [16] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 USC/ISI, August 1982.

 [17] Postel, J., "Media Type Registration Procedure", RFC 2048,
 USC/ISI, November 1996.

 [18] Postel, J., and J. Reynolds, "File Transfer Protocol (FTP)", STD
 9, RFC 959, USC/ISI, October 1985.

 [19] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
 1700, USC/ISI, October 1994.

 [20] Sollins, K., and L. Masinter, "Functional Requirements for
 Uniform Resource Names", RFC 1737, MIT/LCS, Xerox Corporation,
 December 1994.

 [21] US-ASCII. Coded Character Set - 7-Bit American Standard Code for
 Information Interchange. Standard ANSI X3.4-1986, ANSI, 1986.

 [22] ISO-8859. International Standard -- Information Processing --
 8-bit Single-Byte Coded Graphic Character Sets --
 Part 1: Latin alphabet No. 1, ISO 8859-1:1987.
 Part 2: Latin alphabet No. 2, ISO 8859-2, 1987.
 Part 3: Latin alphabet No. 3, ISO 8859-3, 1988.
 Part 4: Latin alphabet No. 4, ISO 8859-4, 1988.

Fielding, et. al. Standards Track [Page 147]

RFC 2068 HTTP/1.1 January 1997

 Part 5: Latin/Cyrillic alphabet, ISO 8859-5, 1988.
 Part 6: Latin/Arabic alphabet, ISO 8859-6, 1987.
 Part 7: Latin/Greek alphabet, ISO 8859-7, 1987.
 Part 8: Latin/Hebrew alphabet, ISO 8859-8, 1988.
 Part 9: Latin alphabet No. 5, ISO 8859-9, 1990.

 [23] Meyers, J., and M. Rose "The Content-MD5 Header Field", RFC
 1864, Carnegie Mellon, Dover Beach Consulting, October, 1995.

 [24] Carpenter, B., and Y. Rekhter, "Renumbering Needs Work", RFC
 1900, IAB, February 1996.

 [25] Deutsch, P., "GZIP file format specification version 4.3." RFC
 1952, Aladdin Enterprises, May 1996.

 [26] Venkata N. Padmanabhan and Jeffrey C. Mogul. Improving HTTP
 Latency. Computer Networks and ISDN Systems, v. 28, pp. 25-35, Dec.
 1995. Slightly revised version of paper in Proc. 2nd International
 WWW Conf. '94: Mosaic and the Web, Oct. 1994, which is available at
 http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/
 HTTPLatency.html.

 [27] Joe Touch, John Heidemann, and Katia Obraczka, "Analysis of HTTP
 Performance", <URL: http://www.isi.edu/lsam/ib/http-perf/>,
 USC/Information Sciences Institute, June 1996

 [28] Mills, D., "Network Time Protocol, Version 3, Specification,
 Implementation and Analysis", RFC 1305, University of Delaware, March
 1992.

 [29] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3." RFC 1951, Aladdin Enterprises, May 1996.

 [30] Spero, S., "Analysis of HTTP Performance Problems"
 <URL:http://sunsite.unc.edu/mdma-release/http-prob.html>.

 [31] Deutsch, P., and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, Aladdin Enterprises, Info-ZIP,
 May 1996.

 [32] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A., Sink, E., and L. Stewart, "An Extension to HTTP :
 Digest Access Authentication", RFC 2069, January 1997.

Fielding, et. al. Standards Track [Page 148]

C
om

pendium
 2 page 382

RFC 2068 HTTP/1.1 January 1997

18 Authors' Addresses

 Roy T. Fielding
 Department of Information and Computer Science
 University of California
 Irvine, CA 92717-3425, USA

 Fax: +1 (714) 824-4056
 EMail: fielding@ics.uci.edu

 Jim Gettys
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139, USA

 Fax: +1 (617) 258 8682
 EMail: jg@w3.org

 Jeffrey C. Mogul
 Western Research Laboratory
 Digital Equipment Corporation
 250 University Avenue
 Palo Alto, California, 94305, USA

 EMail: mogul@wrl.dec.com

 Henrik Frystyk Nielsen
 W3 Consortium
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139, USA

 Fax: +1 (617) 258 8682
 EMail: frystyk@w3.org

 Tim Berners-Lee
 Director, W3 Consortium
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139, USA

 Fax: +1 (617) 258 8682
 EMail: timbl@w3.org

Fielding, et. al. Standards Track [Page 149]

RFC 2068 HTTP/1.1 January 1997

19 Appendices

19.1 Internet Media Type message/http

 In addition to defining the HTTP/1.1 protocol, this document serves
 as the specification for the Internet media type "message/http". The
 following is to be registered with IANA.

 Media Type name: message
 Media subtype name: http
 Required parameters: none
 Optional parameters: version, msgtype

 version: The HTTP-Version number of the enclosed message
 (e.g., "1.1"). If not present, the version can be
 determined from the first line of the body.

 msgtype: The message type -- "request" or "response". If not
 present, the type can be determined from the first
 line of the body.

 Encoding considerations: only "7bit", "8bit", or "binary" are
 permitted

 Security considerations: none

19.2 Internet Media Type multipart/byteranges

 When an HTTP message includes the content of multiple ranges (for
 example, a response to a request for multiple non-overlapping
 ranges), these are transmitted as a multipart MIME message. The
 multipart media type for this purpose is called
 "multipart/byteranges".

 The multipart/byteranges media type includes two or more parts, each
 with its own Content-Type and Content-Range fields. The parts are
 separated using a MIME boundary parameter.

 Media Type name: multipart
 Media subtype name: byteranges
 Required parameters: boundary
 Optional parameters: none

 Encoding considerations: only "7bit", "8bit", or "binary" are
 permitted

 Security considerations: none

Fielding, et. al. Standards Track [Page 150]

C
om

pendium
 2 page 383

RFC 2068 HTTP/1.1 January 1997

For example:

 HTTP/1.1 206 Partial content
 Date: Wed, 15 Nov 1995 06:25:24 GMT
 Last-modified: Wed, 15 Nov 1995 04:58:08 GMT
 Content-type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

 --THIS_STRING_SEPARATES
 Content-type: application/pdf
 Content-range: bytes 500-999/8000

 ...the first range...
 --THIS_STRING_SEPARATES
 Content-type: application/pdf
 Content-range: bytes 7000-7999/8000

 ...the second range
 --THIS_STRING_SEPARATES--

19.3 Tolerant Applications

 Although this document specifies the requirements for the generation
 of HTTP/1.1 messages, not all applications will be correct in their
 implementation. We therefore recommend that operational applications
 be tolerant of deviations whenever those deviations can be
 interpreted unambiguously.

 Clients SHOULD be tolerant in parsing the Status-Line and servers
 tolerant when parsing the Request-Line. In particular, they SHOULD
 accept any amount of SP or HT characters between fields, even though
 only a single SP is required.

 The line terminator for message-header fields is the sequence CRLF.
 However, we recommend that applications, when parsing such headers,
 recognize a single LF as a line terminator and ignore the leading CR.

 The character set of an entity-body should be labeled as the lowest
 common denominator of the character codes used within that body, with
 the exception that no label is preferred over the labels US-ASCII or
 ISO-8859-1.

 Additional rules for requirements on parsing and encoding of dates
 and other potential problems with date encodings include:

 o HTTP/1.1 clients and caches should assume that an RFC-850 date
 which appears to be more than 50 years in the future is in fact
 in the past (this helps solve the "year 2000" problem).

Fielding, et. al. Standards Track [Page 151]

RFC 2068 HTTP/1.1 January 1997

 o An HTTP/1.1 implementation may internally represent a parsed
 Expires date as earlier than the proper value, but MUST NOT
 internally represent a parsed Expires date as later than the
 proper value.

 o All expiration-related calculations must be done in GMT. The
 local time zone MUST NOT influence the calculation or comparison
 of an age or expiration time.

 o If an HTTP header incorrectly carries a date value with a time
 zone other than GMT, it must be converted into GMT using the most
 conservative possible conversion.

19.4 Differences Between HTTP Entities and MIME Entities

 HTTP/1.1 uses many of the constructs defined for Internet Mail (RFC
 822) and the Multipurpose Internet Mail Extensions (MIME) to allow
 entities to be transmitted in an open variety of representations and
 with extensible mechanisms. However, MIME [7] discusses mail, and
 HTTP has a few features that are different from those described in
 MIME. These differences were carefully chosen to optimize
 performance over binary connections, to allow greater freedom in the
 use of new media types, to make date comparisons easier, and to
 acknowledge the practice of some early HTTP servers and clients.

 This appendix describes specific areas where HTTP differs from MIME.
 Proxies and gateways to strict MIME environments SHOULD be aware of
 these differences and provide the appropriate conversions where
 necessary. Proxies and gateways from MIME environments to HTTP also
 need to be aware of the differences because some conversions may be
 required.

19.4.1 Conversion to Canonical Form

 MIME requires that an Internet mail entity be converted to canonical
 form prior to being transferred. Section 3.7.1 of this document
 describes the forms allowed for subtypes of the "text" media type
 when transmitted over HTTP. MIME requires that content with a type of
 "text" represent line breaks as CRLF and forbids the use of CR or LF
 outside of line break sequences. HTTP allows CRLF, bare CR, and bare
 LF to indicate a line break within text content when a message is
 transmitted over HTTP.

 Where it is possible, a proxy or gateway from HTTP to a strict MIME
 environment SHOULD translate all line breaks within the text media
 types described in section 3.7.1 of this document to the MIME
 canonical form of CRLF. Note, however, that this may be complicated
 by the presence of a Content-Encoding and by the fact that HTTP

Fielding, et. al. Standards Track [Page 152]

C
om

pendium
 2 page 384

RFC 2068 HTTP/1.1 January 1997

 allows the use of some character sets which do not use octets 13 and
 10 to represent CR and LF, as is the case for some multi-byte
 character sets.

19.4.2 Conversion of Date Formats

 HTTP/1.1 uses a restricted set of date formats (section 3.3.1) to
 simplify the process of date comparison. Proxies and gateways from
 other protocols SHOULD ensure that any Date header field present in a
 message conforms to one of the HTTP/1.1 formats and rewrite the date
 if necessary.

19.4.3 Introduction of Content-Encoding

 MIME does not include any concept equivalent to HTTP/1.1's Content-
 Encoding header field. Since this acts as a modifier on the media
 type, proxies and gateways from HTTP to MIME-compliant protocols MUST
 either change the value of the Content-Type header field or decode
 the entity-body before forwarding the message. (Some experimental
 applications of Content-Type for Internet mail have used a media-type
 parameter of ";conversions=<content-coding>" to perform an equivalent
 function as Content-Encoding. However, this parameter is not part of
 MIME.)

19.4.4 No Content-Transfer-Encoding

 HTTP does not use the Content-Transfer-Encoding (CTE) field of MIME.
 Proxies and gateways from MIME-compliant protocols to HTTP MUST
 remove any non-identity CTE ("quoted-printable" or "base64") encoding
 prior to delivering the response message to an HTTP client.

 Proxies and gateways from HTTP to MIME-compliant protocols are
 responsible for ensuring that the message is in the correct format
 and encoding for safe transport on that protocol, where "safe
 transport" is defined by the limitations of the protocol being used.
 Such a proxy or gateway SHOULD label the data with an appropriate
 Content-Transfer-Encoding if doing so will improve the likelihood of
 safe transport over the destination protocol.

19.4.5 HTTP Header Fields in Multipart Body-Parts

 In MIME, most header fields in multipart body-parts are generally
 ignored unless the field name begins with "Content-". In HTTP/1.1,
 multipart body-parts may contain any HTTP header fields which are
 significant to the meaning of that part.

Fielding, et. al. Standards Track [Page 153]

RFC 2068 HTTP/1.1 January 1997

19.4.6 Introduction of Transfer-Encoding

 HTTP/1.1 introduces the Transfer-Encoding header field (section
 14.40). Proxies/gateways MUST remove any transfer coding prior to
 forwarding a message via a MIME-compliant protocol.

 A process for decoding the "chunked" transfer coding (section 3.6)
 can be represented in pseudo-code as:

 length := 0
 read chunk-size, chunk-ext (if any) and CRLF
 while (chunk-size > 0) {
 read chunk-data and CRLF
 append chunk-data to entity-body
 length := length + chunk-size
 read chunk-size and CRLF
 }
 read entity-header
 while (entity-header not empty) {
 append entity-header to existing header fields
 read entity-header
 }
 Content-Length := length
 Remove "chunked" from Transfer-Encoding

19.4.7 MIME-Version

 HTTP is not a MIME-compliant protocol (see appendix 19.4). However,
 HTTP/1.1 messages may include a single MIME-Version general-header
 field to indicate what version of the MIME protocol was used to
 construct the message. Use of the MIME-Version header field indicates
 that the message is in full compliance with the MIME protocol.
 Proxies/gateways are responsible for ensuring full compliance (where
 possible) when exporting HTTP messages to strict MIME environments.

 MIME-Version = "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

 MIME version "1.0" is the default for use in HTTP/1.1. However,
 HTTP/1.1 message parsing and semantics are defined by this document
 and not the MIME specification.

19.5 Changes from HTTP/1.0

 This section summarizes major differences between versions HTTP/1.0
 and HTTP/1.1.

Fielding, et. al. Standards Track [Page 154]

C
om

pendium
 2 page 385

RFC 2068 HTTP/1.1 January 1997

19.5.1 Changes to Simplify Multi-homed Web Servers and Conserve IP
 Addresses

 The requirements that clients and servers support the Host request-
 header, report an error if the Host request-header (section 14.23) is
 missing from an HTTP/1.1 request, and accept absolute URIs (section
 5.1.2) are among the most important changes defined by this
 specification.

 Older HTTP/1.0 clients assumed a one-to-one relationship of IP
 addresses and servers; there was no other established mechanism for
 distinguishing the intended server of a request than the IP address
 to which that request was directed. The changes outlined above will
 allow the Internet, once older HTTP clients are no longer common, to
 support multiple Web sites from a single IP address, greatly
 simplifying large operational Web servers, where allocation of many
 IP addresses to a single host has created serious problems. The
 Internet will also be able to recover the IP addresses that have been
 allocated for the sole purpose of allowing special-purpose domain
 names to be used in root-level HTTP URLs. Given the rate of growth of
 the Web, and the number of servers already deployed, it is extremely
 important that all implementations of HTTP (including updates to
 existing HTTP/1.0 applications) correctly implement these
 requirements:

 o Both clients and servers MUST support the Host request-header.

 o Host request-headers are required in HTTP/1.1 requests.

 o Servers MUST report a 400 (Bad Request) error if an HTTP/1.1
 request does not include a Host request-header.

 o Servers MUST accept absolute URIs.

Fielding, et. al. Standards Track [Page 155]

RFC 2068 HTTP/1.1 January 1997

19.6 Additional Features

 This appendix documents protocol elements used by some existing HTTP
 implementations, but not consistently and correctly across most
 HTTP/1.1 applications. Implementers should be aware of these
 features, but cannot rely upon their presence in, or interoperability
 with, other HTTP/1.1 applications. Some of these describe proposed
 experimental features, and some describe features that experimental
 deployment found lacking that are now addressed in the base HTTP/1.1
 specification.

19.6.1 Additional Request Methods

19.6.1.1 PATCH

 The PATCH method is similar to PUT except that the entity contains a
 list of differences between the original version of the resource
 identified by the Request-URI and the desired content of the resource
 after the PATCH action has been applied. The list of differences is
 in a format defined by the media type of the entity (e.g.,
 "application/diff") and MUST include sufficient information to allow
 the server to recreate the changes necessary to convert the original
 version of the resource to the desired version.

 If the request passes through a cache and the Request-URI identifies
 a currently cached entity, that entity MUST be removed from the
 cache. Responses to this method are not cachable.

 The actual method for determining how the patched resource is placed,
 and what happens to its predecessor, is defined entirely by the
 origin server. If the original version of the resource being patched
 included a Content-Version header field, the request entity MUST
 include a Derived-From header field corresponding to the value of the
 original Content-Version header field. Applications are encouraged to
 use these fields for constructing versioning relationships and
 resolving version conflicts.

 PATCH requests must obey the message transmission requirements set
 out in section 8.2.

 Caches that implement PATCH should invalidate cached responses as
 defined in section 13.10 for PUT.

19.6.1.2 LINK

 The LINK method establishes one or more Link relationships between
 the existing resource identified by the Request-URI and other
 existing resources. The difference between LINK and other methods

Fielding, et. al. Standards Track [Page 156]

C
om

pendium
 2 page 386

RFC 2068 HTTP/1.1 January 1997

 allowing links to be established between resources is that the LINK
 method does not allow any message-body to be sent in the request and
 does not directly result in the creation of new resources.

 If the request passes through a cache and the Request-URI identifies
 a currently cached entity, that entity MUST be removed from the
 cache. Responses to this method are not cachable.

 Caches that implement LINK should invalidate cached responses as
 defined in section 13.10 for PUT.

19.6.1.3 UNLINK

 The UNLINK method removes one or more Link relationships from the
 existing resource identified by the Request-URI. These relationships
 may have been established using the LINK method or by any other
 method supporting the Link header. The removal of a link to a
 resource does not imply that the resource ceases to exist or becomes
 inaccessible for future references.

 If the request passes through a cache and the Request-URI identifies
 a currently cached entity, that entity MUST be removed from the
 cache. Responses to this method are not cachable.

 Caches that implement UNLINK should invalidate cached responses as
 defined in section 13.10 for PUT.

19.6.2 Additional Header Field Definitions

19.6.2.1 Alternates

 The Alternates response-header field has been proposed as a means for
 the origin server to inform the client about other available
 representations of the requested resource, along with their
 distinguishing attributes, and thus providing a more reliable means
 for a user agent to perform subsequent selection of another
 representation which better fits the desires of its user (described
 as agent-driven negotiation in section 12).

Fielding, et. al. Standards Track [Page 157]

RFC 2068 HTTP/1.1 January 1997

 The Alternates header field is orthogonal to the Vary header field in
 that both may coexist in a message without affecting the
 interpretation of the response or the available representations. It
 is expected that Alternates will provide a significant improvement
 over the server-driven negotiation provided by the Vary field for
 those resources that vary over common dimensions like type and
 language.

 The Alternates header field will be defined in a future
 specification.

19.6.2.2 Content-Version

 The Content-Version entity-header field defines the version tag
 associated with a rendition of an evolving entity. Together with the
 Derived-From field described in section 19.6.2.3, it allows a group
 of people to work simultaneously on the creation of a work as an
 iterative process. The field should be used to allow evolution of a
 particular work along a single path rather than derived works or
 renditions in different representations.

 Content-Version = "Content-Version" ":" quoted-string

 Examples of the Content-Version field include:

 Content-Version: "2.1.2"
 Content-Version: "Fred 19950116-12:26:48"
 Content-Version: "2.5a4-omega7"

19.6.2.3 Derived-From

 The Derived-From entity-header field can be used to indicate the
 version tag of the resource from which the enclosed entity was
 derived before modifications were made by the sender. This field is
 used to help manage the process of merging successive changes to a
 resource, particularly when such changes are being made in parallel
 and from multiple sources.

 Derived-From = "Derived-From" ":" quoted-string

 An example use of the field is:

 Derived-From: "2.1.1"

 The Derived-From field is required for PUT and PATCH requests if the
 entity being sent was previously retrieved from the same URI and a
 Content-Version header was included with the entity when it was last
 retrieved.

Fielding, et. al. Standards Track [Page 158]

C
om

pendium
 2 page 387

RFC 2068 HTTP/1.1 January 1997

19.6.2.4 Link

 The Link entity-header field provides a means for describing a
 relationship between two resources, generally between the requested
 resource and some other resource. An entity MAY include multiple Link
 values. Links at the metainformation level typically indicate
 relationships like hierarchical structure and navigation paths. The
 Link field is semantically equivalent to the <LINK> element in
 HTML.[5]

 Link = "Link" ":" #("<" URI ">" *(";" link-param)

 link-param = (("rel" "=" relationship)
 | ("rev" "=" relationship)
 | ("title" "=" quoted-string)
 | ("anchor" "=" <"> URI <">)
 | (link-extension))

 link-extension = token ["=" (token | quoted-string)]

 relationship = sgml-name
 | (<"> sgml-name *(SP sgml-name) <">)

 sgml-name = ALPHA *(ALPHA | DIGIT | "." | "-")

 Relationship values are case-insensitive and MAY be extended within
 the constraints of the sgml-name syntax. The title parameter MAY be
 used to label the destination of a link such that it can be used as
 identification within a human-readable menu. The anchor parameter MAY
 be used to indicate a source anchor other than the entire current
 resource, such as a fragment of this resource or a third resource.

 Examples of usage include:

 Link: <http://www.cern.ch/TheBook/chapter2>; rel="Previous"

 Link: <mailto:timbl@w3.org>; rev="Made"; title="Tim Berners-Lee"

 The first example indicates that chapter2 is previous to this
 resource in a logical navigation path. The second indicates that the
 person responsible for making the resource available is identified by
 the given e-mail address.

19.6.2.5 URI

 The URI header field has, in past versions of this specification,
 been used as a combination of the existing Location, Content-
 Location, and Vary header fields as well as the future Alternates

Fielding, et. al. Standards Track [Page 159]

RFC 2068 HTTP/1.1 January 1997

 field (above). Its primary purpose has been to include a list of
 additional URIs for the resource, including names and mirror
 locations. However, it has become clear that the combination of many
 different functions within this single field has been a barrier to
 consistently and correctly implementing any of those functions.
 Furthermore, we believe that the identification of names and mirror
 locations would be better performed via the Link header field. The
 URI header field is therefore deprecated in favor of those other
 fields.

 URI-header = "URI" ":" 1#("<" URI ">")

19.7 Compatibility with Previous Versions

 It is beyond the scope of a protocol specification to mandate
 compliance with previous versions. HTTP/1.1 was deliberately
 designed, however, to make supporting previous versions easy. It is
 worth noting that at the time of composing this specification, we
 would expect commercial HTTP/1.1 servers to:

 o recognize the format of the Request-Line for HTTP/0.9, 1.0, and 1.1
 requests;

 o understand any valid request in the format of HTTP/0.9, 1.0, or
 1.1;

 o respond appropriately with a message in the same major version used
 by the client.

 And we would expect HTTP/1.1 clients to:

 o recognize the format of the Status-Line for HTTP/1.0 and 1.1
 responses;

 o understand any valid response in the format of HTTP/0.9, 1.0, or
 1.1.

 For most implementations of HTTP/1.0, each connection is established
 by the client prior to the request and closed by the server after
 sending the response. A few implementations implement the Keep-Alive
 version of persistent connections described in section 19.7.1.1.

Fielding, et. al. Standards Track [Page 160]

C
om

pendium
 2 page 388

RFC 2068 HTTP/1.1 January 1997

19.7.1 Compatibility with HTTP/1.0 Persistent Connections

 Some clients and servers may wish to be compatible with some previous
 implementations of persistent connections in HTTP/1.0 clients and
 servers. Persistent connections in HTTP/1.0 must be explicitly
 negotiated as they are not the default behavior. HTTP/1.0
 experimental implementations of persistent connections are faulty,
 and the new facilities in HTTP/1.1 are designed to rectify these
 problems. The problem was that some existing 1.0 clients may be
 sending Keep-Alive to a proxy server that doesn't understand
 Connection, which would then erroneously forward it to the next
 inbound server, which would establish the Keep-Alive connection and
 result in a hung HTTP/1.0 proxy waiting for the close on the
 response. The result is that HTTP/1.0 clients must be prevented from
 using Keep-Alive when talking to proxies.

 However, talking to proxies is the most important use of persistent
 connections, so that prohibition is clearly unacceptable. Therefore,
 we need some other mechanism for indicating a persistent connection
 is desired, which is safe to use even when talking to an old proxy
 that ignores Connection. Persistent connections are the default for
 HTTP/1.1 messages; we introduce a new keyword (Connection: close) for
 declaring non-persistence.

 The following describes the original HTTP/1.0 form of persistent
 connections.

 When it connects to an origin server, an HTTP client MAY send the
 Keep-Alive connection-token in addition to the Persist connection-
 token:

 Connection: Keep-Alive

 An HTTP/1.0 server would then respond with the Keep-Alive connection
 token and the client may proceed with an HTTP/1.0 (or Keep-Alive)
 persistent connection.

 An HTTP/1.1 server may also establish persistent connections with
 HTTP/1.0 clients upon receipt of a Keep-Alive connection token.
 However, a persistent connection with an HTTP/1.0 client cannot make
 use of the chunked transfer-coding, and therefore MUST use a
 Content-Length for marking the ending boundary of each message.

 A client MUST NOT send the Keep-Alive connection token to a proxy
 server as HTTP/1.0 proxy servers do not obey the rules of HTTP/1.1
 for parsing the Connection header field.

Fielding, et. al. Standards Track [Page 161]

RFC 2068 HTTP/1.1 January 1997

19.7.1.1 The Keep-Alive Header

 When the Keep-Alive connection-token has been transmitted with a
 request or a response, a Keep-Alive header field MAY also be
 included. The Keep-Alive header field takes the following form:

 Keep-Alive-header = "Keep-Alive" ":" 0# keepalive-param

 keepalive-param = param-name "=" value

 The Keep-Alive header itself is optional, and is used only if a
 parameter is being sent. HTTP/1.1 does not define any parameters.

 If the Keep-Alive header is sent, the corresponding connection token
 MUST be transmitted. The Keep-Alive header MUST be ignored if
 received without the connection token.

Fielding, et. al. Standards Track [Page 162]

C
om

pendium
 2 page 389

Network Working Group Brian Kantor (U.C. San Diego)
Request for Comments: 977 Phil Lapsley (U.C. Berkeley)
 February 1986

 Network News Transfer Protocol

 A Proposed Standard for the Stream-Based
 Transmission of News

Status of This Memo

 NNTP specifies a protocol for the distribution, inquiry, retrieval,
 and posting of news articles using a reliable stream-based
 transmission of news among the ARPA-Internet community. NNTP is
 designed so that news articles are stored in a central database
 allowing a subscriber to select only those items he wishes to read.
 Indexing, cross-referencing, and expiration of aged messages are also
 provided. This RFC suggests a proposed protocol for the ARPA-Internet
 community, and requests discussion and suggestions for improvements.
 Distribution of this memo is unlimited.

1. Introduction

 For many years, the ARPA-Internet community has supported the
 distribution of bulletins, information, and data in a timely fashion
 to thousands of participants. We collectively refer to such items of
 information as "news". Such news provides for the rapid
 dissemination of items of interest such as software bug fixes, new
 product reviews, technical tips, and programming pointers, as well as
 rapid-fire discussions of matters of concern to the working computer
 professional. News is very popular among its readers.

 There are popularly two methods of distributing such news: the
 Internet method of direct mailing, and the USENET news system.

1.1. Internet Mailing Lists

 The Internet community distributes news by the use of mailing lists.
 These are lists of subscriber's mailbox addresses and remailing
 sublists of all intended recipients. These mailing lists operate by
 remailing a copy of the information to be distributed to each
 subscriber on the mailing list. Such remailing is inefficient when a
 mailing list grows beyond a dozen or so people, since sending a
 separate copy to each of the subscribers occupies large quantities of
 network bandwidth, CPU resources, and significant amounts of disk
 storage at the destination host. There is also a significant problem
 in maintenance of the list itself: as subscribers move from one job
 to another; as new subscribers join and old ones leave; and as hosts
 come in and out of service.

Kantor & Lapsley [Page 1]

RFC 977 February 1986
Network News Transfer Protocol

1.2. The USENET News System

 Clearly, a worthwhile reduction of the amount of these resources used
 can be achieved if articles are stored in a central database on the
 receiving host instead of in each subscriber's mailbox. The USENET
 news system provides a method of doing just this. There is a central
 repository of the news articles in one place (customarily a spool
 directory of some sort), and a set of programs that allow a
 subscriber to select those items he wishes to read. Indexing,
 cross-referencing, and expiration of aged messages are also provided.

1.3. Central Storage of News

 For clusters of hosts connected together by fast local area networks
 (such as Ethernet), it makes even more sense to consolidate news
 distribution onto one (or a very few) hosts, and to allow access to
 these news articles using a server and client model. Subscribers may
 then request only the articles they wish to see, without having to
 wastefully duplicate the storage of a copy of each item on each host.

1.4. A Central News Server

 A way to achieve these economies is to have a central computer system
 that can provide news service to the other systems on the local area
 network. Such a server would manage the collection of news articles
 and index files, with each person who desires to read news bulletins
 doing so over the LAN. For a large cluster of computer systems, the
 savings in total disk space is clearly worthwhile. Also, this allows
 workstations with limited disk storage space to participate in the
 news without incoming items consuming oppressive amounts of the
 workstation's disk storage.

 We have heard rumors of somewhat successful attempts to provide
 centralized news service using IBIS and other shared or distributed
 file systems. While it is possible that such a distributed file
 system implementation might work well with a group of similar
 computers running nearly identical operating systems, such a scheme
 is not general enough to offer service to a wide range of client
 systems, especially when many diverse operating systems may be in use
 among a group of clients. There are few (if any) shared or networked
 file systems that can offer the generality of service that stream
 connections using Internet TCP provide, particularly when a wide
 range of host hardware and operating systems are considered.

 NNTP specifies a protocol for the distribution, inquiry, retrieval,
 and posting of news articles using a reliable stream (such as TCP)
 server-client model. NNTP is designed so that news articles need only

Kantor & Lapsley [Page 2]

C
om

pendium
 2 page 390

RFC 977 February 1986
Network News Transfer Protocol

 be stored on one (presumably central) host, and subscribers on other
 hosts attached to the LAN may read news articles using stream
 connections to the news host.

 NNTP is modelled upon the news article specifications in RFC 850,
 which describes the USENET news system. However, NNTP makes few
 demands upon the structure, content, or storage of news articles, and
 thus we believe it easily can be adapted to other non-USENET news
 systems.

 Typically, the NNTP server runs as a background process on one host,
 and would accept connections from other hosts on the LAN. This works
 well when there are a number of small computer systems (such as
 workstations, with only one or at most a few users each), and a large
 central server.

1.5. Intermediate News Servers

 For clusters of machines with many users (as might be the case in a
 university or large industrial environment), an intermediate server
 might be used. This intermediate or "slave" server runs on each
 computer system, and is responsible for mediating news reading
 requests and performing local caching of recently-retrieved news
 articles.

 Typically, a client attempting to obtain news service would first
 attempt to connect to the news service port on the local machine. If
 this attempt were unsuccessful, indicating a failed server, an
 installation might choose to either deny news access, or to permit
 connection to the central "master" news server.

 For workstations or other small systems, direct connection to the
 master server would probably be the normal manner of operation.

 This specification does not cover the operation of slave NNTP
 servers. We merely suggest that slave servers are a logical addition
 to NNTP server usage which would enhance operation on large local
 area networks.

1.6. News Distribution

 NNTP has commands which provide a straightforward method of
 exchanging articles between cooperating hosts. Hosts which are well
 connected on a local area or other fast network and who wish to
 actually obtain copies of news articles for local storage might well
 find NNTP to be a more efficient way to distribute news than more
 traditional transfer methods (such as UUCP).

Kantor & Lapsley [Page 3]

RFC 977 February 1986
Network News Transfer Protocol

 In the traditional method of distributing news articles, news is
 propagated from host to host by flooding - that is, each host will
 send all its new news articles on to each host that it feeds. These
 hosts will then in turn send these new articles on to other hosts
 that they feed. Clearly, sending articles that a host already has
 obtained a copy of from another feed (many hosts that receive news
 are redundantly fed) again is a waste of time and communications
 resources, but for transport mechanisms that are single-transaction
 based rather than interactive (such as UUCP in the UNIX-world <1>),
 distribution time is diminished by sending all articles and having
 the receiving host simply discard the duplicates. This is an
 especially true when communications sessions are limited to once a
 day.

 Using NNTP, hosts exchanging news articles have an interactive
 mechanism for deciding which articles are to be transmitted. A host
 desiring new news, or which has new news to send, will typically
 contact one or more of its neighbors using NNTP. First it will
 inquire if any new news groups have been created on the serving host
 by means of the NEWGROUPS command. If so, and those are appropriate
 or desired (as established by local site-dependent rules), those new
 newsgroups can be created.

 The client host will then inquire as to which new articles have
 arrived in all or some of the newsgroups that it desires to receive,
 using the NEWNEWS command. It will receive a list of new articles
 from the server, and can request transmission of those articles that
 it desires and does not already have.

 Finally, the client can advise the server of those new articles which
 the client has recently received. The server will indicate those
 articles that it has already obtained copies of, and which articles
 should be sent to add to its collection.

 In this manner, only those articles which are not duplicates and
 which are desired are transferred.

Kantor & Lapsley [Page 4]

C
om

pendium
 2 page 391

RFC 977 February 1986
Network News Transfer Protocol

2. The NNTP Specification

2.1. Overview

 The news server specified by this document uses a stream connection
 (such as TCP) and SMTP-like commands and responses. It is designed
 to accept connections from hosts, and to provide a simple interface
 to the news database.

 This server is only an interface between programs and the news
 databases. It does not perform any user interaction or presentation-
 level functions. These "user-friendly" functions are better left to
 the client programs, which have a better understanding of the
 environment in which they are operating.

 When used via Internet TCP, the contact port assigned for this
 service is 119.

2.2. Character Codes

 Commands and replies are composed of characters from the ASCII
 character set. When the transport service provides an 8-bit byte
 (octet) transmission channel, each 7-bit character is transmitted
 right justified in an octet with the high order bit cleared to zero.

2.3. Commands

 Commands consist of a command word, which in some cases may be
 followed by a parameter. Commands with parameters must separate the
 parameters from each other and from the command by one or more space
 or tab characters. Command lines must be complete with all required
 parameters, and may not contain more than one command.

 Commands and command parameters are not case sensitive. That is, a
 command or parameter word may be upper case, lower case, or any
 mixture of upper and lower case.

 Each command line must be terminated by a CR-LF (Carriage Return -
 Line Feed) pair.

 Command lines shall not exceed 512 characters in length, counting all
 characters including spaces, separators, punctuation, and the
 trailing CR-LF (thus there are 510 characters maximum allowed for the
 command and its parameters). There is no provision for continuation
 command lines.

Kantor & Lapsley [Page 5]

RFC 977 February 1986
Network News Transfer Protocol

2.4. Responses

 Responses are of two kinds, textual and status.

2.4.1. Text Responses

 Text is sent only after a numeric status response line has been sent
 that indicates that text will follow. Text is sent as a series of
 successive lines of textual matter, each terminated with CR-LF pair.
 A single line containing only a period (.) is sent to indicate the
 end of the text (i.e., the server will send a CR-LF pair at the end
 of the last line of text, a period, and another CR-LF pair).

 If the text contained a period as the first character of the text
 line in the original, that first period is doubled. Therefore, the
 client must examine the first character of each line received, and
 for those beginning with a period, determine either that this is the
 end of the text or whether to collapse the doubled period to a single
 one.

 The intention is that text messages will usually be displayed on the
 user's terminal whereas command/status responses will be interpreted
 by the client program before any possible display is done.

2.4.2. Status Responses

 These are status reports from the server and indicate the response to
 the last command received from the client.

 Status response lines begin with a 3 digit numeric code which is
 sufficient to distinguish all responses. Some of these may herald
 the subsequent transmission of text.

 The first digit of the response broadly indicates the success,
 failure, or progress of the previous command.

 1xx - Informative message
 2xx - Command ok
 3xx - Command ok so far, send the rest of it.
 4xx - Command was correct, but couldn't be performed for
 some reason.
 5xx - Command unimplemented, or incorrect, or a serious
 program error occurred.

Kantor & Lapsley [Page 6]

C
om

pendium
 2 page 392

RFC 977 February 1986
Network News Transfer Protocol

 The next digit in the code indicates the function response category.

 x0x - Connection, setup, and miscellaneous messages
 x1x - Newsgroup selection
 x2x - Article selection
 x3x - Distribution functions
 x4x - Posting
 x8x - Nonstandard (private implementation) extensions
 x9x - Debugging output

 The exact response codes that should be expected from each command
 are detailed in the description of that command. In addition, below
 is listed a general set of response codes that may be received at any
 time.

 Certain status responses contain parameters such as numbers and
 names. The number and type of such parameters is fixed for each
 response code to simplify interpretation of the response.

 Parameters are separated from the numeric response code and from each
 other by a single space. All numeric parameters are decimal, and may
 have leading zeros. All string parameters begin after the separating
 space, and end before the following separating space or the CR-LF
 pair at the end of the line. (String parameters may not, therefore,
 contain spaces.) All text, if any, in the response which is not a
 parameter of the response must follow and be separated from the last
 parameter by a space. Also, note that the text following a response
 number may vary in different implementations of the server. The
 3-digit numeric code should be used to determine what response was
 sent.

 Response codes not specified in this standard may be used for any
 installation-specific additional commands also not specified. These
 should be chosen to fit the pattern of x8x specified above. (Note
 that debugging is provided for explicitly in the x9x response codes.)
 The use of unspecified response codes for standard commands is
 prohibited.

 We have provided a response pattern x9x for debugging. Since much
 debugging output may be classed as "informative messages", we would
 expect, therefore, that responses 190 through 199 would be used for
 various debugging outputs. There is no requirement in this
 specification for debugging output, but if such is provided over the
 connected stream, it must use these response codes. If appropriate
 to a specific implementation, other x9x codes may be used for
 debugging. (An example might be to use e.g., 290 to acknowledge a
 remote debugging request.)

Kantor & Lapsley [Page 7]

RFC 977 February 1986
Network News Transfer Protocol

2.4.3. General Responses

 The following is a list of general response codes that may be sent by
 the NNTP server. These are not specific to any one command, but may
 be returned as the result of a connection, a failure, or some unusual
 condition.

 In general, 1xx codes may be ignored or displayed as desired; code
 200 or 201 is sent upon initial connection to the NNTP server
 depending upon posting permission; code 400 will be sent when the
 NNTP server discontinues service (by operator request, for example);
 and 5xx codes indicate that the command could not be performed for
 some unusual reason.

 100 help text
 190
 through
 199 debug output

 200 server ready - posting allowed
 201 server ready - no posting allowed

 400 service discontinued

 500 command not recognized
 501 command syntax error
 502 access restriction or permission denied
 503 program fault - command not performed

3. Command and Response Details

 On the following pages are descriptions of each command recognized by
 the NNTP server and the responses which will be returned by those
 commands.

 Each command is shown in upper case for clarity, although case is
 ignored in the interpretation of commands by the NNTP server. Any
 parameters are shown in lower case. A parameter shown in [square
 brackets] is optional. For example, [GMT] indicates that the
 triglyph GMT may present or omitted.

 Every command described in this section must be implemented by all
 NNTP servers.

Kantor & Lapsley [Page 8]

C
om

pendium
 2 page 393

RFC 977 February 1986
Network News Transfer Protocol

 There is no prohibition against additional commands being added;
 however, it is recommended that any such unspecified command begin
 with the letter "X" to avoid conflict with later revisions of this
 specification.

 Implementors are reminded that such additional commands may not
 redefine specified status response codes. Using additional
 unspecified responses for standard commands is also prohibited.

3.1. The ARTICLE, BODY, HEAD, and STAT commands

 There are two forms to the ARTICLE command (and the related BODY,
 HEAD, and STAT commands), each using a different method of specifying
 which article is to be retrieved. When the ARTICLE command is
 followed by a message-id in angle brackets ("<" and ">"), the first
 form of the command is used; when a numeric parameter or no parameter
 is supplied, the second form is invoked.

 The text of the article is returned as a textual response, as
 described earlier in this document.

 The HEAD and BODY commands are identical to the ARTICLE command
 except that they respectively return only the header lines or text
 body of the article.

 The STAT command is similar to the ARTICLE command except that no
 text is returned. When selecting by message number within a group,
 the STAT command serves to set the current article pointer without
 sending text. The returned acknowledgement response will contain the
 message-id, which may be of some value. Using the STAT command to
 select by message-id is valid but of questionable value, since a
 selection by message-id does NOT alter the "current article pointer".

3.1.1. ARTICLE (selection by message-id)

 ARTICLE <message-id>

 Display the header, a blank line, then the body (text) of the
 specified article. Message-id is the message id of an article as
 shown in that article's header. It is anticipated that the client
 will obtain the message-id from a list provided by the NEWNEWS
 command, from references contained within another article, or from
 the message-id provided in the response to some other commands.

 Please note that the internally-maintained "current article pointer"
 is NOT ALTERED by this command. This is both to facilitate the
 presentation of articles that may be referenced within an article

Kantor & Lapsley [Page 9]

RFC 977 February 1986
Network News Transfer Protocol

 being read, and because of the semantic difficulties of determining
 the proper sequence and membership of an article which may have been
 posted to more than one newsgroup.

3.1.2. ARTICLE (selection by number)

 ARTICLE [nnn]

 Displays the header, a blank line, then the body (text) of the
 current or specified article. The optional parameter nnn is the

 numeric id of an article in the current newsgroup and must be chosen
 from the range of articles provided when the newsgroup was selected.
 If it is omitted, the current article is assumed.

 The internally-maintained "current article pointer" is set by this
 command if a valid article number is specified.

 [the following applies to both forms of the article command.] A
 response indicating the current article number, a message-id string,
 and that text is to follow will be returned.

 The message-id string returned is an identification string contained
 within angle brackets ("<" and ">"), which is derived from the header
 of the article itself. The Message-ID header line (required by
 RFC850) from the article must be used to supply this information. If
 the message-id header line is missing from the article, a single
 digit "0" (zero) should be supplied within the angle brackets.

 Since the message-id field is unique with each article, it may be
 used by a news reading program to skip duplicate displays of articles
 that have been posted more than once, or to more than one newsgroup.

3.1.3. Responses

 220 n <a> article retrieved - head and body follow
 (n = article number, <a> = message-id)
 221 n <a> article retrieved - head follows
 222 n <a> article retrieved - body follows
 223 n <a> article retrieved - request text separately
 412 no newsgroup has been selected
 420 no current article has been selected
 423 no such article number in this group
 430 no such article found

Kantor & Lapsley [Page 10]

C
om

pendium
 2 page 394

RFC 977 February 1986
Network News Transfer Protocol

3.2. The GROUP command

3.2.1. GROUP

 GROUP ggg

 The required parameter ggg is the name of the newsgroup to be
 selected (e.g. "net.news"). A list of valid newsgroups may be
 obtained from the LIST command.

 The successful selection response will return the article numbers of
 the first and last articles in the group, and an estimate of the
 number of articles on file in the group. It is not necessary that
 the estimate be correct, although that is helpful; it must only be
 equal to or larger than the actual number of articles on file. (Some
 implementations will actually count the number of articles on file.
 Others will just subtract first article number from last to get an
 estimate.)

 When a valid group is selected by means of this command, the
 internally maintained "current article pointer" is set to the first
 article in the group. If an invalid group is specified, the
 previously selected group and article remain selected. If an empty
 newsgroup is selected, the "current article pointer" is in an
 indeterminate state and should not be used.

 Note that the name of the newsgroup is not case-dependent. It must
 otherwise match a newsgroup obtained from the LIST command or an
 error will result.

3.2.2. Responses

 211 n f l s group selected
 (n = estimated number of articles in group,
 f = first article number in the group,
 l = last article number in the group,
 s = name of the group.)
 411 no such news group

Kantor & Lapsley [Page 11]

RFC 977 February 1986
Network News Transfer Protocol

3.3. The HELP command

3.3.1. HELP

 HELP

 Provides a short summary of commands that are understood by this
 implementation of the server. The help text will be presented as a
 textual response, terminated by a single period on a line by itself.

 3.3.2. Responses

 100 help text follows

3.4. The IHAVE command

3.4.1. IHAVE

 IHAVE <messageid>

 The IHAVE command informs the server that the client has an article
 whose id is <messageid>. If the server desires a copy of that
 article, it will return a response instructing the client to send the
 entire article. If the server does not want the article (if, for
 example, the server already has a copy of it), a response indicating
 that the article is not wanted will be returned.

 If transmission of the article is requested, the client should send
 the entire article, including header and body, in the manner
 specified for text transmission from the server. A response code
 indicating success or failure of the transferral of the article will
 be returned.

 This function differs from the POST command in that it is intended
 for use in transferring already-posted articles between hosts.
 Normally it will not be used when the client is a personal
 newsreading program. In particular, this function will invoke the
 server's news posting program with the appropriate settings (flags,
 options, etc) to indicate that the forthcoming article is being
 forwarded from another host.

 The server may, however, elect not to post or forward the article if
 after further examination of the article it deems it inappropriate to
 do so. The 436 or 437 error codes may be returned as appropriate to
 the situation.

 Reasons for such subsequent rejection of an article may include such

Kantor & Lapsley [Page 12]

C
om

pendium
 2 page 395

RFC 977 February 1986
Network News Transfer Protocol

 problems as inappropriate newsgroups or distributions, disk space
 limitations, article lengths, garbled headers, and the like. These
 are typically restrictions enforced by the server host's news
 software and not necessarily the NNTP server itself.

3.4.2. Responses

 235 article transferred ok
 335 send article to be transferred. End with <CR-LF>.<CR-LF>
 435 article not wanted - do not send it
 436 transfer failed - try again later
 437 article rejected - do not try again

 An implementation note:

 Because some host news posting software may not be able to decide
 immediately that an article is inappropriate for posting or
 forwarding, it is acceptable to acknowledge the successful transfer
 of the article and to later silently discard it. Thus it is
 permitted to return the 235 acknowledgement code and later discard
 the received article. This is not a fully satisfactory solution to
 the problem. Perhaps some implementations will wish to send mail to
 the author of the article in certain of these cases.

3.5. The LAST command

3.5.1. LAST

 LAST

 The internally maintained "current article pointer" is set to the
 previous article in the current newsgroup. If already positioned at
 the first article of the newsgroup, an error message is returned and
 the current article remains selected.

 The internally-maintained "current article pointer" is set by this
 command.

 A response indicating the current article number, and a message-id
 string will be returned. No text is sent in response to this
 command.

3.5.2. Responses

 223 n a article retrieved - request text separately
 (n = article number, a = unique article id)

Kantor & Lapsley [Page 13]

RFC 977 February 1986
Network News Transfer Protocol

 412 no newsgroup selected
 420 no current article has been selected
 422 no previous article in this group

3.6. The LIST command

3.6.1. LIST

 LIST

 Returns a list of valid newsgroups and associated information. Each
 newsgroup is sent as a line of text in the following format:

 group last first p

 where <group> is the name of the newsgroup, <last> is the number of
 the last known article currently in that newsgroup, <first> is the
 number of the first article currently in the newsgroup, and <p> is
 either 'y' or 'n' indicating whether posting to this newsgroup is
 allowed ('y') or prohibited ('n').

 The <first> and <last> fields will always be numeric. They may have
 leading zeros. If the <last> field evaluates to less than the
 <first> field, there are no articles currently on file in the
 newsgroup.

 Note that posting may still be prohibited to a client even though the
 LIST command indicates that posting is permitted to a particular
 newsgroup. See the POST command for an explanation of client
 prohibitions. The posting flag exists for each newsgroup because
 some newsgroups are moderated or are digests, and therefore cannot be
 posted to; that is, articles posted to them must be mailed to a
 moderator who will post them for the submitter. This is independent
 of the posting permission granted to a client by the NNTP server.

 Please note that an empty list (i.e., the text body returned by this
 command consists only of the terminating period) is a possible valid
 response, and indicates that there are currently no valid newsgroups.

3.6.2. Responses

 215 list of newsgroups follows

Kantor & Lapsley [Page 14]

C
om

pendium
 2 page 396

RFC 977 February 1986
Network News Transfer Protocol

3.7. The NEWGROUPS command

3.7.1. NEWGROUPS

 NEWGROUPS date time [GMT] [<distributions>]

 A list of newsgroups created since <date and time> will be listed in
 the same format as the LIST command.

 The date is sent as 6 digits in the format YYMMDD, where YY is the
 last two digits of the year, MM is the two digits of the month (with
 leading zero, if appropriate), and DD is the day of the month (with
 leading zero, if appropriate). The closest century is assumed as
 part of the year (i.e., 86 specifies 1986, 30 specifies 2030, 99 is
 1999, 00 is 2000).

 Time must also be specified. It must be as 6 digits HHMMSS with HH
 being hours on the 24-hour clock, MM minutes 00-59, and SS seconds
 00-59. The time is assumed to be in the server's timezone unless the
 token "GMT" appears, in which case both time and date are evaluated
 at the 0 meridian.

 The optional parameter "distributions" is a list of distribution
 groups, enclosed in angle brackets. If specified, the distribution
 portion of a new newsgroup (e.g, 'net' in 'net.wombat') will be
 examined for a match with the distribution categories listed, and
 only those new newsgroups which match will be listed. If more than
 one distribution group is to be listed, they must be separated by
 commas within the angle brackets.

 Please note that an empty list (i.e., the text body returned by this
 command consists only of the terminating period) is a possible valid
 response, and indicates that there are currently no new newsgroups.

3.7.2. Responses

 231 list of new newsgroups follows

Kantor & Lapsley [Page 15]

RFC 977 February 1986
Network News Transfer Protocol

3.8. The NEWNEWS command

3.8.1. NEWNEWS

 NEWNEWS newsgroups date time [GMT] [<distribution>]

 A list of message-ids of articles posted or received to the specified
 newsgroup since "date" will be listed. The format of the listing will
 be one message-id per line, as though text were being sent. A single
 line consisting solely of one period followed by CR-LF will terminate
 the list.

 Date and time are in the same format as the NEWGROUPS command.

 A newsgroup name containing a "*" (an asterisk) may be specified to
 broaden the article search to some or all newsgroups. The asterisk
 will be extended to match any part of a newsgroup name (e.g.,
 net.micro* will match net.micro.wombat, net.micro.apple, etc). Thus
 if only an asterisk is given as the newsgroup name, all newsgroups
 will be searched for new news.

 (Please note that the asterisk "*" expansion is a general
 replacement; in particular, the specification of e.g., net.*.unix
 should be correctly expanded to embrace names such as net.wombat.unix
 and net.whocares.unix.)

 Conversely, if no asterisk appears in a given newsgroup name, only
 the specified newsgroup will be searched for new articles. Newsgroup
 names must be chosen from those returned in the listing of available
 groups. Multiple newsgroup names (including a "*") may be specified
 in this command, separated by a comma. No comma shall appear after
 the last newsgroup in the list. [Implementors are cautioned to keep
 the 512 character command length limit in mind.]

 The exclamation point ("!") may be used to negate a match. This can
 be used to selectively omit certain newsgroups from an otherwise
 larger list. For example, a newsgroups specification of
 "net.*,mod.*,!mod.map.*" would specify that all net.<anything> and
 all mod.<anything> EXCEPT mod.map.<anything> newsgroup names would be
 matched. If used, the exclamation point must appear as the first
 character of the given newsgroup name or pattern.

 The optional parameter "distributions" is a list of distribution
 groups, enclosed in angle brackets. If specified, the distribution
 portion of an article's newsgroup (e.g, 'net' in 'net.wombat') will
 be examined for a match with the distribution categories listed, and
 only those articles which have at least one newsgroup belonging to

Kantor & Lapsley [Page 16]

C
om

pendium
 2 page 397

RFC 977 February 1986
Network News Transfer Protocol

 the list of distributions will be listed. If more than one
 distribution group is to be supplied, they must be separated by
 commas within the angle brackets.

 The use of the IHAVE, NEWNEWS, and NEWGROUPS commands to distribute
 news is discussed in an earlier part of this document.

 Please note that an empty list (i.e., the text body returned by this
 command consists only of the terminating period) is a possible valid
 response, and indicates that there is currently no new news.

3.8.2. Responses

 230 list of new articles by message-id follows

3.9. The NEXT command

3.9.1. NEXT

 NEXT

 The internally maintained "current article pointer" is advanced to
 the next article in the current newsgroup. If no more articles
 remain in the current group, an error message is returned and the
 current article remains selected.

 The internally-maintained "current article pointer" is set by this
 command.

 A response indicating the current article number, and the message-id
 string will be returned. No text is sent in response to this
 command.

3.9.2. Responses

 223 n a article retrieved - request text separately
 (n = article number, a = unique article id)
 412 no newsgroup selected
 420 no current article has been selected
 421 no next article in this group

Kantor & Lapsley [Page 17]

RFC 977 February 1986
Network News Transfer Protocol

3.10. The POST command

3.10.1. POST

 POST

 If posting is allowed, response code 340 is returned to indicate that
 the article to be posted should be sent. Response code 440 indicates
 that posting is prohibited for some installation-dependent reason.

 If posting is permitted, the article should be presented in the
 format specified by RFC850, and should include all required header
 lines. After the article's header and body have been completely sent
 by the client to the server, a further response code will be returned
 to indicate success or failure of the posting attempt.

 The text forming the header and body of the message to be posted
 should be sent by the client using the conventions for text received
 from the news server: A single period (".") on a line indicates the
 end of the text, with lines starting with a period in the original
 text having that period doubled during transmission.

 No attempt shall be made by the server to filter characters, fold or
 limit lines, or otherwise process incoming text. It is our intent
 that the server just pass the incoming message to be posted to the
 server installation's news posting software, which is separate from
 this specification. See RFC850 for more details.

 Since most installations will want the client news program to allow
 the user to prepare his message using some sort of text editor, and
 transmit it to the server for posting only after it is composed, the
 client program should take note of the herald message that greeted it
 when the connection was first established. This message indicates
 whether postings from that client are permitted or not, and can be
 used to caution the user that his access is read-only if that is the
 case. This will prevent the user from wasting a good deal of time
 composing a message only to find posting of the message was denied.
 The method and determination of which clients and hosts may post is
 installation dependent and is not covered by this specification.

3.10.2. Responses

 240 article posted ok
 340 send article to be posted. End with <CR-LF>.<CR-LF>
 440 posting not allowed
 441 posting failed

Kantor & Lapsley [Page 18]

C
om

pendium
 2 page 398

RFC 977 February 1986
Network News Transfer Protocol

 (for reference, one of the following codes will be sent upon initial
 connection; the client program should determine whether posting is
 generally permitted from these:) 200 server ready - posting allowed
 201 server ready - no posting allowed

3.11. The QUIT command

3.11.1. QUIT

 QUIT

 The server process acknowledges the QUIT command and then closes the
 connection to the client. This is the preferred method for a client
 to indicate that it has finished all its transactions with the NNTP
 server.

 If a client simply disconnects (or the connection times out, or some
 other fault occurs), the server should gracefully cease its attempts
 to service the client.

3.11.2. Responses

 205 closing connection - goodbye!

3.12. The SLAVE command

3.12.1. SLAVE

 SLAVE

 Indicates to the server that this client connection is to a slave
 server, rather than a user.

 This command is intended for use in separating connections to single
 users from those to subsidiary ("slave") servers. It may be used to
 indicate that priority should therefore be given to requests from
 this client, as it is presumably serving more than one person. It
 might also be used to determine which connections to close when
 system load levels are exceeded, perhaps giving preference to slave
 servers. The actual use this command is put to is entirely
 implementation dependent, and may vary from one host to another. In
 NNTP servers which do not give priority to slave servers, this
 command must nonetheless be recognized and acknowledged.

3.12.2. Responses

 202 slave status noted

Kantor & Lapsley [Page 19]

RFC 977 February 1986
Network News Transfer Protocol

4. Sample Conversations

 These are samples of the conversations that might be expected with
 the news server in hypothetical sessions. The notation C: indicates
 commands sent to the news server from the client program; S: indicate
 responses received from the server by the client.

4.1. Example 1 - relative access with NEXT

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 200 wombatvax news server ready - posting ok

 (client asks for a current newsgroup list)
 C: LIST
 S: 215 list of newsgroups follows
 S: net.wombats 00543 00501 y
 S: net.unix-wizards 10125 10011 y
 (more information here)
 S: net.idiots 00100 00001 n
 S: .

 (client selects a newsgroup)
 C: GROUP net.unix-wizards
 S: 211 104 10011 10125 net.unix-wizards group selected
 (there are 104 articles on file, from 10011 to 10125)

 (client selects an article to read)
 C: STAT 10110
 S: 223 10110 <23445@sdcsvax.ARPA> article retrieved - statistics
 only (article 10110 selected, its message-id is
 <23445@sdcsvax.ARPA>)

 (client examines the header)
 C: HEAD
 S: 221 10110 <23445@sdcsvax.ARPA> article retrieved - head
 follows (text of the header appears here)
 S: .

 (client wants to see the text body of the article)
 C: BODY
 S: 222 10110 <23445@sdcsvax.ARPA> article retrieved - body
 follows (body text here)
 S: .

 (client selects next article in group)

Kantor & Lapsley [Page 20]

C
om

pendium
 2 page 399

RFC 977 February 1986
Network News Transfer Protocol

 C: NEXT
 S: 223 10113 <21495@nudebch.uucp> article retrieved - statistics
 only (article 10113 was next in group)

 (client finishes session)
 C: QUIT
 S: 205 goodbye.

4.2. Example 2 - absolute article access with ARTICLE

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 201 UCB-VAX netnews server ready -- no posting allowed

 C: GROUP msgs
 S: 211 103 402 504 msgs Your new group is msgs
 (there are 103 articles, from 402 to 504)

 C: ARTICLE 401
 S: 423 No such article in this newsgroup

 C: ARTICLE 402
 S: 220 402 <4105@ucbvax.ARPA> Article retrieved, text follows
 S: (article header and body follow)
 S: .

 C: HEAD 403
 S: 221 403 <3108@mcvax.UUCP> Article retrieved, header follows
 S: (article header follows)
 S: .

 C: QUIT
 S: 205 UCB-VAX news server closing connection. Goodbye.

4.3. Example 3 - NEWGROUPS command

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 200 Imaginary Institute News Server ready (posting ok)

 (client asks for new newsgroups since April 3, 1985)
 C: NEWGROUPS 850403 020000

 S: 231 New newsgroups since 03/04/85 02:00:00 follow

Kantor & Lapsley [Page 21]

RFC 977 February 1986
Network News Transfer Protocol

 S: net.music.gdead
 S: net.games.sources
 S: .

 C: GROUP net.music.gdead
 S: 211 0 1 1 net.music.gdead Newsgroup selected
 (there are no articles in that newsgroup, and
 the first and last article numbers should be ignored)

 C: QUIT
 S: 205 Imaginary Institute news server ceasing service. Bye!

4.4. Example 4 - posting a news article

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 200 BANZAIVAX news server ready, posting allowed.

 C: POST
 S: 340 Continue posting; Period on a line by itself to end
 C: (transmits news article in RFC850 format)
 C: .
 S: 240 Article posted successfully.

 C: QUIT
 S: 205 BANZAIVAX closing connection. Goodbye.

4.5. Example 5 - interruption due to operator request

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 201 genericvax news server ready, no posting allowed.

 (assume normal conversation for some time, and
 that a newsgroup has been selected)

 C: NEXT
 S: 223 1013 <5734@mcvax.UUCP> Article retrieved; text separate.

 C: HEAD
 C: 221 1013 <5734@mcvax.UUCP> Article retrieved; head follows.

 S: (sends head of article, but halfway through is
 interrupted by an operator request. The following
 then occurs, without client intervention.)

Kantor & Lapsley [Page 22]

C
om

pendium
 2 page 400

RFC 977 February 1986
Network News Transfer Protocol

 S: (ends current line with a CR-LF pair)
 S: .
 S: 400 Connection closed by operator. Goodbye.
 S: (closes connection)

4.6. Example 6 - Using the news server to distribute news between
 systems.

 S: (listens at TCP port 119)

 C: (requests connection on TCP port 119)
 S: 201 Foobar NNTP server ready (no posting)

 (client asks for new newsgroups since 2 am, May 15, 1985)
 C: NEWGROUPS 850515 020000
 S: 235 New newsgroups since 850515 follow
 S: net.fluff
 S: net.lint
 S: .

 (client asks for new news articles since 2 am, May 15, 1985)
 C: NEWNEWS * 850515 020000
 S: 230 New news since 850515 020000 follows
 S: <1772@foo.UUCP>
 S: <87623@baz.UUCP>
 S: <17872@GOLD.CSNET>
 S: .

 (client asks for article <1772@foo.UUCP>)
 C: ARTICLE <1772@foo.UUCP>
 S: 220 <1772@foo.UUCP> All of article follows
 S: (sends entire message)
 S: .

 (client asks for article <87623@baz.UUCP>
 C: ARTICLE <87623@baz.UUCP>
 S: 220 <87623@baz.UUCP> All of article follows
 S: (sends entire message)
 S: .

 (client asks for article <17872@GOLD.CSNET>
 C: ARTICLE <17872@GOLD.CSNET>
 S: 220 <17872@GOLD.CSNET> All of article follows
 S: (sends entire message)
 S: .

Kantor & Lapsley [Page 23]

RFC 977 February 1986
Network News Transfer Protocol

 (client offers an article it has received recently)
 C: IHAVE <4105@ucbvax.ARPA>
 S: 435 Already seen that one, where you been?

 (client offers another article)
 C: IHAVE <4106@ucbvax.ARPA>
 S: 335 News to me! <CRLF.CRLF> to end.
 C: (sends article)
 C: .
 S: 235 Article transferred successfully. Thanks.

 (or)

 S: 436 Transfer failed.

 (client is all through with the session)
 C: QUIT
 S: 205 Foobar NNTP server bids you farewell.

4.7. Summary of commands and responses.

 The following are the commands recognized and responses returned by
 the NNTP server.

4.7.1. Commands

 ARTICLE
 BODY
 GROUP
 HEAD
 HELP
 IHAVE
 LAST
 LIST
 NEWGROUPS
 NEWNEWS
 NEXT
 POST
 QUIT
 SLAVE
 STAT

4.7.2. Responses

 100 help text follows
 199 debug output

Kantor & Lapsley [Page 24]

C
om

pendium
 2 page 401

RFC 977 February 1986
Network News Transfer Protocol

 200 server ready - posting allowed
 201 server ready - no posting allowed
 202 slave status noted
 205 closing connection - goodbye!
 211 n f l s group selected
 215 list of newsgroups follows
 220 n <a> article retrieved - head and body follow 221 n <a> article
 retrieved - head follows
 222 n <a> article retrieved - body follows
 223 n <a> article retrieved - request text separately 230 list of new
 articles by message-id follows
 231 list of new newsgroups follows
 235 article transferred ok
 240 article posted ok

 335 send article to be transferred. End with <CR-LF>.<CR-LF>
 340 send article to be posted. End with <CR-LF>.<CR-LF>

 400 service discontinued
 411 no such news group
 412 no newsgroup has been selected
 420 no current article has been selected
 421 no next article in this group
 422 no previous article in this group
 423 no such article number in this group
 430 no such article found
 435 article not wanted - do not send it
 436 transfer failed - try again later
 437 article rejected - do not try again.
 440 posting not allowed
 441 posting failed

 500 command not recognized
 501 command syntax error
 502 access restriction or permission denied
 503 program fault - command not performed

4.8. A Brief Word about the USENET News System

 In the UNIX world, which traditionally has been linked by 1200 baud
 dial-up telephone lines, the USENET News system has evolved to handle
 central storage, indexing, retrieval, and distribution of news. With
 the exception of its underlying transport mechanism (UUCP), USENET
 News is an efficient means of providing news and bulletin service to
 subscribers on UNIX and other hosts worldwide. The USENET News

Kantor & Lapsley [Page 25]

RFC 977 February 1986
Network News Transfer Protocol

 system is discussed in detail in RFC 850. It runs on most versions
 of UNIX and on many other operating systems, and is customarily
 distributed without charge.

 USENET uses a spooling area on the UNIX host to store news articles,
 one per file. Each article consists of a series of heading text,
 which contain the sender's identification and organizational
 affiliation, timestamps, electronic mail reply paths, subject,
 newsgroup (subject category), and the like. A complete news article
 is reproduced in its entirety below. Please consult RFC 850 for more
 details.

 Relay-Version: version B 2.10.3 4.3bsd-beta 6/6/85; site
 sdcsvax.UUCP
 Posting-Version: version B 2.10.1 6/24/83 SMI; site unitek.uucp
 Path:sdcsvax!sdcrdcf!hplabs!qantel!ihnp4!alberta!ubc-vision!unitek
 !honman
 From: honman@unitek.uucp (Man Wong)
 Newsgroups: net.unix-wizards
 Subject: foreground -> background ?
 Message-ID: <167@unitek.uucp>
 Date: 25 Sep 85 23:51:52 GMT
 Date-Received: 29 Sep 85 09:54:48 GMT
 Reply-To: honman@unitek.UUCP (Hon-Man Wong)
 Distribution: net.all
 Organization: Unitek Technologies Corporation
 Lines: 12

 I have a process (C program) which generates a child and waits for
 it to return. What I would like to do is to be able to run the
 child process interactively for a while before kicking itself into
 the background so I can return to the parent process (while the
 child process is RUNNING in the background). Can it be done? And
 if it can, how?

 Please reply by E-mail. Thanks in advance.

 Hon-Man Wong

Kantor & Lapsley [Page 26]

C
om

pendium
 2 page 402

RFC 977 February 1986
Network News Transfer Protocol

5. References

 [1] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", RFC-822, Department of Electrical Engineering,
 University of Delaware, August, 1982.

 [2] Horton, M., "Standard for Interchange of USENET Messages",
 RFC-850, USENET Project, June, 1983.

 [3] Postel, J., "Transmission Control Protocol- DARPA Internet
 Program Protocol Specification", RFC-793, USC/Information
 Sciences Institute, September, 1981.

 [4] Postel, J., "Simple Mail Transfer Protocol", RFC-821,
 USC/Information Sciences Institute, August, 1982.

6. Acknowledgements

 The authors wish to express their heartfelt thanks to those many
 people who contributed to this specification, and especially to Erik
 Fair and Chuq von Rospach, without whose inspiration this whole thing
 would not have been necessary.

7. Notes

 <1> UNIX is a trademark of Bell Laboratories.

Kantor & Lapsley [Page 27]

C
om

pendium
 2 page 403

Network Working Group T. Berners-Lee
Request for Comments: 2396 MIT/LCS
Updates: 1808, 1738 R. Fielding
Category: Standards Track U.C. Irvine
 L. Masinter
 Xerox Corporation
 August 1998

 Uniform Resource Identifiers (URI): Generic Syntax

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

IESG Note

 This paper describes a "superset" of operations that can be applied
 to URI. It consists of both a grammar and a description of basic
 functionality for URI. To understand what is a valid URI, both the
 grammar and the associated description have to be studied. Some of
 the functionality described is not applicable to all URI schemes, and
 some operations are only possible when certain media types are
 retrieved using the URI, regardless of the scheme used.

Abstract

 A Uniform Resource Identifier (URI) is a compact string of characters
 for identifying an abstract or physical resource. This document
 defines the generic syntax of URI, including both absolute and
 relative forms, and guidelines for their use; it revises and replaces
 the generic definitions in RFC 1738 and RFC 1808.

 This document defines a grammar that is a superset of all valid URI,
 such that an implementation can parse the common components of a URI
 reference without knowing the scheme-specific requirements of every
 possible identifier type. This document does not define a generative
 grammar for URI; that task will be performed by the individual
 specifications of each URI scheme.

Berners-Lee, et. al. Standards Track [Page 1]

RFC 2396 URI Generic Syntax August 1998

1. Introduction

 Uniform Resource Identifiers (URI) provide a simple and extensible
 means for identifying a resource. This specification of URI syntax
 and semantics is derived from concepts introduced by the World Wide
 Web global information initiative, whose use of such objects dates
 from 1990 and is described in "Universal Resource Identifiers in WWW"
 [RFC1630]. The specification of URI is designed to meet the
 recommendations laid out in "Functional Recommendations for Internet
 Resource Locators" [RFC1736] and "Functional Requirements for Uniform
 Resource Names" [RFC1737].

 This document updates and merges "Uniform Resource Locators"
 [RFC1738] and "Relative Uniform Resource Locators" [RFC1808] in order
 to define a single, generic syntax for all URI. It excludes those
 portions of RFC 1738 that defined the specific syntax of individual
 URL schemes; those portions will be updated as separate documents, as
 will the process for registration of new URI schemes. This document
 does not discuss the issues and recommendation for dealing with
 characters outside of the US-ASCII character set [ASCII]; those
 recommendations are discussed in a separate document.

 All significant changes from the prior RFCs are noted in Appendix G.

1.1 Overview of URI

 URI are characterized by the following definitions:

 Uniform
 Uniformity provides several benefits: it allows different types
 of resource identifiers to be used in the same context, even
 when the mechanisms used to access those resources may differ;
 it allows uniform semantic interpretation of common syntactic
 conventions across different types of resource identifiers; it
 allows introduction of new types of resource identifiers
 without interfering with the way that existing identifiers are
 used; and, it allows the identifiers to be reused in many
 different contexts, thus permitting new applications or
 protocols to leverage a pre-existing, large, and widely-used
 set of resource identifiers.

 Resource
 A resource can be anything that has identity. Familiar
 examples include an electronic document, an image, a service
 (e.g., "today's weather report for Los Angeles"), and a
 collection of other resources. Not all resources are network
 "retrievable"; e.g., human beings, corporations, and bound
 books in a library can also be considered resources.

Berners-Lee, et. al. Standards Track [Page 2]

C
om

pendium
 2 page 425

RFC 2396 URI Generic Syntax August 1998

 The resource is the conceptual mapping to an entity or set of
 entities, not necessarily the entity which corresponds to that
 mapping at any particular instance in time. Thus, a resource
 can remain constant even when its content---the entities to
 which it currently corresponds---changes over time, provided
 that the conceptual mapping is not changed in the process.

 Identifier
 An identifier is an object that can act as a reference to
 something that has identity. In the case of URI, the object is
 a sequence of characters with a restricted syntax.

 Having identified a resource, a system may perform a variety of
 operations on the resource, as might be characterized by such words
 as `access', `update', `replace', or `find attributes'.

1.2. URI, URL, and URN

 A URI can be further classified as a locator, a name, or both. The
 term "Uniform Resource Locator" (URL) refers to the subset of URI
 that identify resources via a representation of their primary access
 mechanism (e.g., their network "location"), rather than identifying
 the resource by name or by some other attribute(s) of that resource.
 The term "Uniform Resource Name" (URN) refers to the subset of URI
 that are required to remain globally unique and persistent even when
 the resource ceases to exist or becomes unavailable.

 The URI scheme (Section 3.1) defines the namespace of the URI, and
 thus may further restrict the syntax and semantics of identifiers
 using that scheme. This specification defines those elements of the
 URI syntax that are either required of all URI schemes or are common
 to many URI schemes. It thus defines the syntax and semantics that
 are needed to implement a scheme-independent parsing mechanism for
 URI references, such that the scheme-dependent handling of a URI can
 be postponed until the scheme-dependent semantics are needed. We use
 the term URL below when describing syntax or semantics that only
 apply to locators.

 Although many URL schemes are named after protocols, this does not
 imply that the only way to access the URL's resource is via the named
 protocol. Gateways, proxies, caches, and name resolution services
 might be used to access some resources, independent of the protocol
 of their origin, and the resolution of some URL may require the use
 of more than one protocol (e.g., both DNS and HTTP are typically used
 to access an "http" URL's resource when it can't be found in a local
 cache).

Berners-Lee, et. al. Standards Track [Page 3]

RFC 2396 URI Generic Syntax August 1998

 A URN differs from a URL in that it's primary purpose is persistent
 labeling of a resource with an identifier. That identifier is drawn
 from one of a set of defined namespaces, each of which has its own
 set name structure and assignment procedures. The "urn" scheme has
 been reserved to establish the requirements for a standardized URN
 namespace, as defined in "URN Syntax" [RFC2141] and its related
 specifications.

 Most of the examples in this specification demonstrate URL, since
 they allow the most varied use of the syntax and often have a
 hierarchical namespace. A parser of the URI syntax is capable of
 parsing both URL and URN references as a generic URI; once the scheme
 is determined, the scheme-specific parsing can be performed on the
 generic URI components. In other words, the URI syntax is a superset
 of the syntax of all URI schemes.

1.3. Example URI

 The following examples illustrate URI that are in common use.

 ftp://ftp.is.co.za/rfc/rfc1808.txt
 -- ftp scheme for File Transfer Protocol services

 gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles
 -- gopher scheme for Gopher and Gopher+ Protocol services

 http://www.math.uio.no/faq/compression-faq/part1.html
 -- http scheme for Hypertext Transfer Protocol services

 mailto:mduerst@ifi.unizh.ch
 -- mailto scheme for electronic mail addresses

 news:comp.infosystems.www.servers.unix
 -- news scheme for USENET news groups and articles

 telnet://melvyl.ucop.edu/
 -- telnet scheme for interactive services via the TELNET Protocol

1.4. Hierarchical URI and Relative Forms

 An absolute identifier refers to a resource independent of the
 context in which the identifier is used. In contrast, a relative
 identifier refers to a resource by describing the difference within a
 hierarchical namespace between the current context and an absolute
 identifier of the resource.

Berners-Lee, et. al. Standards Track [Page 4]

C
om

pendium
 2 page 426

RFC 2396 URI Generic Syntax August 1998

 Some URI schemes support a hierarchical naming system, where the
 hierarchy of the name is denoted by a "/" delimiter separating the
 components in the scheme. This document defines a scheme-independent
 `relative' form of URI reference that can be used in conjunction with
 a `base' URI (of a hierarchical scheme) to produce another URI. The
 syntax of hierarchical URI is described in Section 3; the relative
 URI calculation is described in Section 5.

1.5. URI Transcribability

 The URI syntax was designed with global transcribability as one of
 its main concerns. A URI is a sequence of characters from a very
 limited set, i.e. the letters of the basic Latin alphabet, digits,
 and a few special characters. A URI may be represented in a variety
 of ways: e.g., ink on paper, pixels on a screen, or a sequence of
 octets in a coded character set. The interpretation of a URI depends
 only on the characters used and not how those characters are
 represented in a network protocol.

 The goal of transcribability can be described by a simple scenario.
 Imagine two colleagues, Sam and Kim, sitting in a pub at an
 international conference and exchanging research ideas. Sam asks Kim
 for a location to get more information, so Kim writes the URI for the
 research site on a napkin. Upon returning home, Sam takes out the
 napkin and types the URI into a computer, which then retrieves the
 information to which Kim referred.

 There are several design concerns revealed by the scenario:

 o A URI is a sequence of characters, which is not always
 represented as a sequence of octets.

 o A URI may be transcribed from a non-network source, and thus
 should consist of characters that are most likely to be able to
 be typed into a computer, within the constraints imposed by
 keyboards (and related input devices) across languages and
 locales.

 o A URI often needs to be remembered by people, and it is easier
 for people to remember a URI when it consists of meaningful
 components.

 These design concerns are not always in alignment. For example, it
 is often the case that the most meaningful name for a URI component
 would require characters that cannot be typed into some systems. The
 ability to transcribe the resource identifier from one medium to
 another was considered more important than having its URI consist of
 the most meaningful of components. In local and regional contexts

Berners-Lee, et. al. Standards Track [Page 5]

RFC 2396 URI Generic Syntax August 1998

 and with improving technology, users might benefit from being able to
 use a wider range of characters; such use is not defined in this
 document.

1.6. Syntax Notation and Common Elements

 This document uses two conventions to describe and define the syntax
 for URI. The first, called the layout form, is a general description
 of the order of components and component separators, as in

 <first>/<second>;<third>?<fourth>

 The component names are enclosed in angle-brackets and any characters
 outside angle-brackets are literal separators. Whitespace should be
 ignored. These descriptions are used informally and do not define
 the syntax requirements.

 The second convention is a BNF-like grammar, used to define the
 formal URI syntax. The grammar is that of [RFC822], except that "|"
 is used to designate alternatives. Briefly, rules are separated from
 definitions by an equal "=", indentation is used to continue a rule
 definition over more than one line, literals are quoted with "",
 parentheses "(" and ")" are used to group elements, optional elements
 are enclosed in "[" and "]" brackets, and elements may be preceded
 with <n>* to designate n or more repetitions of the following
 element; n defaults to 0.

 Unlike many specifications that use a BNF-like grammar to define the
 bytes (octets) allowed by a protocol, the URI grammar is defined in
 terms of characters. Each literal in the grammar corresponds to the
 character it represents, rather than to the octet encoding of that
 character in any particular coded character set. How a URI is
 represented in terms of bits and bytes on the wire is dependent upon
 the character encoding of the protocol used to transport it, or the
 charset of the document which contains it.

 The following definitions are common to many elements:

 alpha = lowalpha | upalpha

 lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

 upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

Berners-Lee, et. al. Standards Track [Page 6]

C
om

pendium
 2 page 427

RFC 2396 URI Generic Syntax August 1998

 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
 "8" | "9"

 alphanum = alpha | digit

 The complete URI syntax is collected in Appendix A.

2. URI Characters and Escape Sequences

 URI consist of a restricted set of characters, primarily chosen to
 aid transcribability and usability both in computer systems and in
 non-computer communications. Characters used conventionally as
 delimiters around URI were excluded. The restricted set of
 characters consists of digits, letters, and a few graphic symbols
 were chosen from those common to most of the character encodings and
 input facilities available to Internet users.

 uric = reserved | unreserved | escaped

 Within a URI, characters are either used as delimiters, or to
 represent strings of data (octets) within the delimited portions.
 Octets are either represented directly by a character (using the US-
 ASCII character for that octet [ASCII]) or by an escape encoding.
 This representation is elaborated below.

2.1 URI and non-ASCII characters

 The relationship between URI and characters has been a source of
 confusion for characters that are not part of US-ASCII. To describe
 the relationship, it is useful to distinguish between a "character"
 (as a distinguishable semantic entity) and an "octet" (an 8-bit
 byte). There are two mappings, one from URI characters to octets, and
 a second from octets to original characters:

 URI character sequence->octet sequence->original character sequence

 A URI is represented as a sequence of characters, not as a sequence
 of octets. That is because URI might be "transported" by means that
 are not through a computer network, e.g., printed on paper, read over
 the radio, etc.

 A URI scheme may define a mapping from URI characters to octets;
 whether this is done depends on the scheme. Commonly, within a
 delimited component of a URI, a sequence of characters may be used to
 represent a sequence of octets. For example, the character "a"
 represents the octet 97 (decimal), while the character sequence "%",
 "0", "a" represents the octet 10 (decimal).

Berners-Lee, et. al. Standards Track [Page 7]

RFC 2396 URI Generic Syntax August 1998

 There is a second translation for some resources: the sequence of
 octets defined by a component of the URI is subsequently used to
 represent a sequence of characters. A 'charset' defines this mapping.
 There are many charsets in use in Internet protocols. For example,
 UTF-8 [UTF-8] defines a mapping from sequences of octets to sequences
 of characters in the repertoire of ISO 10646.

 In the simplest case, the original character sequence contains only
 characters that are defined in US-ASCII, and the two levels of
 mapping are simple and easily invertible: each 'original character'
 is represented as the octet for the US-ASCII code for it, which is,
 in turn, represented as either the US-ASCII character, or else the
 "%" escape sequence for that octet.

 For original character sequences that contain non-ASCII characters,
 however, the situation is more difficult. Internet protocols that
 transmit octet sequences intended to represent character sequences
 are expected to provide some way of identifying the charset used, if
 there might be more than one [RFC2277]. However, there is currently
 no provision within the generic URI syntax to accomplish this
 identification. An individual URI scheme may require a single
 charset, define a default charset, or provide a way to indicate the
 charset used.

 It is expected that a systematic treatment of character encoding
 within URI will be developed as a future modification of this
 specification.

2.2. Reserved Characters

 Many URI include components consisting of or delimited by, certain
 special characters. These characters are called "reserved", since
 their usage within the URI component is limited to their reserved
 purpose. If the data for a URI component would conflict with the
 reserved purpose, then the conflicting data must be escaped before
 forming the URI.

 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
 "$" | ","

 The "reserved" syntax class above refers to those characters that are
 allowed within a URI, but which may not be allowed within a
 particular component of the generic URI syntax; they are used as
 delimiters of the components described in Section 3.

Berners-Lee, et. al. Standards Track [Page 8]

C
om

pendium
 2 page 428

RFC 2396 URI Generic Syntax August 1998

 Characters in the "reserved" set are not reserved in all contexts.
 The set of characters actually reserved within any given URI
 component is defined by that component. In general, a character is
 reserved if the semantics of the URI changes if the character is
 replaced with its escaped US-ASCII encoding.

2.3. Unreserved Characters

 Data characters that are allowed in a URI but do not have a reserved
 purpose are called unreserved. These include upper and lower case
 letters, decimal digits, and a limited set of punctuation marks and
 symbols.

 unreserved = alphanum | mark

 mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"

 Unreserved characters can be escaped without changing the semantics
 of the URI, but this should not be done unless the URI is being used
 in a context that does not allow the unescaped character to appear.

2.4. Escape Sequences

 Data must be escaped if it does not have a representation using an
 unreserved character; this includes data that does not correspond to
 a printable character of the US-ASCII coded character set, or that
 corresponds to any US-ASCII character that is disallowed, as
 explained below.

2.4.1. Escaped Encoding

 An escaped octet is encoded as a character triplet, consisting of the
 percent character "%" followed by the two hexadecimal digits
 representing the octet code. For example, "%20" is the escaped
 encoding for the US-ASCII space character.

 escaped = "%" hex hex
 hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
 "a" | "b" | "c" | "d" | "e" | "f"

2.4.2. When to Escape and Unescape

 A URI is always in an "escaped" form, since escaping or unescaping a
 completed URI might change its semantics. Normally, the only time
 escape encodings can safely be made is when the URI is being created
 from its component parts; each component may have its own set of
 characters that are reserved, so only the mechanism responsible for
 generating or interpreting that component can determine whether or

Berners-Lee, et. al. Standards Track [Page 9]

RFC 2396 URI Generic Syntax August 1998

 not escaping a character will change its semantics. Likewise, a URI
 must be separated into its components before the escaped characters
 within those components can be safely decoded.

 In some cases, data that could be represented by an unreserved
 character may appear escaped; for example, some of the unreserved
 "mark" characters are automatically escaped by some systems. If the
 given URI scheme defines a canonicalization algorithm, then
 unreserved characters may be unescaped according to that algorithm.
 For example, "%7e" is sometimes used instead of "~" in an http URL
 path, but the two are equivalent for an http URL.

 Because the percent "%" character always has the reserved purpose of
 being the escape indicator, it must be escaped as "%25" in order to
 be used as data within a URI. Implementers should be careful not to
 escape or unescape the same string more than once, since unescaping
 an already unescaped string might lead to misinterpreting a percent
 data character as another escaped character, or vice versa in the
 case of escaping an already escaped string.

2.4.3. Excluded US-ASCII Characters

 Although they are disallowed within the URI syntax, we include here a
 description of those US-ASCII characters that have been excluded and
 the reasons for their exclusion.

 The control characters in the US-ASCII coded character set are not
 used within a URI, both because they are non-printable and because
 they are likely to be misinterpreted by some control mechanisms.

 control = <US-ASCII coded characters 00-1F and 7F hexadecimal>

 The space character is excluded because significant spaces may
 disappear and insignificant spaces may be introduced when URI are
 transcribed or typeset or subjected to the treatment of word-
 processing programs. Whitespace is also used to delimit URI in many
 contexts.

 space = <US-ASCII coded character 20 hexadecimal>

 The angle-bracket "<" and ">" and double-quote (") characters are
 excluded because they are often used as the delimiters around URI in
 text documents and protocol fields. The character "#" is excluded
 because it is used to delimit a URI from a fragment identifier in URI
 references (Section 4). The percent character "%" is excluded because
 it is used for the encoding of escaped characters.

 delims = "<" | ">" | "#" | "%" | <">

Berners-Lee, et. al. Standards Track [Page 10]

C
om

pendium
 2 page 429

RFC 2396 URI Generic Syntax August 1998

 Other characters are excluded because gateways and other transport
 agents are known to sometimes modify such characters, or they are
 used as delimiters.

 unwise = "{" | "}" | "|" | "\" | "^" | "[" | "]" | "`"

 Data corresponding to excluded characters must be escaped in order to
 be properly represented within a URI.

3. URI Syntactic Components

 The URI syntax is dependent upon the scheme. In general, absolute
 URI are written as follows:

 <scheme>:<scheme-specific-part>

 An absolute URI contains the name of the scheme being used (<scheme>)
 followed by a colon (":") and then a string (the <scheme-specific-
 part>) whose interpretation depends on the scheme.

 The URI syntax does not require that the scheme-specific-part have
 any general structure or set of semantics which is common among all
 URI. However, a subset of URI do share a common syntax for
 representing hierarchical relationships within the namespace. This
 "generic URI" syntax consists of a sequence of four main components:

 <scheme>://<authority><path>?<query>

 each of which, except <scheme>, may be absent from a particular URI.
 For example, some URI schemes do not allow an <authority> component,
 and others do not use a <query> component.

 absoluteURI = scheme ":" (hier_part | opaque_part)

 URI that are hierarchical in nature use the slash "/" character for
 separating hierarchical components. For some file systems, a "/"
 character (used to denote the hierarchical structure of a URI) is the
 delimiter used to construct a file name hierarchy, and thus the URI
 path will look similar to a file pathname. This does NOT imply that
 the resource is a file or that the URI maps to an actual filesystem
 pathname.

 hier_part = (net_path | abs_path) ["?" query]

 net_path = "//" authority [abs_path]

 abs_path = "/" path_segments

Berners-Lee, et. al. Standards Track [Page 11]

RFC 2396 URI Generic Syntax August 1998

 URI that do not make use of the slash "/" character for separating
 hierarchical components are considered opaque by the generic URI
 parser.

 opaque_part = uric_no_slash *uric

 uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
 "&" | "=" | "+" | "$" | ","

 We use the term <path> to refer to both the <abs_path> and
 <opaque_part> constructs, since they are mutually exclusive for any
 given URI and can be parsed as a single component.

3.1. Scheme Component

 Just as there are many different methods of access to resources,
 there are a variety of schemes for identifying such resources. The
 URI syntax consists of a sequence of components separated by reserved
 characters, with the first component defining the semantics for the
 remainder of the URI string.

 Scheme names consist of a sequence of characters beginning with a
 lower case letter and followed by any combination of lower case
 letters, digits, plus ("+"), period ("."), or hyphen ("-"). For
 resiliency, programs interpreting URI should treat upper case letters
 as equivalent to lower case in scheme names (e.g., allow "HTTP" as
 well as "http").

 scheme = alpha *(alpha | digit | "+" | "-" | ".")

 Relative URI references are distinguished from absolute URI in that
 they do not begin with a scheme name. Instead, the scheme is
 inherited from the base URI, as described in Section 5.2.

3.2. Authority Component

 Many URI schemes include a top hierarchical element for a naming
 authority, such that the namespace defined by the remainder of the
 URI is governed by that authority. This authority component is
 typically defined by an Internet-based server or a scheme-specific
 registry of naming authorities.

 authority = server | reg_name

 The authority component is preceded by a double slash "//" and is
 terminated by the next slash "/", question-mark "?", or by the end of
 the URI. Within the authority component, the characters ";", ":",
 "@", "?", and "/" are reserved.

Berners-Lee, et. al. Standards Track [Page 12]

C
om

pendium
 2 page 430

RFC 2396 URI Generic Syntax August 1998

 An authority component is not required for a URI scheme to make use
 of relative references. A base URI without an authority component
 implies that any relative reference will also be without an authority
 component.

3.2.1. Registry-based Naming Authority

 The structure of a registry-based naming authority is specific to the
 URI scheme, but constrained to the allowed characters for an
 authority component.

 reg_name = 1*(unreserved | escaped | "$" | "," |
 ";" | ":" | "@" | "&" | "=" | "+")

3.2.2. Server-based Naming Authority

 URL schemes that involve the direct use of an IP-based protocol to a
 specified server on the Internet use a common syntax for the server
 component of the URI's scheme-specific data:

 <userinfo>@<host>:<port>

 where <userinfo> may consist of a user name and, optionally, scheme-
 specific information about how to gain authorization to access the
 server. The parts "<userinfo>@" and ":<port>" may be omitted.

 server = [[userinfo "@"] hostport]

 The user information, if present, is followed by a commercial at-sign
 "@".

 userinfo = *(unreserved | escaped |
 ";" | ":" | "&" | "=" | "+" | "$" | ",")

 Some URL schemes use the format "user:password" in the userinfo
 field. This practice is NOT RECOMMENDED, because the passing of
 authentication information in clear text (such as URI) has proven to
 be a security risk in almost every case where it has been used.

 The host is a domain name of a network host, or its IPv4 address as a
 set of four decimal digit groups separated by ".". Literal IPv6
 addresses are not supported.

 hostport = host [":" port]
 host = hostname | IPv4address
 hostname = *(domainlabel ".") toplabel ["."]
 domainlabel = alphanum | alphanum *(alphanum | "-") alphanum
 toplabel = alpha | alpha *(alphanum | "-") alphanum

Berners-Lee, et. al. Standards Track [Page 13]

RFC 2396 URI Generic Syntax August 1998

 IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
 port = *digit

 Hostnames take the form described in Section 3 of [RFC1034] and
 Section 2.1 of [RFC1123]: a sequence of domain labels separated by
 ".", each domain label starting and ending with an alphanumeric
 character and possibly also containing "-" characters. The rightmost
 domain label of a fully qualified domain name will never start with a
 digit, thus syntactically distinguishing domain names from IPv4
 addresses, and may be followed by a single "." if it is necessary to
 distinguish between the complete domain name and any local domain.
 To actually be "Uniform" as a resource locator, a URL hostname should
 be a fully qualified domain name. In practice, however, the host
 component may be a local domain literal.

 Note: A suitable representation for including a literal IPv6
 address as the host part of a URL is desired, but has not yet been
 determined or implemented in practice.

 The port is the network port number for the server. Most schemes
 designate protocols that have a default port number. Another port
 number may optionally be supplied, in decimal, separated from the
 host by a colon. If the port is omitted, the default port number is
 assumed.

3.3. Path Component

 The path component contains data, specific to the authority (or the
 scheme if there is no authority component), identifying the resource
 within the scope of that scheme and authority.

 path = [abs_path | opaque_part]

 path_segments = segment *("/" segment)
 segment = *pchar *(";" param)
 param = *pchar

 pchar = unreserved | escaped |
 ":" | "@" | "&" | "=" | "+" | "$" | ","

 The path may consist of a sequence of path segments separated by a
 single slash "/" character. Within a path segment, the characters
 "/", ";", "=", and "?" are reserved. Each path segment may include a
 sequence of parameters, indicated by the semicolon ";" character.
 The parameters are not significant to the parsing of relative
 references.

Berners-Lee, et. al. Standards Track [Page 14]

C
om

pendium
 2 page 431

RFC 2396 URI Generic Syntax August 1998

3.4. Query Component

 The query component is a string of information to be interpreted by
 the resource.

 query = *uric

 Within a query component, the characters ";", "/", "?", ":", "@",
 "&", "=", "+", ",", and "$" are reserved.

4. URI References

 The term "URI-reference" is used here to denote the common usage of a
 resource identifier. A URI reference may be absolute or relative,
 and may have additional information attached in the form of a
 fragment identifier. However, "the URI" that results from such a
 reference includes only the absolute URI after the fragment
 identifier (if any) is removed and after any relative URI is resolved
 to its absolute form. Although it is possible to limit the
 discussion of URI syntax and semantics to that of the absolute
 result, most usage of URI is within general URI references, and it is
 impossible to obtain the URI from such a reference without also
 parsing the fragment and resolving the relative form.

 URI-reference = [absoluteURI | relativeURI] ["#" fragment]

 The syntax for relative URI is a shortened form of that for absolute
 URI, where some prefix of the URI is missing and certain path
 components ("." and "..") have a special meaning when, and only when,
 interpreting a relative path. The relative URI syntax is defined in
 Section 5.

4.1. Fragment Identifier

 When a URI reference is used to perform a retrieval action on the
 identified resource, the optional fragment identifier, separated from
 the URI by a crosshatch ("#") character, consists of additional
 reference information to be interpreted by the user agent after the
 retrieval action has been successfully completed. As such, it is not
 part of a URI, but is often used in conjunction with a URI.

 fragment = *uric

 The semantics of a fragment identifier is a property of the data
 resulting from a retrieval action, regardless of the type of URI used
 in the reference. Therefore, the format and interpretation of
 fragment identifiers is dependent on the media type [RFC2046] of the
 retrieval result. The character restrictions described in Section 2

Berners-Lee, et. al. Standards Track [Page 15]

RFC 2396 URI Generic Syntax August 1998

 for URI also apply to the fragment in a URI-reference. Individual
 media types may define additional restrictions or structure within
 the fragment for specifying different types of "partial views" that
 can be identified within that media type.

 A fragment identifier is only meaningful when a URI reference is
 intended for retrieval and the result of that retrieval is a document
 for which the identified fragment is consistently defined.

4.2. Same-document References

 A URI reference that does not contain a URI is a reference to the
 current document. In other words, an empty URI reference within a
 document is interpreted as a reference to the start of that document,
 and a reference containing only a fragment identifier is a reference
 to the identified fragment of that document. Traversal of such a
 reference should not result in an additional retrieval action.
 However, if the URI reference occurs in a context that is always
 intended to result in a new request, as in the case of HTML's FORM
 element, then an empty URI reference represents the base URI of the
 current document and should be replaced by that URI when transformed
 into a request.

4.3. Parsing a URI Reference

 A URI reference is typically parsed according to the four main
 components and fragment identifier in order to determine what
 components are present and whether the reference is relative or
 absolute. The individual components are then parsed for their
 subparts and, if not opaque, to verify their validity.

 Although the BNF defines what is allowed in each component, it is
 ambiguous in terms of differentiating between an authority component
 and a path component that begins with two slash characters. The
 greedy algorithm is used for disambiguation: the left-most matching
 rule soaks up as much of the URI reference string as it is capable of
 matching. In other words, the authority component wins.

 Readers familiar with regular expressions should see Appendix B for a
 concrete parsing example and test oracle.

5. Relative URI References

 It is often the case that a group or "tree" of documents has been
 constructed to serve a common purpose; the vast majority of URI in
 these documents point to resources within the tree rather than

Berners-Lee, et. al. Standards Track [Page 16]

C
om

pendium
 2 page 432

RFC 2396 URI Generic Syntax August 1998

 outside of it. Similarly, documents located at a particular site are
 much more likely to refer to other resources at that site than to
 resources at remote sites.

 Relative addressing of URI allows document trees to be partially
 independent of their location and access scheme. For instance, it is
 possible for a single set of hypertext documents to be simultaneously
 accessible and traversable via each of the "file", "http", and "ftp"
 schemes if the documents refer to each other using relative URI.
 Furthermore, such document trees can be moved, as a whole, without
 changing any of the relative references. Experience within the WWW
 has demonstrated that the ability to perform relative referencing is
 necessary for the long-term usability of embedded URI.

 The syntax for relative URI takes advantage of the <hier_part> syntax
 of <absoluteURI> (Section 3) in order to express a reference that is
 relative to the namespace of another hierarchical URI.

 relativeURI = (net_path | abs_path | rel_path) ["?" query]

 A relative reference beginning with two slash characters is termed a
 network-path reference, as defined by <net_path> in Section 3. Such
 references are rarely used.

 A relative reference beginning with a single slash character is
 termed an absolute-path reference, as defined by <abs_path> in
 Section 3.

 A relative reference that does not begin with a scheme name or a
 slash character is termed a relative-path reference.

 rel_path = rel_segment [abs_path]

 rel_segment = 1*(unreserved | escaped |
 ";" | "@" | "&" | "=" | "+" | "$" | ",")

 Within a relative-path reference, the complete path segments "." and
 ".." have special meanings: "the current hierarchy level" and "the
 level above this hierarchy level", respectively. Although this is
 very similar to their use within Unix-based filesystems to indicate
 directory levels, these path components are only considered special
 when resolving a relative-path reference to its absolute form
 (Section 5.2).

 Authors should be aware that a path segment which contains a colon
 character cannot be used as the first segment of a relative URI path
 (e.g., "this:that"), because it would be mistaken for a scheme name.

Berners-Lee, et. al. Standards Track [Page 17]

RFC 2396 URI Generic Syntax August 1998

 It is therefore necessary to precede such segments with other
 segments (e.g., "./this:that") in order for them to be referenced as
 a relative path.

 It is not necessary for all URI within a given scheme to be
 restricted to the <hier_part> syntax, since the hierarchical
 properties of that syntax are only necessary when relative URI are
 used within a particular document. Documents can only make use of
 relative URI when their base URI fits within the <hier_part> syntax.
 It is assumed that any document which contains a relative reference
 will also have a base URI that obeys the syntax. In other words,
 relative URI cannot be used within a document that has an unsuitable
 base URI.

 Some URI schemes do not allow a hierarchical syntax matching the
 <hier_part> syntax, and thus cannot use relative references.

5.1. Establishing a Base URI

 The term "relative URI" implies that there exists some absolute "base
 URI" against which the relative reference is applied. Indeed, the
 base URI is necessary to define the semantics of any relative URI
 reference; without it, a relative reference is meaningless. In order
 for relative URI to be usable within a document, the base URI of that
 document must be known to the parser.

 The base URI of a document can be established in one of four ways,
 listed below in order of precedence. The order of precedence can be
 thought of in terms of layers, where the innermost defined base URI
 has the highest precedence. This can be visualized graphically as:

 .--.
 | .--. |
 | | .--. | | | | | | | |
 | | | .--. | | |
 | | | | .----------------------------------. | | | |
 | | | | | <relative_reference> | | | | |
 | | | | `----------------------------------' | | | |
 | | | | (5.1.1) Base URI embedded in the | | | |
 | | | | document's content | | | |
 | | | `--' | | |
 | | | (5.1.2) Base URI of the encapsulating entity | | |
 | | | (message, document, or none). | | |
 | | `--' | |
 | | (5.1.3) URI used to retrieve the entity | |
 | `--' |
 | (5.1.4) Default Base URI is application-dependent |
 `--'

Berners-Lee, et. al. Standards Track [Page 18]

C
om

pendium
 2 page 433

RFC 2396 URI Generic Syntax August 1998

5.1.1. Base URI within Document Content

 Within certain document media types, the base URI of the document can
 be embedded within the content itself such that it can be readily
 obtained by a parser. This can be useful for descriptive documents,
 such as tables of content, which may be transmitted to others through
 protocols other than their usual retrieval context (e.g., E-Mail or
 USENET news).

 It is beyond the scope of this document to specify how, for each
 media type, the base URI can be embedded. It is assumed that user
 agents manipulating such media types will be able to obtain the
 appropriate syntax from that media type's specification. An example
 of how the base URI can be embedded in the Hypertext Markup Language
 (HTML) [RFC1866] is provided in Appendix D.

 A mechanism for embedding the base URI within MIME container types
 (e.g., the message and multipart types) is defined by MHTML
 [RFC2110]. Protocols that do not use the MIME message header syntax,
 but which do allow some form of tagged metainformation to be included
 within messages, may define their own syntax for defining the base
 URI as part of a message.

5.1.2. Base URI from the Encapsulating Entity

 If no base URI is embedded, the base URI of a document is defined by
 the document's retrieval context. For a document that is enclosed
 within another entity (such as a message or another document), the
 retrieval context is that entity; thus, the default base URI of the
 document is the base URI of the entity in which the document is
 encapsulated.

5.1.3. Base URI from the Retrieval URI

 If no base URI is embedded and the document is not encapsulated
 within some other entity (e.g., the top level of a composite entity),
 then, if a URI was used to retrieve the base document, that URI shall
 be considered the base URI. Note that if the retrieval was the
 result of a redirected request, the last URI used (i.e., that which
 resulted in the actual retrieval of the document) is the base URI.

5.1.4. Default Base URI

 If none of the conditions described in Sections 5.1.1--5.1.3 apply,
 then the base URI is defined by the context of the application.
 Since this definition is necessarily application-dependent, failing

Berners-Lee, et. al. Standards Track [Page 19]

RFC 2396 URI Generic Syntax August 1998

 to define the base URI using one of the other methods may result in
 the same content being interpreted differently by different types of
 application.

 It is the responsibility of the distributor(s) of a document
 containing relative URI to ensure that the base URI for that document
 can be established. It must be emphasized that relative URI cannot
 be used reliably in situations where the document's base URI is not
 well-defined.

5.2. Resolving Relative References to Absolute Form

 This section describes an example algorithm for resolving URI
 references that might be relative to a given base URI.

 The base URI is established according to the rules of Section 5.1 and
 parsed into the four main components as described in Section 3. Note
 that only the scheme component is required to be present in the base
 URI; the other components may be empty or undefined. A component is
 undefined if its preceding separator does not appear in the URI
 reference; the path component is never undefined, though it may be
 empty. The base URI's query component is not used by the resolution
 algorithm and may be discarded.

 For each URI reference, the following steps are performed in order:

 1) The URI reference is parsed into the potential four components and
 fragment identifier, as described in Section 4.3.

 2) If the path component is empty and the scheme, authority, and
 query components are undefined, then it is a reference to the
 current document and we are done. Otherwise, the reference URI's
 query and fragment components are defined as found (or not found)
 within the URI reference and not inherited from the base URI.

 3) If the scheme component is defined, indicating that the reference
 starts with a scheme name, then the reference is interpreted as an
 absolute URI and we are done. Otherwise, the reference URI's
 scheme is inherited from the base URI's scheme component.

 Due to a loophole in prior specifications [RFC1630], some parsers
 allow the scheme name to be present in a relative URI if it is the
 same as the base URI scheme. Unfortunately, this can conflict
 with the correct parsing of non-hierarchical URI. For backwards
 compatibility, an implementation may work around such references
 by removing the scheme if it matches that of the base URI and the
 scheme is known to always use the <hier_part> syntax. The parser

Berners-Lee, et. al. Standards Track [Page 20]

C
om

pendium
 2 page 434

RFC 2396 URI Generic Syntax August 1998

 can then continue with the steps below for the remainder of the
 reference components. Validating parsers should mark such a
 misformed relative reference as an error.

 4) If the authority component is defined, then the reference is a
 network-path and we skip to step 7. Otherwise, the reference
 URI's authority is inherited from the base URI's authority
 component, which will also be undefined if the URI scheme does not
 use an authority component.

 5) If the path component begins with a slash character ("/"), then
 the reference is an absolute-path and we skip to step 7.

 6) If this step is reached, then we are resolving a relative-path
 reference. The relative path needs to be merged with the base
 URI's path. Although there are many ways to do this, we will
 describe a simple method using a separate string buffer.

 a) All but the last segment of the base URI's path component is
 copied to the buffer. In other words, any characters after the
 last (right-most) slash character, if any, are excluded.

 b) The reference's path component is appended to the buffer
 string.

 c) All occurrences of "./", where "." is a complete path segment,
 are removed from the buffer string.

 d) If the buffer string ends with "." as a complete path segment,
 that "." is removed.

 e) All occurrences of "<segment>/../", where <segment> is a
 complete path segment not equal to "..", are removed from the
 buffer string. Removal of these path segments is performed
 iteratively, removing the leftmost matching pattern on each
 iteration, until no matching pattern remains.

 f) If the buffer string ends with "<segment>/..", where <segment>
 is a complete path segment not equal to "..", that
 "<segment>/.." is removed.

 g) If the resulting buffer string still begins with one or more
 complete path segments of "..", then the reference is
 considered to be in error. Implementations may handle this
 error by retaining these components in the resolved path (i.e.,
 treating them as part of the final URI), by removing them from
 the resolved path (i.e., discarding relative levels above the
 root), or by avoiding traversal of the reference.

Berners-Lee, et. al. Standards Track [Page 21]

RFC 2396 URI Generic Syntax August 1998

 h) The remaining buffer string is the reference URI's new path
 component.

 7) The resulting URI components, including any inherited from the
 base URI, are recombined to give the absolute form of the URI
 reference. Using pseudocode, this would be

 result = ""

 if scheme is defined then
 append scheme to result
 append ":" to result

 if authority is defined then
 append "//" to result
 append authority to result

 append path to result

 if query is defined then
 append "?" to result
 append query to result

 if fragment is defined then
 append "#" to result
 append fragment to result

 return result

 Note that we must be careful to preserve the distinction between a
 component that is undefined, meaning that its separator was not
 present in the reference, and a component that is empty, meaning
 that the separator was present and was immediately followed by the
 next component separator or the end of the reference.

 The above algorithm is intended to provide an example by which the
 output of implementations can be tested -- implementation of the
 algorithm itself is not required. For example, some systems may find
 it more efficient to implement step 6 as a pair of segment stacks
 being merged, rather than as a series of string pattern replacements.

 Note: Some WWW client applications will fail to separate the
 reference's query component from its path component before merging
 the base and reference paths in step 6 above. This may result in
 a loss of information if the query component contains the strings
 "/../" or "/./".

 Resolution examples are provided in Appendix C.

Berners-Lee, et. al. Standards Track [Page 22]

C
om

pendium
 2 page 435

RFC 2396 URI Generic Syntax August 1998

6. URI Normalization and Equivalence

 In many cases, different URI strings may actually identify the
 identical resource. For example, the host names used in URL are
 actually case insensitive, and the URL <http://www.XEROX.com> is
 equivalent to <http://www.xerox.com>. In general, the rules for
 equivalence and definition of a normal form, if any, are scheme
 dependent. When a scheme uses elements of the common syntax, it will
 also use the common syntax equivalence rules, namely that the scheme
 and hostname are case insensitive and a URL with an explicit ":port",
 where the port is the default for the scheme, is equivalent to one
 where the port is elided.

7. Security Considerations

 A URI does not in itself pose a security threat. Users should beware
 that there is no general guarantee that a URL, which at one time
 located a given resource, will continue to do so. Nor is there any
 guarantee that a URL will not locate a different resource at some
 later point in time, due to the lack of any constraint on how a given
 authority apportions its namespace. Such a guarantee can only be
 obtained from the person(s) controlling that namespace and the
 resource in question. A specific URI scheme may include additional
 semantics, such as name persistence, if those semantics are required
 of all naming authorities for that scheme.

 It is sometimes possible to construct a URL such that an attempt to
 perform a seemingly harmless, idempotent operation, such as the
 retrieval of an entity associated with the resource, will in fact
 cause a possibly damaging remote operation to occur. The unsafe URL
 is typically constructed by specifying a port number other than that
 reserved for the network protocol in question. The client
 unwittingly contacts a site that is in fact running a different
 protocol. The content of the URL contains instructions that, when
 interpreted according to this other protocol, cause an unexpected
 operation. An example has been the use of a gopher URL to cause an
 unintended or impersonating message to be sent via a SMTP server.

 Caution should be used when using any URL that specifies a port
 number other than the default for the protocol, especially when it is
 a number within the reserved space.

 Care should be taken when a URL contains escaped delimiters for a
 given protocol (for example, CR and LF characters for telnet
 protocols) that these are not unescaped before transmission. This
 might violate the protocol, but avoids the potential for such

Berners-Lee, et. al. Standards Track [Page 23]

RFC 2396 URI Generic Syntax August 1998

 characters to be used to simulate an extra operation or parameter in
 that protocol, which might lead to an unexpected and possibly harmful
 remote operation to be performed.

 It is clearly unwise to use a URL that contains a password which is
 intended to be secret. In particular, the use of a password within
 the 'userinfo' component of a URL is strongly disrecommended except
 in those rare cases where the 'password' parameter is intended to be
 public.

8. Acknowledgements

 This document was derived from RFC 1738 [RFC1738] and RFC 1808
 [RFC1808]; the acknowledgements in those specifications still apply.
 In addition, contributions by Gisle Aas, Martin Beet, Martin Duerst,
 Jim Gettys, Martijn Koster, Dave Kristol, Daniel LaLiberte, Foteos
 Macrides, James Marshall, Ryan Moats, Keith Moore, and Lauren Wood
 are gratefully acknowledged.

9. References

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses
 of Objects on the Network as used in the World-Wide Web",
 RFC 1630, June 1994.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, Editors,
 "Uniform Resource Locators (URL)", RFC 1738, December 1994.

 [RFC1866] Berners-Lee T., and D. Connolly, "HyperText Markup Language
 Specification -- 2.0", RFC 1866, November 1995.

 [RFC1123] Braden, R., Editor, "Requirements for Internet Hosts --
 Application and Support", STD 3, RFC 1123, October 1989.

 [RFC822] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [RFC1808] Fielding, R., "Relative Uniform Resource Locators", RFC
 1808, June 1995.

 [RFC2046] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

Berners-Lee, et. al. Standards Track [Page 24]

C
om

pendium
 2 page 436

RFC 2396 URI Generic Syntax August 1998

 [RFC1736] Kunze, J., "Functional Recommendations for Internet
 Resource Locators", RFC 1736, February 1995.

 [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

 [RFC2110] Palme, J., and A. Hopmann, "MIME E-mail Encapsulation of
 Aggregate Documents, such as HTML (MHTML)", RFC 2110, March
 1997.

 [RFC1737] Sollins, K., and L. Masinter, "Functional Requirements for
 Uniform Resource Names", RFC 1737, December 1994.

 [ASCII] US-ASCII. "Coded Character Set -- 7-bit American Standard
 Code for Information Interchange", ANSI X3.4-1986.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 RFC 2279, January 1998.

Berners-Lee, et. al. Standards Track [Page 25]

RFC 2396 URI Generic Syntax August 1998

10. Authors' Addresses

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Laboratory for Computer Science, NE43-356
 545 Technology Square
 Cambridge, MA 02139

 Fax: +1(617)258-8682
 EMail: timbl@w3.org

 Roy T. Fielding
 Department of Information and Computer Science
 University of California, Irvine
 Irvine, CA 92697-3425

 Fax: +1(949)824-1715
 EMail: fielding@ics.uci.edu

 Larry Masinter
 Xerox PARC
 3333 Coyote Hill Road
 Palo Alto, CA 94034

 Fax: +1(415)812-4333
 EMail: masinter@parc.xerox.com

Berners-Lee, et. al. Standards Track [Page 26]

C
om

pendium
 2 page 437

RFC 2396 URI Generic Syntax August 1998

A. Collected BNF for URI

 URI-reference = [absoluteURI | relativeURI] ["#" fragment]
 absoluteURI = scheme ":" (hier_part | opaque_part)
 relativeURI = (net_path | abs_path | rel_path) ["?" query]

 hier_part = (net_path | abs_path) ["?" query]
 opaque_part = uric_no_slash *uric

 uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
 "&" | "=" | "+" | "$" | ","

 net_path = "//" authority [abs_path]
 abs_path = "/" path_segments
 rel_path = rel_segment [abs_path]

 rel_segment = 1*(unreserved | escaped |
 ";" | "@" | "&" | "=" | "+" | "$" | ",")

 scheme = alpha *(alpha | digit | "+" | "-" | ".")

 authority = server | reg_name

 reg_name = 1*(unreserved | escaped | "$" | "," |
 ";" | ":" | "@" | "&" | "=" | "+")

 server = [[userinfo "@"] hostport]
 userinfo = *(unreserved | escaped |
 ";" | ":" | "&" | "=" | "+" | "$" | ",")

 hostport = host [":" port]
 host = hostname | IPv4address
 hostname = *(domainlabel ".") toplabel ["."]
 domainlabel = alphanum | alphanum *(alphanum | "-") alphanum
 toplabel = alpha | alpha *(alphanum | "-") alphanum
 IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
 port = *digit

 path = [abs_path | opaque_part]
 path_segments = segment *("/" segment)
 segment = *pchar *(";" param)
 param = *pchar
 pchar = unreserved | escaped |
 ":" | "@" | "&" | "=" | "+" | "$" | ","

 query = *uric

 fragment = *uric

Berners-Lee, et. al. Standards Track [Page 27]

RFC 2396 URI Generic Syntax August 1998

 uric = reserved | unreserved | escaped
 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
 "$" | ","
 unreserved = alphanum | mark
 mark = "-" | "_" | "." | "!" | "~" | "*" | "'" |
 "(" | ")"

 escaped = "%" hex hex
 hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
 "a" | "b" | "c" | "d" | "e" | "f"

 alphanum = alpha | digit
 alpha = lowalpha | upalpha

 lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
 upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
 "8" | "9"

Berners-Lee, et. al. Standards Track [Page 28]

C
om

pendium
 2 page 438

RFC 2396 URI Generic Syntax August 1998

B. Parsing a URI Reference with a Regular Expression

 As described in Section 4.3, the generic URI syntax is not sufficient
 to disambiguate the components of some forms of URI. Since the
 "greedy algorithm" described in that section is identical to the
 disambiguation method used by POSIX regular expressions, it is
 natural and commonplace to use a regular expression for parsing the
 potential four components and fragment identifier of a URI reference.

 The following line is the regular expression for breaking-down a URI
 reference into its components.

 ^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?
 12 3 4 5 6 7 8 9

 The numbers in the second line above are only to assist readability;
 they indicate the reference points for each subexpression (i.e., each
 paired parenthesis). We refer to the value matched for subexpression
 <n> as $<n>. For example, matching the above expression to

 http://www.ics.uci.edu/pub/ietf/uri/#Related

 results in the following subexpression matches:

 $1 = http:
 $2 = http
 $3 = //www.ics.uci.edu
 $4 = www.ics.uci.edu
 $5 = /pub/ietf/uri/
 $6 = <undefined>
 $7 = <undefined>
 $8 = #Related
 $9 = Related

 where <undefined> indicates that the component is not present, as is
 the case for the query component in the above example. Therefore, we
 can determine the value of the four components and fragment as

 scheme = $2
 authority = $4
 path = $5
 query = $7
 fragment = $9

 and, going in the opposite direction, we can recreate a URI reference
 from its components using the algorithm in step 7 of Section 5.2.

Berners-Lee, et. al. Standards Track [Page 29]

RFC 2396 URI Generic Syntax August 1998

C. Examples of Resolving Relative URI References

 Within an object with a well-defined base URI of

 http://a/b/c/d;p?q

 the relative URI would be resolved as follows:

C.1. Normal Examples

 g:h = g:h
 g = http://a/b/c/g
 ./g = http://a/b/c/g
 g/ = http://a/b/c/g/
 /g = http://a/g
 //g = http://g
 ?y = http://a/b/c/?y
 g?y = http://a/b/c/g?y
 #s = (current document)#s
 g#s = http://a/b/c/g#s
 g?y#s = http://a/b/c/g?y#s
 ;x = http://a/b/c/;x
 g;x = http://a/b/c/g;x
 g;x?y#s = http://a/b/c/g;x?y#s
 . = http://a/b/c/
 ./ = http://a/b/c/
 .. = http://a/b/
 ../ = http://a/b/
 ../g = http://a/b/g
 ../.. = http://a/
 ../../ = http://a/
 ../../g = http://a/g

C.2. Abnormal Examples

 Although the following abnormal examples are unlikely to occur in
 normal practice, all URI parsers should be capable of resolving them
 consistently. Each example uses the same base as above.

 An empty reference refers to the start of the current document.

 <> = (current document)

 Parsers must be careful in handling the case where there are more
 relative path ".." segments than there are hierarchical levels in the
 base URI's path. Note that the ".." syntax cannot be used to change
 the authority component of a URI.

Berners-Lee, et. al. Standards Track [Page 30]

C
om

pendium
 2 page 439

RFC 2396 URI Generic Syntax August 1998

 ../../../g = http://a/../g
 ../../../../g = http://a/../../g

 In practice, some implementations strip leading relative symbolic
 elements (".", "..") after applying a relative URI calculation, based
 on the theory that compensating for obvious author errors is better
 than allowing the request to fail. Thus, the above two references
 will be interpreted as "http://a/g" by some implementations.

 Similarly, parsers must avoid treating "." and ".." as special when
 they are not complete components of a relative path.

 /./g = http://a/./g
 /../g = http://a/../g
 g. = http://a/b/c/g.
 .g = http://a/b/c/.g
 g.. = http://a/b/c/g..
 ..g = http://a/b/c/..g

 Less likely are cases where the relative URI uses unnecessary or
 nonsensical forms of the "." and ".." complete path segments.

 ./../g = http://a/b/g
 ./g/. = http://a/b/c/g/
 g/./h = http://a/b/c/g/h
 g/../h = http://a/b/c/h
 g;x=1/./y = http://a/b/c/g;x=1/y
 g;x=1/../y = http://a/b/c/y

 All client applications remove the query component from the base URI
 before resolving relative URI. However, some applications fail to
 separate the reference's query and/or fragment components from a
 relative path before merging it with the base path. This error is
 rarely noticed, since typical usage of a fragment never includes the
 hierarchy ("/") character, and the query component is not normally
 used within relative references.

 g?y/./x = http://a/b/c/g?y/./x
 g?y/../x = http://a/b/c/g?y/../x
 g#s/./x = http://a/b/c/g#s/./x
 g#s/../x = http://a/b/c/g#s/../x

Berners-Lee, et. al. Standards Track [Page 31]

RFC 2396 URI Generic Syntax August 1998

 Some parsers allow the scheme name to be present in a relative URI if
 it is the same as the base URI scheme. This is considered to be a
 loophole in prior specifications of partial URI [RFC1630]. Its use
 should be avoided.

 http:g = http:g ; for validating parsers
 | http://a/b/c/g ; for backwards compatibility

Berners-Lee, et. al. Standards Track [Page 32]

C
om

pendium
 2 page 440

RFC 2396 URI Generic Syntax August 1998

D. Embedding the Base URI in HTML documents

 It is useful to consider an example of how the base URI of a document
 can be embedded within the document's content. In this appendix, we
 describe how documents written in the Hypertext Markup Language
 (HTML) [RFC1866] can include an embedded base URI. This appendix
 does not form a part of the URI specification and should not be
 considered as anything more than a descriptive example.

 HTML defines a special element "BASE" which, when present in the
 "HEAD" portion of a document, signals that the parser should use the
 BASE element's "HREF" attribute as the base URI for resolving any
 relative URI. The "HREF" attribute must be an absolute URI. Note
 that, in HTML, element and attribute names are case-insensitive. For
 example:

 <!doctype html public "-//IETF//DTD HTML//EN">
 <HTML><HEAD>
 <TITLE>An example HTML document</TITLE>
 <BASE href="http://www.ics.uci.edu/Test/a/b/c">
 </HEAD><BODY>
 ... a hypertext anchor ...
 </BODY></HTML>

 A parser reading the example document should interpret the given
 relative URI "../x" as representing the absolute URI

 <http://www.ics.uci.edu/Test/a/x>

 regardless of the context in which the example document was obtained.

Berners-Lee, et. al. Standards Track [Page 33]

RFC 2396 URI Generic Syntax August 1998

E. Recommendations for Delimiting URI in Context

 URI are often transmitted through formats that do not provide a clear
 context for their interpretation. For example, there are many
 occasions when URI are included in plain text; examples include text
 sent in electronic mail, USENET news messages, and, most importantly,
 printed on paper. In such cases, it is important to be able to
 delimit the URI from the rest of the text, and in particular from
 punctuation marks that might be mistaken for part of the URI.

 In practice, URI are delimited in a variety of ways, but usually
 within double-quotes "http://test.com/", angle brackets
 <http://test.com/>, or just using whitespace

 http://test.com/

 These wrappers do not form part of the URI.

 In the case where a fragment identifier is associated with a URI
 reference, the fragment would be placed within the brackets as well
 (separated from the URI with a "#" character).

 In some cases, extra whitespace (spaces, linebreaks, tabs, etc.) may
 need to be added to break long URI across lines. The whitespace
 should be ignored when extracting the URI.

 No whitespace should be introduced after a hyphen ("-") character.
 Because some typesetters and printers may (erroneously) introduce a
 hyphen at the end of line when breaking a line, the interpreter of a
 URI containing a line break immediately after a hyphen should ignore
 all unescaped whitespace around the line break, and should be aware
 that the hyphen may or may not actually be part of the URI.

 Using <> angle brackets around each URI is especially recommended as
 a delimiting style for URI that contain whitespace.

 The prefix "URL:" (with or without a trailing space) was recommended
 as a way to used to help distinguish a URL from other bracketed
 designators, although this is not common in practice.

 For robustness, software that accepts user-typed URI should attempt
 to recognize and strip both delimiters and embedded whitespace.

 For example, the text:

Berners-Lee, et. al. Standards Track [Page 34]

C
om

pendium
 2 page 441

RFC 2396 URI Generic Syntax August 1998

 Yes, Jim, I found it under "http://www.w3.org/Addressing/",
 but you can probably pick it up from <ftp://ds.internic.
 net/rfc/>. Note the warning in <http://www.ics.uci.edu/pub/
 ietf/uri/historical.html#WARNING>.

 contains the URI references

 http://www.w3.org/Addressing/
 ftp://ds.internic.net/rfc/
 http://www.ics.uci.edu/pub/ietf/uri/historical.html#WARNING

Berners-Lee, et. al. Standards Track [Page 35]

RFC 2396 URI Generic Syntax August 1998

F. Abbreviated URLs

 The URL syntax was designed for unambiguous reference to network
 resources and extensibility via the URL scheme. However, as URL
 identification and usage have become commonplace, traditional media
 (television, radio, newspapers, billboards, etc.) have increasingly
 used abbreviated URL references. That is, a reference consisting of
 only the authority and path portions of the identified resource, such
 as

 www.w3.org/Addressing/

 or simply the DNS hostname on its own. Such references are primarily
 intended for human interpretation rather than machine, with the
 assumption that context-based heuristics are sufficient to complete
 the URL (e.g., most hostnames beginning with "www" are likely to have
 a URL prefix of "http://"). Although there is no standard set of
 heuristics for disambiguating abbreviated URL references, many client
 implementations allow them to be entered by the user and
 heuristically resolved. It should be noted that such heuristics may
 change over time, particularly when new URL schemes are introduced.

 Since an abbreviated URL has the same syntax as a relative URL path,
 abbreviated URL references cannot be used in contexts where relative
 URLs are expected. This limits the use of abbreviated URLs to places
 where there is no defined base URL, such as dialog boxes and off-line
 advertisements.

Berners-Lee, et. al. Standards Track [Page 36]

C
om

pendium
 2 page 442

RFC 2396 URI Generic Syntax August 1998

G. Summary of Non-editorial Changes

G.1. Additions

 Section 4 (URI References) was added to stem the confusion regarding
 "what is a URI" and how to describe fragment identifiers given that
 they are not part of the URI, but are part of the URI syntax and
 parsing concerns. In addition, it provides a reference definition
 for use by other IETF specifications (HTML, HTTP, etc.) that have
 previously attempted to redefine the URI syntax in order to account
 for the presence of fragment identifiers in URI references.

 Section 2.4 was rewritten to clarify a number of misinterpretations
 and to leave room for fully internationalized URI.

 Appendix F on abbreviated URLs was added to describe the shortened
 references often seen on television and magazine advertisements and
 explain why they are not used in other contexts.

G.2. Modifications from both RFC 1738 and RFC 1808

 Changed to URI syntax instead of just URL.

 Confusion regarding the terms "character encoding", the URI
 "character set", and the escaping of characters with %<hex><hex>
 equivalents has (hopefully) been reduced. Many of the BNF rule names
 regarding the character sets have been changed to more accurately
 describe their purpose and to encompass all "characters" rather than
 just US-ASCII octets. Unless otherwise noted here, these
 modifications do not affect the URI syntax.

 Both RFC 1738 and RFC 1808 refer to the "reserved" set of characters
 as if URI-interpreting software were limited to a single set of
 characters with a reserved purpose (i.e., as meaning something other
 than the data to which the characters correspond), and that this set
 was fixed by the URI scheme. However, this has not been true in
 practice; any character that is interpreted differently when it is
 escaped is, in effect, reserved. Furthermore, the interpreting
 engine on a HTTP server is often dependent on the resource, not just
 the URI scheme. The description of reserved characters has been
 changed accordingly.

 The plus "+", dollar "$", and comma "," characters have been added to
 those in the "reserved" set, since they are treated as reserved
 within the query component.

Berners-Lee, et. al. Standards Track [Page 37]

RFC 2396 URI Generic Syntax August 1998

 The tilde "~" character was added to those in the "unreserved" set,
 since it is extensively used on the Internet in spite of the
 difficulty to transcribe it with some keyboards.

 The syntax for URI scheme has been changed to require that all
 schemes begin with an alpha character.

 The "user:password" form in the previous BNF was changed to a
 "userinfo" token, and the possibility that it might be
 "user:password" made scheme specific. In particular, the use of
 passwords in the clear is not even suggested by the syntax.

 The question-mark "?" character was removed from the set of allowed
 characters for the userinfo in the authority component, since testing
 showed that many applications treat it as reserved for separating the
 query component from the rest of the URI.

 The semicolon ";" character was added to those stated as being
 reserved within the authority component, since several new schemes
 are using it as a separator within userinfo to indicate the type of
 user authentication.

 RFC 1738 specified that the path was separated from the authority
 portion of a URI by a slash. RFC 1808 followed suit, but with a
 fudge of carrying around the separator as a "prefix" in order to
 describe the parsing algorithm. RFC 1630 never had this problem,
 since it considered the slash to be part of the path. In writing
 this specification, it was found to be impossible to accurately
 describe and retain the difference between the two URI
 <foo:/bar> and <foo:bar>
 without either considering the slash to be part of the path (as
 corresponds to actual practice) or creating a separate component just
 to hold that slash. We chose the former.

G.3. Modifications from RFC 1738

 The definition of specific URL schemes and their scheme-specific
 syntax and semantics has been moved to separate documents.

 The URL host was defined as a fully-qualified domain name. However,
 many URLs are used without fully-qualified domain names (in contexts
 for which the full qualification is not necessary), without any host
 (as in some file URLs), or with a host of "localhost".

 The URL port is now *digit instead of 1*digit, since systems are
 expected to handle the case where the ":" separator between host and
 port is supplied without a port.

Berners-Lee, et. al. Standards Track [Page 38]

C
om

pendium
 2 page 443

RFC 2396 URI Generic Syntax August 1998

 The recommendations for delimiting URI in context (Appendix E) have
 been adjusted to reflect current practice.

G.4. Modifications from RFC 1808

 RFC 1808 (Section 4) defined an empty URL reference (a reference
 containing nothing aside from the fragment identifier) as being a
 reference to the base URL. Unfortunately, that definition could be
 interpreted, upon selection of such a reference, as a new retrieval
 action on that resource. Since the normal intent of such references
 is for the user agent to change its view of the current document to
 the beginning of the specified fragment within that document, not to
 make an additional request of the resource, a description of how to
 correctly interpret an empty reference has been added in Section 4.

 The description of the mythical Base header field has been replaced
 with a reference to the Content-Location header field defined by
 MHTML [RFC2110].

 RFC 1808 described various schemes as either having or not having the
 properties of the generic URI syntax. However, the only requirement
 is that the particular document containing the relative references
 have a base URI that abides by the generic URI syntax, regardless of
 the URI scheme, so the associated description has been updated to
 reflect that.

 The BNF term <net_loc> has been replaced with <authority>, since the
 latter more accurately describes its use and purpose. Likewise, the
 authority is no longer restricted to the IP server syntax.

 Extensive testing of current client applications demonstrated that
 the majority of deployed systems do not use the ";" character to
 indicate trailing parameter information, and that the presence of a
 semicolon in a path segment does not affect the relative parsing of
 that segment. Therefore, parameters have been removed as a separate
 component and may now appear in any path segment. Their influence
 has been removed from the algorithm for resolving a relative URI
 reference. The resolution examples in Appendix C have been modified
 to reflect this change.

 Implementations are now allowed to work around misformed relative
 references that are prefixed by the same scheme as the base URI, but
 only for schemes known to use the <hier_part> syntax.

Berners-Lee, et. al. Standards Track [Page 39]

RFC 2396 URI Generic Syntax August 1998

H. Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Berners-Lee, et. al. Standards Track [Page 40]

C
om

pendium
 2 page 444

Registered port numbers Page 1

PORT NUMBERS

(last updated 2001 Aug 27)

The port numbers are divided into three ranges: the Well Known Ports,
the Registered Ports, and the Dynamic and/or Private Ports.

The Well Known Ports are those from 0 through 1023.

The Registered Ports are those from 1024 through 49151

The Dynamic and/or Private Ports are those from 49152 through 65535

WELL KNOWN PORT NUMBERS

The Well Known Ports are assigned by the IANA and on most systems can
only be used by system (or root) processes or by programs executed by
privileged users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port. The contact port is sometimes called the
"well-known port".

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The range for assigned ports managed by the IANA is 0-1023.

Port Assignments:

Keyword Decimal Description References
------- ------- ----------- ----------
 0/tcp Reserved
 0/udp Reserved
Jon Postel <postel@isi.edu>
tcpmux 1/tcp TCP Port Service Multiplexer
tcpmux 1/udp TCP Port Service Multiplexer
Mark Lottor <MKL@nisc.sri.com>
compressnet 2/tcp Management Utility
compressnet 2/udp Management Utility
compressnet 3/tcp Compression Process
compressnet 3/udp Compression Process
Bernie Volz <VOLZ@PROCESS.COM>
4/tcp Unassigned
4/udp Unassigned
rje 5/tcp Remote Job Entry
rje 5/udp Remote Job Entry
Jon Postel <postel@isi.edu>
6/tcp Unassigned
6/udp Unassigned
echo 7/tcp Echo
echo 7/udp Echo
Jon Postel <postel@isi.edu>
8/tcp Unassigned
8/udp Unassigned
discard 9/tcp Discard
discard 9/udp Discard
Jon Postel <postel@isi.edu>
10/tcp Unassigned
10/udp Unassigned

Registered port numbers Page 2

systat 11/tcp Active Users
systat 11/udp Active Users
Jon Postel <postel@isi.edu>
12/tcp Unassigned
12/udp Unassigned
daytime 13/tcp Daytime (RFC 867)
daytime 13/udp Daytime (RFC 867)
Jon Postel <postel@isi.edu>
14/tcp Unassigned
14/udp Unassigned
15/tcp Unassigned [was netstat]
15/udp Unassigned
16/tcp Unassigned
16/udp Unassigned
qotd 17/tcp Quote of the Day
qotd 17/udp Quote of the Day
Jon Postel <postel@isi.edu>
msp 18/tcp Message Send Protocol
msp 18/udp Message Send Protocol
Rina Nethaniel <---none--->
chargen 19/tcp Character Generator
chargen 19/udp Character Generator
ftp-data 20/tcp File Transfer [Default Data]
ftp-data 20/udp File Transfer [Default Data]
ftp 21/tcp File Transfer [Control]
ftp 21/udp File Transfer [Control]
Jon Postel <postel@isi.edu>
ssh 22/tcp SSH Remote Login Protocol
ssh 22/udp SSH Remote Login Protocol
Tatu Ylonen <ylo@cs.hut.fi>
telnet 23/tcp Telnet
telnet 23/udp Telnet
Jon Postel <postel@isi.edu>
 24/tcp any private mail system
 24/udp any private mail system
Rick Adams <rick@UUNET.UU.NET>
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer
Jon Postel <postel@isi.edu>
26/tcp Unassigned
26/udp Unassigned
nsw-fe 27/tcp NSW User System FE
nsw-fe 27/udp NSW User System FE
Robert Thomas <BThomas@F.BBN.COM>
28/tcp Unassigned
28/udp Unassigned
msg-icp 29/tcp MSG ICP
msg-icp 29/udp MSG ICP
Robert Thomas <BThomas@F.BBN.COM>
30/tcp Unassigned
30/udp Unassigned
msg-auth 31/tcp MSG Authentication
msg-auth 31/udp MSG Authentication
Robert Thomas <BThomas@F.BBN.COM>
32/tcp Unassigned
32/udp Unassigned
dsp 33/tcp Display Support Protocol
dsp 33/udp Display Support Protocol
Ed Cain <cain@edn-unix.dca.mil>
34/tcp Unassigned
34/udp Unassigned
 35/tcp any private printer server
 35/udp any private printer server
Jon Postel <postel@isi.edu>
36/tcp Unassigned
36/udp Unassigned
time 37/tcp Time

C
om

pendium
 2 page 445

Registered port numbers Page 3

time 37/udp Time
Jon Postel <postel@isi.edu>
rap 38/tcp Route Access Protocol
rap 38/udp Route Access Protocol
Robert Ullmann <ariel@world.std.com>
rlp 39/tcp Resource Location Protocol
rlp 39/udp Resource Location Protocol
Mike Accetta <MIKE.ACCETTA@CMU-CS-A.EDU>
40/tcp Unassigned
40/udp Unassigned
graphics 41/tcp Graphics
graphics 41/udp Graphics
name 42/tcp Host Name Server
name 42/udp Host Name Server
nameserver 42/tcp Host Name Server
nameserver 42/udp Host Name Server
nicname 43/tcp Who Is
nicname 43/udp Who Is
mpm-flags 44/tcp MPM FLAGS Protocol
mpm-flags 44/udp MPM FLAGS Protocol
mpm 45/tcp Message Processing Module [recv]
mpm 45/udp Message Processing Module [recv]
mpm-snd 46/tcp MPM [default send]
mpm-snd 46/udp MPM [default send]
Jon Postel <postel@isi.edu>
ni-ftp 47/tcp NI FTP
ni-ftp 47/udp NI FTP
Steve Kille <S.Kille@isode.com>
auditd 48/tcp Digital Audit Daemon
auditd 48/udp Digital Audit Daemon
Larry Scott <scott@zk3.dec.com>
tacacs 49/tcp Login Host Protocol (TACACS)
tacacs 49/udp Login Host Protocol (TACACS)
Pieter Ditmars <pditmars@BBN.COM>
re-mail-ck 50/tcp Remote Mail Checking Protocol
re-mail-ck 50/udp Remote Mail Checking Protocol
Steve Dorner <s-dorner@UIUC.EDU>
la-maint 51/tcp IMP Logical Address Maintenance
la-maint 51/udp IMP Logical Address Maintenance
Andy Malis <malis_a@timeplex.com>
xns-time 52/tcp XNS Time Protocol
xns-time 52/udp XNS Time Protocol
Susie Armstrong <Armstrong.wbst128@XEROX>
domain 53/tcp Domain Name Server
domain 53/udp Domain Name Server
Paul Mockapetris <PVM@ISI.EDU>
xns-ch 54/tcp XNS Clearinghouse
xns-ch 54/udp XNS Clearinghouse
Susie Armstrong <Armstrong.wbst128@XEROX>
isi-gl 55/tcp ISI Graphics Language
isi-gl 55/udp ISI Graphics Language
xns-auth 56/tcp XNS Authentication
xns-auth 56/udp XNS Authentication
Susie Armstrong <Armstrong.wbst128@XEROX>
 57/tcp any private terminal access
 57/udp any private terminal access
Jon Postel <postel@isi.edu>
xns-mail 58/tcp XNS Mail
xns-mail 58/udp XNS Mail
Susie Armstrong <Armstrong.wbst128@XEROX>
 59/tcp any private file service
 59/udp any private file service
Jon Postel <postel@isi.edu>
 60/tcp Unassigned
 60/udp Unassigned
ni-mail 61/tcp NI MAIL
ni-mail 61/udp NI MAIL

Registered port numbers Page 4

Steve Kille <S.Kille@isode.com>
acas 62/tcp ACA Services
acas 62/udp ACA Services
E. Wald <ewald@via.enet.dec.com>
whois++ 63/tcp whois++
whois++ 63/udp whois++
Rickard Schoultz <schoultz@sunet.se>
covia 64/tcp Communications Integrator (CI)
covia 64/udp Communications Integrator (CI)
Dan Smith <dan.smith@den.galileo.com>
tacacs-ds 65/tcp TACACS-Database Service
tacacs-ds 65/udp TACACS-Database Service
Kathy Huber <khuber@bbn.com>
sql*net 66/tcp Oracle SQL*NET
sql*net 66/udp Oracle SQL*NET
Jack Haverty <jhaverty@ORACLE.COM>
bootps 67/tcp Bootstrap Protocol Server
bootps 67/udp Bootstrap Protocol Server
bootpc 68/tcp Bootstrap Protocol Client
bootpc 68/udp Bootstrap Protocol Client
Bill Croft <Croft@SUMEX-AIM.STANFORD.EDU>
tftp 69/tcp Trivial File Transfer
tftp 69/udp Trivial File Transfer
David Clark <ddc@LCS.MIT.EDU>
gopher 70/tcp Gopher
gopher 70/udp Gopher
Mark McCahill <mpm@boombox.micro.umn.edu>
netrjs-1 71/tcp Remote Job Service
netrjs-1 71/udp Remote Job Service
netrjs-2 72/tcp Remote Job Service
netrjs-2 72/udp Remote Job Service
netrjs-3 73/tcp Remote Job Service
netrjs-3 73/udp Remote Job Service
netrjs-4 74/tcp Remote Job Service
netrjs-4 74/udp Remote Job Service
Bob Braden <Braden@ISI.EDU>
 75/tcp any private dial out service
 75/udp any private dial out service
Jon Postel <postel@isi.edu>
deos 76/tcp Distributed External Object Store
deos 76/udp Distributed External Object Store
Robert Ullmann <ariel@world.std.com>
 77/tcp any private RJE service
 77/udp any private RJE service
Jon Postel <postel@isi.edu>
vettcp 78/tcp vettcp
vettcp 78/udp vettcp
Christopher Leong <leong@kolmod.mlo.dec.com>
finger 79/tcp Finger
finger 79/udp Finger
David Zimmerman <dpz@RUTGERS.EDU>
http 80/tcp World Wide Web HTTP
http 80/udp World Wide Web HTTP
www 80/tcp World Wide Web HTTP
www 80/udp World Wide Web HTTP
www-http 80/tcp World Wide Web HTTP
www-http 80/udp World Wide Web HTTP
Tim Berners-Lee <timbl@W3.org>
hosts2-ns 81/tcp HOSTS2 Name Server
hosts2-ns 81/udp HOSTS2 Name Server
Earl Killian <EAK@MORDOR.S1.GOV>
xfer 82/tcp XFER Utility
xfer 82/udp XFER Utility
Thomas M. Smith <Thomas.M.Smith@lmco.com>
mit-ml-dev 83/tcp MIT ML Device
mit-ml-dev 83/udp MIT ML Device
David Reed <--none--->

C
om

pendium
 2 page 446

Registered port numbers Page 5

ctf 84/tcp Common Trace Facility
ctf 84/udp Common Trace Facility
Hugh Thomas <thomas@oils.enet.dec.com>
mit-ml-dev 85/tcp MIT ML Device
mit-ml-dev 85/udp MIT ML Device
David Reed <--none--->
mfcobol 86/tcp Micro Focus Cobol
mfcobol 86/udp Micro Focus Cobol
Simon Edwards <--none--->
 87/tcp any private terminal link
 87/udp any private terminal link
Jon Postel <postel@isi.edu>
kerberos 88/tcp Kerberos
kerberos 88/udp Kerberos
B. Clifford Neuman <bcn@isi.edu>
su-mit-tg 89/tcp SU/MIT Telnet Gateway
su-mit-tg 89/udp SU/MIT Telnet Gateway
Mark Crispin <MRC@PANDA.COM>
########### PORT 90 also being used unofficially by Pointcast #########
dnsix 90/tcp DNSIX Securit Attribute Token Map
dnsix 90/udp DNSIX Securit Attribute Token Map
Charles Watt <watt@sware.com>
mit-dov 91/tcp MIT Dover Spooler
mit-dov 91/udp MIT Dover Spooler
Eliot Moss <EBM@XX.LCS.MIT.EDU>
npp 92/tcp Network Printing Protocol
npp 92/udp Network Printing Protocol
Louis Mamakos <louie@sayshell.umd.edu>
dcp 93/tcp Device Control Protocol
dcp 93/udp Device Control Protocol
Daniel Tappan <Tappan@BBN.COM>
objcall 94/tcp Tivoli Object Dispatcher
objcall 94/udp Tivoli Object Dispatcher
Tom Bereiter <--none--->
supdup 95/tcp SUPDUP
supdup 95/udp SUPDUP
Mark Crispin <MRC@PANDA.COM>
dixie 96/tcp DIXIE Protocol Specification
dixie 96/udp DIXIE Protocol Specification
Tim Howes <Tim.Howes@terminator.cc.umich.edu>
swift-rvf 97/tcp Swift Remote Virtural File Protocol
swift-rvf 97/udp Swift Remote Virtural File Protocol
Maurice R. Turcotte
<mailrus!uflorida!rm1!dnmrt%rmatl@uunet.UU.NET>
tacnews 98/tcp TAC News
tacnews 98/udp TAC News
Jon Postel <postel@isi.edu>
metagram 99/tcp Metagram Relay
metagram 99/udp Metagram Relay
Geoff Goodfellow <Geoff@FERNWOOD.MPK.CA.US>
newacct 100/tcp [unauthorized use]
hostname 101/tcp NIC Host Name Server
hostname 101/udp NIC Host Name Server
Jon Postel <postel@isi.edu>
iso-tsap 102/tcp ISO-TSAP Class 0
iso-tsap 102/udp ISO-TSAP Class 0
Marshall Rose <mrose@dbc.mtview.ca.us>
gppitnp 103/tcp Genesis Point-to-Point Trans Net
gppitnp 103/udp Genesis Point-to-Point Trans Net
acr-nema 104/tcp ACR-NEMA Digital Imag. & Comm. 300
acr-nema 104/udp ACR-NEMA Digital Imag. & Comm. 300
Patrick McNamee <--none--->
cso 105/tcp CCSO name server protocol
cso 105/udp CCSO name server protocol
Martin Hamilton <martin@mrrl.lut.as.uk>
csnet-ns 105/tcp Mailbox Name Nameserver
csnet-ns 105/udp Mailbox Name Nameserver

Registered port numbers Page 6

Marvin Solomon <solomon@CS.WISC.EDU>
3com-tsmux 106/tcp 3COM-TSMUX
3com-tsmux 106/udp 3COM-TSMUX
Jeremy Siegel <jzs@NSD.3Com.COM>
########## 106 Unauthorized use by insecure poppassd protocol
rtelnet 107/tcp Remote Telnet Service
rtelnet 107/udp Remote Telnet Service
Jon Postel <postel@isi.edu>
snagas 108/tcp SNA Gateway Access Server
snagas 108/udp SNA Gateway Access Server
Kevin Murphy <murphy@sevens.lkg.dec.com>
pop2 109/tcp Post Office Protocol - Version 2
pop2 109/udp Post Office Protocol - Version 2
Joyce K. Reynolds <jkrey@isi.edu>
pop3 110/tcp Post Office Protocol - Version 3
pop3 110/udp Post Office Protocol - Version 3
Marshall Rose <mrose@dbc.mtview.ca.us>
sunrpc 111/tcp SUN Remote Procedure Call
sunrpc 111/udp SUN Remote Procedure Call
Chuck McManis <cmcmanis@freegate.net>
mcidas 112/tcp McIDAS Data Transmission Protocol
mcidas 112/udp McIDAS Data Transmission Protocol
Glenn Davis <support@unidata.ucar.edu>
ident 113/tcp
auth 113/tcp Authentication Service
auth 113/udp Authentication Service
Mike St. Johns <stjohns@arpa.mil>
audionews 114/tcp Audio News Multicast
audionews 114/udp Audio News Multicast
Martin Forssen <maf@dtek.chalmers.se>
sftp 115/tcp Simple File Transfer Protocol
sftp 115/udp Simple File Transfer Protocol
Mark Lottor <MKL@nisc.sri.com>
ansanotify 116/tcp ANSA REX Notify
ansanotify 116/udp ANSA REX Notify
Nicola J. Howarth <njh@ansa.co.uk>
uucp-path 117/tcp UUCP Path Service
uucp-path 117/udp UUCP Path Service
sqlserv 118/tcp SQL Services
sqlserv 118/udp SQL Services
Larry Barnes <barnes@broke.enet.dec.com>
nntp 119/tcp Network News Transfer Protocol
nntp 119/udp Network News Transfer Protocol
Phil Lapsley <phil@UCBARPA.BERKELEY.EDU>
cfdptkt 120/tcp CFDPTKT
cfdptkt 120/udp CFDPTKT
John Ioannidis <ji@close.cs.columbia.ed>
erpc 121/tcp Encore Expedited Remote Pro.Call
erpc 121/udp Encore Expedited Remote Pro.Call
Jack O'Neil <---none--->
smakynet 122/tcp SMAKYNET
smakynet 122/udp SMAKYNET
Pierre Arnaud <pierre.arnaud@iname.com>
ntp 123/tcp Network Time Protocol
ntp 123/udp Network Time Protocol
Dave Mills <Mills@HUEY.UDEL.EDU>
ansatrader 124/tcp ANSA REX Trader
ansatrader 124/udp ANSA REX Trader
Nicola J. Howarth <njh@ansa.co.uk>
locus-map 125/tcp Locus PC-Interface Net Map Ser
locus-map 125/udp Locus PC-Interface Net Map Ser
Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
nxedit 126/tcp NXEdit
nxedit 126/udp NXEdit
Don Payette <Don.Payette@unisys.com>
###########Port 126 Previously assigned to application below#######
#unitary 126/tcp Unisys Unitary Login

C
om

pendium
 2 page 447

Registered port numbers Page 7

#unitary 126/udp Unisys Unitary Login
<feil@kronos.nisd.cam.unisys.com>
###########Port 126 Previously assigned to application above#######
locus-con 127/tcp Locus PC-Interface Conn Server
locus-con 127/udp Locus PC-Interface Conn Server
Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
gss-xlicen 128/tcp GSS X License Verification
gss-xlicen 128/udp GSS X License Verification
John Light <johnl@gssc.gss.com>
pwdgen 129/tcp Password Generator Protocol
pwdgen 129/udp Password Generator Protocol
Frank J. Wacho <WANCHO@WSMR-SIMTEL20.ARMY.MIL>
cisco-fna 130/tcp cisco FNATIVE
cisco-fna 130/udp cisco FNATIVE
cisco-tna 131/tcp cisco TNATIVE
cisco-tna 131/udp cisco TNATIVE
cisco-sys 132/tcp cisco SYSMAINT
cisco-sys 132/udp cisco SYSMAINT
statsrv 133/tcp Statistics Service
statsrv 133/udp Statistics Service
Dave Mills <Mills@HUEY.UDEL.EDU>
ingres-net 134/tcp INGRES-NET Service
ingres-net 134/udp INGRES-NET Service
Mike Berrow <---none--->
epmap 135/tcp DCE endpoint resolution
epmap 135/udp DCE endpoint resolution
Joe Pato <pato@apollo.hp.com>
profile 136/tcp PROFILE Naming System
profile 136/udp PROFILE Naming System
Larry Peterson <llp@ARIZONA.EDU>
netbios-ns 137/tcp NETBIOS Name Service
netbios-ns 137/udp NETBIOS Name Service
netbios-dgm 138/tcp NETBIOS Datagram Service
netbios-dgm 138/udp NETBIOS Datagram Service
netbios-ssn 139/tcp NETBIOS Session Service
netbios-ssn 139/udp NETBIOS Session Service
Jon Postel <postel@isi.edu>
emfis-data 140/tcp EMFIS Data Service
emfis-data 140/udp EMFIS Data Service
emfis-cntl 141/tcp EMFIS Control Service
emfis-cntl 141/udp EMFIS Control Service
Gerd Beling <GBELING@ISI.EDU>
bl-idm 142/tcp Britton-Lee IDM
bl-idm 142/udp Britton-Lee IDM
Susie Snitzer <---none--->
imap 143/tcp Internet Message Access Protocol
imap 143/udp Internet Message Access Protocol
Mark Crispin <MRC@CAC.Washington.EDU>
uma 144/tcp Universal Management Architecture
uma 144/udp Universal Management Architecture
Jay Whitney <jw@powercenter.com>
uaac 145/tcp UAAC Protocol
uaac 145/udp UAAC Protocol
David A. Gomberg <gomberg@GATEWAY.MITRE.ORG>
iso-tp0 146/tcp ISO-IP0
iso-tp0 146/udp ISO-IP0
iso-ip 147/tcp ISO-IP
iso-ip 147/udp ISO-IP
Marshall Rose <mrose@dbc.mtview.ca.us>
jargon 148/tcp Jargon
jargon 148/udp Jargon
Bill Weinman <wew@bearnet.com>
aed-512 149/tcp AED 512 Emulation Service
aed-512 149/udp AED 512 Emulation Service
Albert G. Broscius <broscius@DSL.CIS.UPENN.EDU>
sql-net 150/tcp SQL-NET
sql-net 150/udp SQL-NET

Registered port numbers Page 8

Martin Picard <<---none--->
hems 151/tcp HEMS
hems 151/udp HEMS
bftp 152/tcp Background File Transfer Program
bftp 152/udp Background File Transfer Program
Annette DeSchon <DESCHON@ISI.EDU>
sgmp 153/tcp SGMP
sgmp 153/udp SGMP
Marty Schoffstahl <schoff@NISC.NYSER.NET>
netsc-prod 154/tcp NETSC
netsc-prod 154/udp NETSC
netsc-dev 155/tcp NETSC
netsc-dev 155/udp NETSC
Sergio Heker <heker@JVNCC.CSC.ORG>
sqlsrv 156/tcp SQL Service
sqlsrv 156/udp SQL Service
Craig Rogers <Rogers@ISI.EDU>
knet-cmp 157/tcp KNET/VM Command/Message Protocol
knet-cmp 157/udp KNET/VM Command/Message Protocol
Gary S. Malkin <GMALKIN@XYLOGICS.COM>
pcmail-srv 158/tcp PCMail Server
pcmail-srv 158/udp PCMail Server
Mark L. Lambert <markl@PTT.LCS.MIT.EDU>
nss-routing 159/tcp NSS-Routing
nss-routing 159/udp NSS-Routing
Yakov Rekhter <Yakov@IBM.COM>
sgmp-traps 160/tcp SGMP-TRAPS
sgmp-traps 160/udp SGMP-TRAPS
Marty Schoffstahl <schoff@NISC.NYSER.NET>
snmp 161/tcp SNMP
snmp 161/udp SNMP
snmptrap 162/tcp SNMPTRAP
snmptrap 162/udp SNMPTRAP
Marshall Rose <mrose@dbc.mtview.ca.us>
cmip-man 163/tcp CMIP/TCP Manager
cmip-man 163/udp CMIP/TCP Manager
cmip-agent 164/tcp CMIP/TCP Agent
cmip-agent 164/udp CMIP/TCP Agent
Amatzia Ben-Artzi <---none--->
xns-courier 165/tcp Xerox
xns-courier 165/udp Xerox
Susie Armstrong <Armstrong.wbst128@XEROX.COM>
s-net 166/tcp Sirius Systems
s-net 166/udp Sirius Systems
Brian Lloyd <brian@lloyd.com>
namp 167/tcp NAMP
namp 167/udp NAMP
Marty Schoffstahl <schoff@NISC.NYSER.NET>
rsvd 168/tcp RSVD
rsvd 168/udp RSVD
Neil Todd <mcvax!ist.co.uk!neil@UUNET.UU.NET>
send 169/tcp SEND
send 169/udp SEND
William D. Wisner <wisner@HAYES.FAI.ALASKA.EDU>
print-srv 170/tcp Network PostScript
print-srv 170/udp Network PostScript
Brian Reid <reid@DECWRL.DEC.COM>
multiplex 171/tcp Network Innovations Multiplex
multiplex 171/udp Network Innovations Multiplex
cl/1 172/tcp Network Innovations CL/1
cl/1 172/udp Network Innovations CL/1
Kevin DeVault <<---none--->
xyplex-mux 173/tcp Xyplex
xyplex-mux 173/udp Xyplex
Bob Stewart <STEWART@XYPLEX.COM>
mailq 174/tcp MAILQ
mailq 174/udp MAILQ

C
om

pendium
 2 page 448

Registered port numbers Page 9

Rayan Zachariassen <rayan@AI.TORONTO.EDU>
vmnet 175/tcp VMNET
vmnet 175/udp VMNET
Christopher Tengi <tengi@Princeton.EDU>
genrad-mux 176/tcp GENRAD-MUX
genrad-mux 176/udp GENRAD-MUX
Ron Thornton <thornton@qm7501.genrad.com>
xdmcp 177/tcp X Display Manager Control Protocol
xdmcp 177/udp X Display Manager Control Protocol
Robert W. Scheifler <RWS@XX.LCS.MIT.EDU>
nextstep 178/tcp NextStep Window Server
nextstep 178/udp NextStep Window Server
Leo Hourvitz <leo@NEXT.COM>
bgp 179/tcp Border Gateway Protocol
bgp 179/udp Border Gateway Protocol
Kirk Lougheed <LOUGHEED@MATHOM.CISCO.COM>
ris 180/tcp Intergraph
ris 180/udp Intergraph
Dave Buehmann <ingr!daveb@UUNET.UU.NET>
unify 181/tcp Unify
unify 181/udp Unify
Vinod Singh <--none--->
audit 182/tcp Unisys Audit SITP
audit 182/udp Unisys Audit SITP
Gil Greenbaum <gcole@nisd.cam.unisys.com>
ocbinder 183/tcp OCBinder
ocbinder 183/udp OCBinder
ocserver 184/tcp OCServer
ocserver 184/udp OCServer
Jerrilynn Okamura <--none--->
remote-kis 185/tcp Remote-KIS
remote-kis 185/udp Remote-KIS
kis 186/tcp KIS Protocol
kis 186/udp KIS Protocol
Ralph Droms <rdroms@NRI.RESTON.VA.US>
aci 187/tcp Application Communication Interface
aci 187/udp Application Communication Interface
Rick Carlos <rick.ticipa.csc.ti.com>
mumps 188/tcp Plus Five's MUMPS
mumps 188/udp Plus Five's MUMPS
Hokey Stenn <hokey@PLUS5.COM>
qft 189/tcp Queued File Transport
qft 189/udp Queued File Transport
Wayne Schroeder <schroeder@SDS.SDSC.EDU>
gacp 190/tcp Gateway Access Control Protocol
gacp 190/udp Gateway Access Control Protocol
C. Philip Wood <cpw@LANL.GOV>
prospero 191/tcp Prospero Directory Service
prospero 191/udp Prospero Directory Service
B. Clifford Neuman <bcn@isi.edu>
osu-nms 192/tcp OSU Network Monitoring System
osu-nms 192/udp OSU Network Monitoring System
Doug Karl <KARL-D@OSU-20.IRCC.OHIO-STATE.EDU>
srmp 193/tcp Spider Remote Monitoring Protocol
srmp 193/udp Spider Remote Monitoring Protocol
Ted J. Socolofsky <Teds@SPIDER.CO.UK>
irc 194/tcp Internet Relay Chat Protocol
irc 194/udp Internet Relay Chat Protocol
Jarkko Oikarinen <jto@TOLSUN.OULU.FI>
dn6-nlm-aud 195/tcp DNSIX Network Level Module Audit
dn6-nlm-aud 195/udp DNSIX Network Level Module Audit
dn6-smm-red 196/tcp DNSIX Session Mgt Module Audit Redir
dn6-smm-red 196/udp DNSIX Session Mgt Module Audit Redir
Lawrence Lebahn <DIA3@PAXRV-NES.NAVY.MIL>
dls 197/tcp Directory Location Service
dls 197/udp Directory Location Service
dls-mon 198/tcp Directory Location Service Monitor

Registered port numbers Page 10

dls-mon 198/udp Directory Location Service Monitor
Scott Bellew <smb@cs.purdue.edu>
smux 199/tcp SMUX
smux 199/udp SMUX
Marshall Rose <mrose@dbc.mtview.ca.us>
src 200/tcp IBM System Resource Controller
src 200/udp IBM System Resource Controller
Gerald McBrearty <---none--->
at-rtmp 201/tcp AppleTalk Routing Maintenance
at-rtmp 201/udp AppleTalk Routing Maintenance
at-nbp 202/tcp AppleTalk Name Binding
at-nbp 202/udp AppleTalk Name Binding
at-3 203/tcp AppleTalk Unused
at-3 203/udp AppleTalk Unused
at-echo 204/tcp AppleTalk Echo
at-echo 204/udp AppleTalk Echo
at-5 205/tcp AppleTalk Unused
at-5 205/udp AppleTalk Unused
at-zis 206/tcp AppleTalk Zone Information
at-zis 206/udp AppleTalk Zone Information
at-7 207/tcp AppleTalk Unused
at-7 207/udp AppleTalk Unused
at-8 208/tcp AppleTalk Unused
at-8 208/udp AppleTalk Unused
Rob Chandhok <chandhok@gnome.cs.cmu.edu>
qmtp 209/tcp The Quick Mail Transfer Protocol
qmtp 209/udp The Quick Mail Transfer Protocol
Dan Bernstein <djb@silverton.berkeley.edu>
z39.50 210/tcp ANSI Z39.50
z39.50 210/udp ANSI Z39.50
Mark Needleman
<mhnur%uccmvsa.bitnet@cornell.cit.cornell.edu>
914c/g 211/tcp Texas Instruments 914C/G Terminal
914c/g 211/udp Texas Instruments 914C/G Terminal
Bill Harrell <---none--->
anet 212/tcp ATEXSSTR
anet 212/udp ATEXSSTR
Jim Taylor <taylor@heart.epps.kodak.com>
ipx 213/tcp IPX
ipx 213/udp IPX
Don Provan <donp@xlnvax.novell.com>
vmpwscs 214/tcp VM PWSCS
vmpwscs 214/udp VM PWSCS
Dan Shia <dset!shia@uunet.UU.NET>
softpc 215/tcp Insignia Solutions
softpc 215/udp Insignia Solutions
Martyn Thomas <---none--->
CAIlic 216/tcp Computer Associates Int'l License Server
CAIlic 216/udp Computer Associates Int'l License Server
Chuck Spitz <spich04@cai.com>
dbase 217/tcp dBASE Unix
dbase 217/udp dBASE Unix
Don Gibson
<sequent!aero!twinsun!ashtate.A-T.COM!dong@uunet.UU.NET>
mpp 218/tcp Netix Message Posting Protocol
mpp 218/udp Netix Message Posting Protocol
Shannon Yeh <yeh@netix.com>
uarps 219/tcp Unisys ARPs
uarps 219/udp Unisys ARPs
Ashok Marwaha <---none--->
imap3 220/tcp Interactive Mail Access Protocol v3
imap3 220/udp Interactive Mail Access Protocol v3
James Rice <RICE@SUMEX-AIM.STANFORD.EDU>
fln-spx 221/tcp Berkeley rlogind with SPX auth
fln-spx 221/udp Berkeley rlogind with SPX auth
rsh-spx 222/tcp Berkeley rshd with SPX auth
rsh-spx 222/udp Berkeley rshd with SPX auth

C
om

pendium
 2 page 449

Registered port numbers Page 11

cdc 223/tcp Certificate Distribution Center
cdc 223/udp Certificate Distribution Center
Kannan Alagappan <kannan@sejour.enet.dec.com>
########### Possible Conflict of Port 222 with "Masqdialer"##############
Contact for Masqdialer is Charles Wright <cpwright@villagenet.com>###
masqdialer 224/tcp masqdialer
masqdialer 224/udp masqdialer
Charles Wright <cpwright@villagenet.com>
225-241 Reserved
Jon Postel <postel@isi.edu>
direct 242/tcp Direct
direct 242/udp Direct
Herb Sutter <HerbS@cntc.com>
sur-meas 243/tcp Survey Measurement
sur-meas 243/udp Survey Measurement
Dave Clark <ddc@LCS.MIT.EDU>
inbusiness 244/tcp inbusiness
inbusiness 244/udp inbusiness
Derrick Hisatake <derrick.i.hisatake@intel.com>
link 245/tcp LINK
link 245/udp LINK
dsp3270 246/tcp Display Systems Protocol
dsp3270 246/udp Display Systems Protocol
Weldon J. Showalter <Gamma@MINTAKA.DCA.MIL>
subntbcst_tftp 247/tcp SUBNTBCST_TFTP
subntbcst_tftp 247/udp SUBNTBCST_TFTP
John Fake <fake@us.ibm.com>
bhfhs 248/tcp bhfhs
bhfhs 248/udp bhfhs
John Kelly <johnk@bellhow.com>
249-255 Reserved
Jon Postel <postel@isi.edu>
rap 256/tcp RAP
rap 256/udp RAP
J.S. Greenfield <greeny@raleigh.ibm.com>
set 257/tcp Secure Electronic Transaction
set 257/udp Secure Electronic Transaction
Donald Eastlake <dee3@torque.pothole.com>
yak-chat 258/tcp Yak Winsock Personal Chat
yak-chat 258/udp Yak Winsock Personal Chat
Brian Bandy <bbandy@swbell.net>
esro-gen 259/tcp Efficient Short Remote Operations
esro-gen 259/udp Efficient Short Remote Operations
Mohsen Banan <mohsen@rostam.neda.com>
openport 260/tcp Openport
openport 260/udp Openport
John Marland <jmarland@dean.openport.com>
nsiiops 261/tcp IIOP Name Service over TLS/SSL
nsiiops 261/udp IIOP Name Service over TLS/SSL
Jeff Stewart <jstewart@netscape.com>
arcisdms262/tcp Arcisdms
arcisdms262/udp Arcisdms
Russell Crook (rmc@sni.ca>
hdap 263/tcp HDAP
hdap 263/udp HDAP
Troy Gau <troy@zyxel.com>
bgmp 264/tcp BGMP
bgmp 264/udp BGMP
Dave Thaler <thalerd@eecs.umich.edu>
x-bone-ctl 265/tcp X-Bone CTL
x-bone-ctl 265/udp X-Bone CTL
Joe Touch <touch@isi.edu>
sst 266/tcp SCSI on ST
sst 266/udp SCSI on ST
Donald D. Woelz <don@genroco.com>
td-service 267/tcp Tobit David Service Layer
td-service 267/udp Tobit David Service Layer

Registered port numbers Page 12

td-replica 268/tcp Tobit David Replica
td-replica 268/udp Tobit David Replica
Franz-Josef Leuders <development@tobit.com>
269-279 Unassigned
http-mgmt 280/tcp http-mgmt
http-mgmt 280/udp http-mgmt
Adrian Pell
<PELL_ADRIAN/HP-UnitedKingdom_om6@hplb.hpl.hp.com>
personal-link 281/tcp Personal Link
personal-link 281/udp Personal Link
Dan Cummings <doc@cnr.com>
cableport-ax 282/tcp Cable Port A/X
cableport-ax 282/udp Cable Port A/X
Craig Langfahl <Craig_J_Langfahl@ccm.ch.intel.com>
rescap 283/tcp rescap
rescap 283/udp rescap
Paul Hoffman <phoffman@imc.org>
corerjd 284/tcp corerjd
corerjd 284/udp corerjd
Chris Thornhill <cjt@corenetworks.com>
285 Unassigned
fxp-1 286/tcp FXP-1
fxp-1 286/udp FXP-1
James Darnall <jim@cennoid.com>
k-block 287/tcp K-BLOCK
k-block 287/udp K-BLOCK
Simon P Jackson <jacko@kring.co.uk>
288-307 Unassigned
novastorbakcup 308/tcp Novastor Backup
novastorbakcup 308/udp Novastor Backup
Brian Dickman <brian@novastor.com>
entrusttime 309/tcp EntrustTime
entrusttime 309/udp EntrustTime
Peter Whittaker <pww@entrust.com>
bhmds 310/tcp bhmds
bhmds 310/udp bhmds
John Kelly <johnk@bellhow.com>
asip-webadmin 311/tcp AppleShare IP WebAdmin
asip-webadmin 311/udp AppleShare IP WebAdmin
Ann Huang <annhuang@apple.com>
vslmp 312/tcp VSLMP
vslmp 312/udp VSLMP
Gerben Wierda <Gerben_Wierda@RnA.nl>
magenta-logic 313/tcp Magenta Logic
magenta-logic 313/udp Magenta Logic
Karl Rousseau <kr@netfusion.co.uk>
opalis-robot 314/tcp Opalis Robot
opalis-robot 314/udp Opalis Robot
Laurent Domenech, Opalis <ldomenech@opalis.com>
dpsi 315/tcp DPSI
dpsi 315/udp DPSI
Tony Scamurra <Tony@DesktopPaging.com>
decauth 316/tcp decAuth
decauth 316/udp decAuth
Michael Agishtein <misha@unx.dec.com>
zannet 317/tcp Zannet
zannet 317/udp Zannet
Zan Oliphant <zan@accessone.com>
pkix-timestamp 318/tcp PKIX TimeStamp
pkix-timestamp 318/udp PKIX TimeStamp
Robert Zuccherato <robert.zuccherato@entrust.com>
ptp-event 319/tcp PTP Event
ptp-event 319/udp PTP Event
ptp-general 320/tcp PTP General
ptp-general 320/udp PTP General
John Eidson <eidson@hpl.hp.com>
pip 321/tcp PIP

C
om

pendium
 2 page 450

Registered port numbers Page 13

pip 321/udp PIP
Gordon Mohr <gojomo@usa.net>
rtsps 322/tcp RTSPS
rtsps 322/udp RTSPS
Anders Klemets <anderskl@microsoft.com>
323-332 Unassigned
texar 333/tcp Texar Security Port
texar 333/udp Texar Security Port
Eugen Bacic <ebacic@texar.com>
334-343 Unassigned
pdap 344/tcp Prospero Data Access Protocol
pdap 344/udp Prospero Data Access Protocol
B. Clifford Neuman <bcn@isi.edu>
pawserv 345/tcp Perf Analysis Workbench
pawserv 345/udp Perf Analysis Workbench
zserv 346/tcp Zebra server
zserv 346/udp Zebra server
fatserv 347/tcp Fatmen Server
fatserv 347/udp Fatmen Server
csi-sgwp 348/tcp Cabletron Management Protocol
csi-sgwp 348/udp Cabletron Management Protocol
mftp 349/tcp mftp
mftp 349/udp mftp
Dave Feinleib <davefe@microsoft.com>
matip-type-a 350/tcp MATIP Type A
matip-type-a 350/udp MATIP Type A
matip-type-b 351/tcp MATIP Type B
matip-type-b 351/udp MATIP Type B
Alain Robert <arobert@par.sita.int>
The following entry records an unassigned but widespread use
bhoetty 351/tcp bhoetty (added 5/21/97)
bhoetty 351/udp bhoetty
John Kelly <johnk@bellhow.com>
dtag-ste-sb 352/tcp DTAG (assigned long ago)
dtag-ste-sb 352/udp DTAG
Ruediger Wald <wald@ez-darmstadt.telekom.de>
The following entry records an unassigned but widespread use
bhoedap4352/tcp bhoedap4 (added 5/21/97)
bhoedap4352/udp bhoedap4
John Kelly <johnk@bellhow.com>
ndsauth 353/tcp NDSAUTH
ndsauth 353/udp NDSAUTH
Jayakumar Ramalingam <jayakumar@novell.com>
bh611 354/tcp bh611
bh611 354/udp bh611
John Kelly <johnk@bellhow.com>
datex-asn 355/tcp DATEX-ASN
datex-asn 355/udp DATEX-ASN
Kenneth Vaughn <kvaughn@mail.viggen.com>
cloanto-net-1 356/tcp Cloanto Net 1
cloanto-net-1 356/udp Cloanto Net 1
Michael Battilana <mcb@cloanto.com>
bhevent 357/tcp bhevent
bhevent 357/udp bhevent
John Kelly <johnk@bellhow.com>
shrinkwrap 358/tcp Shrinkwrap
shrinkwrap 358/udp Shrinkwrap
Bill Simpson <wsimpson@greendragon.com>
nsrmp 359/tcp Network Security Risk Management Protocol
nsrmp 359/udp Network Security Risk Management Protocol
Eric Jacksch <jacksch@tenebris.ca>
scoi2odialog 360/tcp scoi2odialog
scoi2odialog 360/udp scoi2odialog
Keith Petley <keithp@sco.COM>
semantix361/tcp Semantix
semantix361/udp Semantix
Semantix <xsSupport@semantix.com>

Registered port numbers Page 14

srssend 362/tcp SRS Send
srssend 362/udp SRS Send
Curt Mayer <curt@emergent.com>
rsvp_tunnel 363/tcp RSVP Tunnel
rsvp_tunnel 363/udp RSVP Tunnel
Andreas Terzis <terzis@cs.ucla.edu>
aurora-cmgr 364/tcp Aurora CMGR
aurora-cmgr 364/udp Aurora CMGR
Philip Budne <budne@auroratech.com>
dtk 365/tcp DTK
dtk 365/udp DTK
Fred Cohen <fc@all.net>
odmr 366/tcp ODMR
odmr 366/udp ODMR
Randall Gellens <randy@qualcomm.com>
mortgageware 367/tcp MortgageWare
mortgageware 367/udp MortgageWare
Ole Hellevik <oleh@interlinq.com>
qbikgdp 368/tcp QbikGDP
qbikgdp 368/udp QbikGDP
Adrien de Croy <adrien@qbik.com>
rpc2portmap 369/tcp rpc2portmap
rpc2portmap 369/udp rpc2portmap
codaauth2 370/tcp codaauth2
codaauth2 370/udp codaauth2
Robert Watson <robert@cyrus.watson.org>
clearcase 371/tcp Clearcase
clearcase 371/udp Clearcase
Dave LeBlang <leglang@atria.com>
ulistproc 372/tcp ListProcessor
ulistproc 372/udp ListProcessor
Anastasios Kotsikonas <tasos@cs.bu.edu>
legent-1 373/tcp Legent Corporation
legent-1 373/udp Legent Corporation
legent-2 374/tcp Legent Corporation
legent-2 374/udp Legent Corporation
Keith Boyce <---none--->
hassle 375/tcp Hassle
hassle 375/udp Hassle
Reinhard Doelz <doelz@comp.bioz.unibas.ch>
nip 376/tcp Amiga Envoy Network Inquiry Proto
nip 376/udp Amiga Envoy Network Inquiry Proto
Heinz Wrobel <hwrobel@gmx.de>
tnETOS 377/tcp NEC Corporation
tnETOS 377/udp NEC Corporation
dsETOS 378/tcp NEC Corporation
dsETOS 378/udp NEC Corporation
Tomoo Fujita <tf@arc.bs1.fc.nec.co.jp>
is99c 379/tcp TIA/EIA/IS-99 modem client
is99c 379/udp TIA/EIA/IS-99 modem client
is99s 380/tcp TIA/EIA/IS-99 modem server
is99s 380/udp TIA/EIA/IS-99 modem server
Frank Quick <fquick@qualcomm.com>
hp-collector 381/tcp hp performance data collector
hp-collector 381/udp hp performance data collector
hp-managed-node 382/tcp hp performance data managed node
hp-managed-node 382/udp hp performance data managed node
hp-alarm-mgr 383/tcp hp performance data alarm manager
hp-alarm-mgr 383/udp hp performance data alarm manager
Frank Blakely <frankb@hpptc16.rose.hp.com>
arns 384/tcp A Remote Network Server System
arns 384/udp A Remote Network Server System
David Hornsby <djh@munnari.OZ.AU>
ibm-app 385/tcp IBM Application
ibm-app 385/udp IBM Application
Lisa Tomita <---none--->
asa 386/tcp ASA Message Router Object Def.

C
om

pendium
 2 page 451

Registered port numbers Page 15

asa 386/udp ASA Message Router Object Def.
Steve Laitinen <laitinen@brutus.aa.ab.com>
aurp 387/tcp Appletalk Update-Based Routing Pro.
aurp 387/udp Appletalk Update-Based Routing Pro.
Chris Ranch <cranch@novell.com>
unidata-ldm 388/tcp Unidata LDM
unidata-ldm 388/udp Unidata LDM
Glenn Davis <support@unidata.ucar.edu>
389/tcp Lightweight Directory Access Protocol
ldap 389/udp Lightweight Directory Access Protocol
Tim Howes <Tim.Howes@terminator.cc.umich.edu>
uis 390/tcp UIS
uis 390/udp UIS
Ed Barron <---none--->
synotics-relay 391/tcp SynOptics SNMP Relay Port
synotics-relay 391/udp SynOptics SNMP Relay Port
synotics-broker 392/tcp SynOptics Port Broker Port
synotics-broker 392/udp SynOptics Port Broker Port
Illan Raab <iraab@synoptics.com>
meta5 393/tcp Meta5
meta5 393/udp Meta5
Jim Kanzler <jim.kanzler@meta5.com>
embl-ndt 394/tcp EMBL Nucleic Data Transfer
embl-ndt 394/udp EMBL Nucleic Data Transfer
Peter Gad <peter@bmc.uu.se>
netcp 395/tcp NETscout Control Protocol
netcp 395/udp NETscout Control Protocol
Anil Singhal <---none--->
netware-ip 396/tcp Novell Netware over IP
netware-ip 396/udp Novell Netware over IP
mptn 397/tcp Multi Protocol Trans. Net.
mptn 397/udp Multi Protocol Trans. Net.
Soumitra Sarkar <sarkar@vnet.ibm.com>
kryptolan 398/tcp Kryptolan
kryptolan 398/udp Kryptolan
Peter de Laval <pdl@sectra.se>
iso-tsap-c2 399/tcp ISO Transport Class 2 Non-Control over TCP
iso-tsap-c2 399/udp ISO Transport Class 2 Non-Control over TCP
Yanick Pouffary <pouffary@taec.enet.dec.com>
work-sol 400/tcp Workstation Solutions
work-sol 400/udp Workstation Solutions
Jim Ward <jimw@worksta.com>
ups 401/tcp Uninterruptible Power Supply
ups 401/udp Uninterruptible Power Supply
Charles Bennett <chuck@benatong.com>
genie 402/tcp Genie Protocol
genie 402/udp Genie Protocol
Mark Hankin <---none--->
decap 403/tcp decap
decap 403/udp decap
nced 404/tcp nced
nced 404/udp nced
ncld 405/tcp ncld
ncld 405/udp ncld
Richard Jones <---none--->
imsp 406/tcp Interactive Mail Support Protocol
imsp 406/udp Interactive Mail Support Protocol
John Myers <jgm+@cmu.edu>
timbuktu 407/tcp Timbuktu
timbuktu 407/udp Timbuktu
Marc Epard <marc@netopia.com>
prm-sm 408/tcp Prospero Resource Manager Sys. Man.
prm-sm 408/udp Prospero Resource Manager Sys. Man.
prm-nm 409/tcp Prospero Resource Manager Node Man.
prm-nm 409/udp Prospero Resource Manager Node Man.
B. Clifford Neuman <bcn@isi.edu>
decladebug 410/tcp DECLadebug Remote Debug Protocol

Registered port numbers Page 16

decladebug 410/udp DECLadebug Remote Debug Protocol
Anthony Berent <anthony.berent@reo.mts.dec.com>
rmt 411/tcp Remote MT Protocol
rmt 411/udp Remote MT Protocol
Peter Eriksson <pen@lysator.liu.se>
synoptics-trap 412/tcp Trap Convention Port
synoptics-trap 412/udp Trap Convention Port
Illan Raab <iraab@synoptics.com>
smsp 413/tcp Storage Management Services Protocol
smsp 413/udp Storage Management Services Protocol
Murthy Srinivas <murthy@novell.com>
infoseek 414/tcp InfoSeek
infoseek 414/udp InfoSeek
Steve Kirsch <stk@infoseek.com>
bnet 415/tcp BNet
bnet 415/udp BNet
Jim Mertz <JMertz+RV09@rvdc.unisys.com>
silverplatter 416/tcp Silverplatter
silverplatter 416/udp Silverplatter
Peter Ciuffetti <petec@silverplatter.com>
onmux 417/tcp Onmux
onmux 417/udp Onmux
Stephen Hanna <hanna@world.std.com>
hyper-g 418/tcp Hyper-G
hyper-g 418/udp Hyper-G
Frank Kappe <fkappe@iicm.tu-graz.ac.at>
ariel1 419/tcp Ariel
ariel1 419/udp Ariel
Lennie Stovel <bl.mds@rlg.org>
smpte 420/tcp SMPTE
smpte 420/udp SMPTE
Si Becker <71362.22@CompuServe.COM>
ariel2 421/tcp Ariel
ariel2 421/udp Ariel
ariel3 422/tcp Ariel
ariel3 422/udp Ariel
Lennie Stovel <bl.mds@rlg.org>
opc-job-start 423/tcp IBM Operations Planning and Control Start
opc-job-start 423/udp IBM Operations Planning and Control Start
opc-job-track 424/tcp IBM Operations Planning and Control Track
opc-job-track 424/udp IBM Operations Planning and Control Track
Conny Larsson <cocke@VNET.IBM.COM>
icad-el 425/tcp ICAD
icad-el 425/udp ICAD
Larry Stone <lcs@icad.com>
smartsdp 426/tcp smartsdp
smartsdp 426/udp smartsdp
Alexander Dupuy <dupuy@smarts.com>
svrloc 427/tcp Server Location
svrloc 427/udp Server Location
<veizades@ftp.com>
ocs_cmu 428/tcp OCS_CMU
ocs_cmu 428/udp OCS_CMU
ocs_amu 429/tcp OCS_AMU
ocs_amu 429/udp OCS_AMU
Florence Wyman <wyman@peabody.plk.af.mil>
utmpsd 430/tcp UTMPSD
utmpsd 430/udp UTMPSD
utmpcd 431/tcp UTMPCD
utmpcd 431/udp UTMPCD
iasd 432/tcp IASD
iasd 432/udp IASD
Nir Baroz <nbaroz@encore.com>
nnsp 433/tcp NNSP
nnsp 433/udp NNSP
Rob Robertson <rob@gangrene.berkeley.edu>
mobileip-agent 434/tcp MobileIP-Agent

C
om

pendium
 2 page 452

Registered port numbers Page 17

mobileip-agent 434/udp MobileIP-Agent
mobilip-mn 435/tcp MobilIP-MN
mobilip-mn 435/udp MobilIP-MN
Kannan Alagappan <kannan@sejour.lkg.dec.com>
dna-cml 436/tcp DNA-CML
dna-cml 436/udp DNA-CML
Dan Flowers <flowers@smaug.lkg.dec.com>
comscm 437/tcp comscm
comscm 437/udp comscm
Jim Teague <teague@zso.dec.com>
dsfgw 438/tcp dsfgw
dsfgw 438/udp dsfgw
Andy McKeen <mckeen@osf.org>
dasp 439/tcp dasp Thomas Obermair
dasp 439/udp dasp tommy@inlab.m.eunet.de
Thomas Obermair <tommy@inlab.m.eunet.de>
sgcp 440/tcp sgcp
sgcp 440/udp sgcp
Marshall Rose <mrose@dbc.mtview.ca.us>
decvms-sysmgt 441/tcp decvms-sysmgt
decvms-sysmgt 441/udp decvms-sysmgt
Lee Barton <barton@star.enet.dec.com>
cvc_hostd 442/tcp cvc_hostd
cvc_hostd 442/udp cvc_hostd
Bill Davidson <billd@equalizer.cray.com>
https 443/tcp http protocol over TLS/SSL
https 443/udp http protocol over TLS/SSL
Kipp E.B. Hickman <kipp@mcom.com>
snpp 444/tcp Simple Network Paging Protocol
snpp 444/udp Simple Network Paging Protocol
[RFC1568]
microsoft-ds 445/tcp Microsoft-DS
microsoft-ds 445/udp Microsoft-DS
Pradeep Bahl <pradeepb@microsoft.com>
ddm-rdb 446/tcp DDM-RDB
ddm-rdb 446/udp DDM-RDB
ddm-dfm 447/tcp DDM-RFM
ddm-dfm 447/udp DDM-RFM
Jan David Fisher <jdfisher@VNET.IBM.COM>
ddm-ssl 448/tcp DDM-SSL
ddm-ssl 448/udp DDM-SSL
Steve Ritland <srr@vnet.ibm.com>
as-servermap 449/tcp AS Server Mapper
as-servermap 449/udp AS Server Mapper
Barbara Foss <BGFOSS@rchvmv.vnet.ibm.com>
tserver 450/tcp TServer
tserver 450/udp TServer
Harvey S. Schultz <hss@mtgzfs3.mt.att.com>
sfs-smp-net 451/tcp Cray Network Semaphore server
sfs-smp-net 451/udp Cray Network Semaphore server
sfs-config 452/tcp Cray SFS config server
sfs-config 452/udp Cray SFS config server
Walter Poxon <wdp@ironwood.cray.com>
creativeserver 453/tcp CreativeServer
creativeserver 453/udp CreativeServer
contentserver 454/tcp ContentServer
contentserver 454/udp ContentServer
creativepartnr 455/tcp CreativePartnr
creativepartnr 455/udp CreativePartnr
Jesus Ortiz <jesus_ortiz@emotion.com>
macon-tcp 456/tcp macon-tcp
macon-udp 456/udp macon-udp
Yoshinobu Inoue
<shin@hodaka.mfd.cs.fujitsu.co.jp>
scohelp 457/tcp scohelp
scohelp 457/udp scohelp
Faith Zack <faithz@sco.com>

Registered port numbers Page 18

appleqtc 458/tcp apple quick time
appleqtc 458/udp apple quick time
Murali Ranganathan
<murali_ranganathan@quickmail.apple.com>
ampr-rcmd 459/tcp ampr-rcmd
ampr-rcmd 459/udp ampr-rcmd
Rob Janssen <rob@sys3.pe1chl.ampr.org>
skronk 460/tcp skronk
skronk 460/udp skronk
Henry Strickland <strick@yak.net>
datasurfsrv 461/tcp DataRampSrv
datasurfsrv 461/udp DataRampSrv
datasurfsrvsec 462/tcp DataRampSrvSec
datasurfsrvsec 462/udp DataRampSrvSec
Diane Downie <downie@jibe.MV.COM>
alpes 463/tcp alpes
alpes 463/udp alpes
Alain Durand <Alain.Durand@imag.fr>
kpasswd 464/tcp kpasswd
kpasswd 464/udp kpasswd
Theodore Ts'o <tytso@MIT.EDU>
urd 465/tcp URL Rendesvous Directory for SSM
igmpv3lite 465/udp IGMP over UDP for SSM
Toerless Eckert <eckert@cisco.com>
digital-vrc 466/tcp digital-vrc
digital-vrc 466/udp digital-vrc
Peter Higginson <higginson@mail.dec.com>
mylex-mapd 467/tcp mylex-mapd
mylex-mapd 467/udp mylex-mapd
Gary Lewis <GaryL@hq.mylex.com>
photuris 468/tcp proturis
photuris 468/udp proturis
Bill Simpson <Bill.Simpson@um.cc.umich.edu>
rcp 469/tcp Radio Control Protocol
rcp 469/udp Radio Control Protocol
Jim Jennings +1-708-538-7241
scx-proxy 470/tcp scx-proxy
scx-proxy 470/udp scx-proxy
Scott Narveson <sjn@cray.com>
mondex 471/tcp Mondex
mondex 471/udp Mondex
Bill Reding <redingb@nwdt.natwest.co.uk>
ljk-login 472/tcp ljk-login
ljk-login 472/udp ljk-login
LJK Software, Cambridge, Massachusetts
<support@ljk.com>
hybrid-pop 473/tcp hybrid-pop
hybrid-pop 473/udp hybrid-pop
Rami Rubin <rami@hybrid.com>
tn-tl-w1 474/tcp tn-tl-w1
tn-tl-w2 474/udp tn-tl-w2
Ed Kress <eskress@thinknet.com>
tcpnethaspsrv 475/tcp tcpnethaspsrv
tcpnethaspsrv 475/udp tcpnethaspsrv
Charlie Hava <charlie@aladdin.co.il>
tn-tl-fd1 476/tcp tn-tl-fd1
tn-tl-fd1 476/udp tn-tl-fd1
Ed Kress <eskress@thinknet.com>
ss7ns 477/tcp ss7ns
ss7ns 477/udp ss7ns
Jean-Michel URSCH <ursch@taec.enet.dec.com>
spsc 478/tcp spsc
spsc 478/udp spsc
Mike Rieker <mikea@sp32.com>
iafserver 479/tcp iafserver
iafserver 479/udp iafserver
iafdbase 480/tcp iafdbase

C
om

pendium
 2 page 453

Registered port numbers Page 19

iafdbase 480/udp iafdbase
ricky@solect.com <Rick Yazwinski>
ph 481/tcp Ph service
ph 481/udp Ph service
Roland Hedberg <Roland.Hedberg@umdac.umu.se>
bgs-nsi 482/tcp bgs-nsi
bgs-nsi 482/udp bgs-nsi
Jon Saperia <saperia@bgs.com>
ulpnet 483/tcp ulpnet
ulpnet 483/udp ulpnet
Kevin Mooney <kevinm@bfs.unibol.com>
integra-sme 484/tcp Integra Software Management Environment
integra-sme 484/udp Integra Software Management Environment
Randall Dow <rand@randix.m.isr.de>
powerburst 485/tcp Air Soft Power Burst
powerburst 485/udp Air Soft Power Burst
<gary@airsoft.com>
avian 486/tcp avian
avian 486/udp avian
Robert Ullmann
<Robert_Ullmann/CAM/Lotus.LOTUS@crd.lotus.com>
saft 487/tcp saft Simple Asynchronous File Transfer
saft 487/udp saft Simple Asynchronous File Transfer
Ulli Horlacher <framstag@rus.uni-stuttgart.de>
gss-http 488/tcp gss-http
gss-http 488/udp gss-http
Doug Rosenthal <rosenthl@krypton.einet.net>
nest-protocol 489/tcp nest-protocol
nest-protocol 489/udp nest-protocol
Gilles Gameiro <ggameiro@birdland.com>
micom-pfs 490/tcp micom-pfs
micom-pfs 490/udp micom-pfs
David Misunas <DMisunas@micom.com>
go-login 491/tcp go-login
go-login 491/udp go-login
Troy Morrison <troy@graphon.com>
ticf-1 492/tcp Transport Independent Convergence for FNA
ticf-1 492/udp Transport Independent Convergence for FNA
ticf-2 493/tcp Transport Independent Convergence for FNA
ticf-2 493/udp Transport Independent Convergence for FNA
Mamoru Ito <Ito@pcnet.ks.pfu.co.jp>
pov-ray 494/tcp POV-Ray
pov-ray 494/udp POV-Ray
POV-Team Co-ordinator
<iana-port.remove-spamguard@povray.org>
intecourier 495/tcp intecourier
intecourier 495/udp intecourier
Steve Favor <sfavor@tigger.intecom.com>
pim-rp-disc 496/tcp PIM-RP-DISC
pim-rp-disc 496/udp PIM-RP-DISC
Dino Farinacci <dino@cisco.com>
dantz 497/tcp dantz
dantz 497/udp dantz
Richard Zulch <richard_zulch@dantz.com>
siam 498/tcp siam
siam 498/udp siam
Philippe Gilbert <pgilbert@cal.fr>
iso-ill 499/tcp ISO ILL Protocol
iso-ill 499/udp ISO ILL Protocol
Mark H. Needleman <Mark.Needleman@ucop.edu>
isakmp 500/tcp isakmp
isakmp 500/udp isakmp
Mark Schertler <mjs@tycho.ncsc.mil>
stmf 501/tcp STMF
stmf 501/udp STMF
Alan Ungar <aungar@farradyne.com>
asa-appl-proto 502/tcp asa-appl-proto

Registered port numbers Page 20

asa-appl-proto 502/udp asa-appl-proto
Dennis Dube <ddube@modicon.com>
intrinsa 503/tcp Intrinsa
intrinsa 503/udp Intrinsa
Robert Ford <robert@intrinsa.com>
citadel 504/tcp citadel
citadel 504/udp citadel
Art Cancro <ajc@uncnsrd.mt-kisco.ny.us>
mailbox-lm 505/tcp mailbox-lm
mailbox-lm 505/udp mailbox-lm
Beverly Moody <Beverly_Moody@stercomm.com>
ohimsrv 506/tcp ohimsrv
ohimsrv 506/udp ohimsrv
Scott Powell <spowell@openhorizon.com>
crs 507/tcp crs
crs 507/udp crs
Brad Wright <bradwr@microsoft.com>
xvttp 508/tcp xvttp
xvttp 508/udp xvttp
Keith J. Alphonso <alphonso@ncs-ssc.com>
snare 509/tcp snare
snare 509/udp snare
Dennis Batchelder <dennis@capres.com>
fcp 510/tcp FirstClass Protocol
fcp 510/udp FirstClass Protocol
Mike Marshburn <paul@softarc.com>
passgo 511/tcp PassGo
passgo 511/udp PassGo
John Rainford <jrainford@passgo.com>
exec 512/tcp remote process execution;
authentication performed using
passwords and UNIX login names
comsat 512/udp
biff 512/udp used by mail system to notify users
of new mail received; currently
receives messages only from
processes on the same machine
login 513/tcp remote login a la telnet;
automatic authentication performed
based on priviledged port numbers
and distributed data bases which
identify "authentication domains"
who 513/udp maintains data bases showing who's
logged in to machines on a local
net and the load average of the
machine
shell 514/tcp cmd
like exec, but automatic authentication
is performed as for login server
syslog 514/udp
printer 515/tcp spooler
printer 515/udp spooler
videotex 516/tcp videotex
videotex 516/udp videotex
Daniel Mavrakis <system@venus.mctel.fr>
talk 517/tcp like tenex link, but across
machine - unfortunately, doesn't
use link protocol (this is actually
just a rendezvous port from which a
tcp connection is established)
talk 517/udp like tenex link, but across
machine - unfortunately, doesn't
use link protocol (this is actually
just a rendezvous port from which a
tcp connection is established)
ntalk 518/tcp
ntalk 518/udp

C
om

pendium
 2 page 454

Registered port numbers Page 21

utime 519/tcp unixtime
utime 519/udp unixtime
efs 520/tcp extended file name server
router 520/udp local routing process (on site);
uses variant of Xerox NS routing
information protocol - RIP
ripng 521/tcp ripng
ripng 521/udp ripng
Robert E. Minnear <minnear@ipsilon.com>
ulp 522/tcp ULP
ulp 522/udp ULP
Max Morris <maxm@MICROSOFT.com>
ibm-db2 523/tcp IBM-DB2
ibm-db2 523/udp IBM-DB2
Peter Pau <pau@VNET.IBM.COM>
ncp 524/tcp NCP
ncp 524/udp NCP
Don Provan <donp@sjf.novell.com>
timed 525/tcp timeserver
timed 525/udp timeserver
tempo 526/tcp newdate
tempo 526/udp newdate
Unknown
stx 527/tcp Stock IXChange
stx 527/udp Stock IXChange
custix 528/tcp Customer IXChange
custix 528/udp Customer IXChange
Ferdi Ladeira <ferdi.ladeira@ixchange.com>
irc-serv 529/tcp IRC-SERV
irc-serv 529/udp IRC-SERV
Brian Tackett <cym@acrux.net>
courier 530/tcp rpc
courier 530/udp rpc
conference 531/tcp chat
conference 531/udp chat
netnews 532/tcp readnews
netnews 532/udp readnews
netwall 533/tcp for emergency broadcasts
netwall 533/udp for emergency broadcasts
mm-admin 534/tcp MegaMedia Admin
mm-admin 534/udp MegaMedia Admin
Andreas Heidemann <a.heidemann@ais-gmbh.de>
iiop 535/tcp iiop
iiop 535/udp iiop
Jeff M.Michaud <michaud@zk3.dec.com>
opalis-rdv 536/tcp opalis-rdv
opalis-rdv 536/udp opalis-rdv
Laurent Domenech <ldomenech@opalis.com>
nmsp 537/tcp Networked Media Streaming Protocol
nmsp 537/udp Networked Media Streaming Protocol
Paul Santinelli Jr. <psantinelli@narrative.com>
gdomap 538/tcp gdomap
gdomap 538/udp gdomap
Richard Frith-Macdonald <richard@brainstorm.co.uk>
apertus-ldp 539/tcp Apertus Technologies Load Determination
apertus-ldp 539/udp Apertus Technologies Load Determination
uucp 540/tcp uucpd
uucp 540/udp uucpd
uucp-rlogin 541/tcp uucp-rlogin
uucp-rlogin 541/udp uucp-rlogin
Stuart Lynne <sl@wimsey.com>
commerce 542/tcp commerce
commerce 542/udp commerce
Randy Epstein <repstein@host.net>
klogin 543/tcp
klogin 543/udp
kshell 544/tcp krcmd

Registered port numbers Page 22

kshell 544/udp krcmd
appleqtcsrvr 545/tcp appleqtcsrvr
appleqtcsrvr 545/udp appleqtcsrvr
Murali Ranganathan
<Murali_Ranganathan@quickmail.apple.com>
dhcpv6-client 546/tcp DHCPv6 Client
dhcpv6-client 546/udp DHCPv6 Client
dhcpv6-server 547/tcp DHCPv6 Server
dhcpv6-server 547/udp DHCPv6 Server
Jim Bound <bound@zk3.dec.com>
afpovertcp 548/tcp AFP over TCP
afpovertcp 548/udp AFP over TCP
Leland Wallace <randall@apple.com>
idfp 549/tcp IDFP
idfp 549/udp IDFP
Ramana Kovi <ramana@kovi.com>
new-rwho 550/tcp new-who
new-rwho 550/udp new-who
cybercash 551/tcp cybercash
cybercash 551/udp cybercash
Donald E. Eastlake 3rd <dee@cybercash.com>
deviceshare 552/tcp deviceshare
deviceshare 552/udp deviceshare
Brian Schenkenberger <brians@advsyscon.com>
pirp 553/tcp pirp
pirp 553/udp pirp
D. J. Bernstein <djb@silverton.berkeley.edu>
rtsp 554/tcp Real Time Stream Control Protocol
rtsp 554/udp Real Time Stream Control Protocol
Rob Lanphier <robla@prognet.com>
dsf 555/tcp
dsf 555/udp
remotefs 556/tcp rfs server
remotefs 556/udp rfs server
openvms-sysipc 557/tcp openvms-sysipc
openvms-sysipc 557/udp openvms-sysipc
Alan Potter <potter@movies.enet.dec.com>
sdnskmp 558/tcp SDNSKMP
sdnskmp 558/udp SDNSKMP
teedtap 559/tcp TEEDTAP
teedtap 559/udp TEEDTAP
Mort Hoffman <hoffman@mail.ndhm.gtegsc.com>
rmonitor 560/tcp rmonitord
rmonitor 560/udp rmonitord
monitor 561/tcp
monitor 561/udp
chshell 562/tcp chcmd
chshell 562/udp chcmd
nntps 563/tcp nntp protocol over TLS/SSL (was snntp)
nntps 563/udp nntp protocol over TLS/SSL (was snntp)
Kipp E.B. Hickman <kipp@netscape.com>
9pfs 564/tcp plan 9 file service
9pfs 564/udp plan 9 file service
whoami 565/tcp whoami
whoami 565/udp whoami
streettalk 566/tcp streettalk
streettalk 566/udp streettalk
banyan-rpc 567/tcp banyan-rpc
banyan-rpc 567/udp banyan-rpc
Tom Lemaire <toml@banyan.com>
ms-shuttle 568/tcp microsoft shuttle
ms-shuttle 568/udp microsoft shuttle
Rudolph Balaz <rudolphb@microsoft.com>
ms-rome 569/tcp microsoft rome
ms-rome 569/udp microsoft rome
Rudolph Balaz <rudolphb@microsoft.com>
meter 570/tcp demon

C
om

pendium
 2 page 455

Registered port numbers Page 23

meter 570/udp demon
meter 571/tcp udemon
meter 571/udp udemon
sonar 572/tcp sonar
sonar 572/udp sonar
Keith Moore <moore@cs.utk.edu>
banyan-vip 573/tcp banyan-vip
banyan-vip 573/udp banyan-vip
Denis Leclerc <DLeclerc@banyan.com>
ftp-agent 574/tcp FTP Software Agent System
ftp-agent 574/udp FTP Software Agent System
Michael S. Greenberg <arnoff@ftp.com>
vemmi 575/tcp VEMMI
vemmi 575/udp VEMMI
Daniel Mavrakis <mavrakis@mctel.fr>
ipcd 576/tcp ipcd
ipcd 576/udp ipcd
vnas 577/tcp vnas
vnas 577/udp vnas
ipdd 578/tcp ipdd
ipdd 578/udp ipdd
Jay Farhat <jfarhat@ipass.com>
decbsrv 579/tcp decbsrv
decbsrv 579/udp decbsrv
Rudi Martin <movies::martin"@movies.enet.dec.com>
sntp-heartbeat 580/tcp SNTP HEARTBEAT
sntp-heartbeat 580/udp SNTP HEARTBEAT
Louis Mamakos <louie@uu.net>
bdp 581/tcp Bundle Discovery Protocol
bdp 581/udp Bundle Discovery Protocol
Gary Malkin <gmalkin@xylogics.com>
scc-security 582/tcp SCC Security
scc-security 582/udp SCC Security
Prashant Dholakia <prashant@semaphorecom.com>
philips-vc 583/tcp Philips Video-Conferencing
philips-vc 583/udp Philips Video-Conferencing
Janna Chang <janna@pmc.philips.com>
keyserver 584/tcp Key Server
keyserver 584/udp Key Server
Gary Howland <gary@systemics.com>
imap4-ssl 585/tcp IMAP4+SSL (use 993 instead)
imap4-ssl 585/udp IMAP4+SSL (use 993 instead)
Terry Gray <gray@cac.washington.edu>
Use of 585 is not recommended, use 993 instead
password-chg 586/tcp Password Change
password-chg 586/udp Password Change
submission 587/tcp Submission
submission 587/udp Submission
Randy Gellens <randy@qualcomm.com>
cal 588/tcp CAL
cal 588/udp CAL
Myron Hattig <Myron_Hattig@ccm.jf.intel.com>
eyelink 589/tcp EyeLink
eyelink 589/udp EyeLink
Dave Stampe <dstampe@psych.toronto.edu>
tns-cml 590/tcp TNS CML
tns-cml 590/udp TNS CML
Jerome Albin <albin@taec.enet.dec.com>
http-alt591/tcp FileMaker, Inc. - HTTP Alternate (see Port 80)
http-alt591/udp FileMaker, Inc. - HTTP Alternate (see Port 80)
Clay Maeckel <clay_maeckel@filemaker.com>
eudora-set 592/tcp Eudora Set
eudora-set 592/udp Eudora Set
Randall Gellens <randy@qualcomm.com>
http-rpc-epmap 593/tcp HTTP RPC Ep Map
http-rpc-epmap 593/udp HTTP RPC Ep Map
Edward Reus <edwardr@microsoft.com>

Registered port numbers Page 24

tpip 594/tcp TPIP
tpip 594/udp TPIP
Brad Spear <spear@platinum.com>
cab-protocol 595/tcp CAB Protocol
cab-protocol 595/udp CAB Protocol
Winston Hetherington
smsd 596/tcp SMSD
smsd 596/udp SMSD
Wayne Barlow <web@unx.dec.com>
ptcnameservice 597/tcp PTC Name Service
ptcnameservice 597/udp PTC Name Service
Yuri Machkasov <yuri@ptc.com>
sco-websrvrmg3 598/tcp SCO Web Server Manager 3
sco-websrvrmg3 598/udp SCO Web Server Manager 3
Simon Baldwin <simonb@sco.com>
acp 599/tcp Aeolon Core Protocol
acp 599/udp Aeolon Core Protocol
Michael Alyn Miller <malyn@aeolon.com>
ipcserver 600/tcp Sun IPC server
ipcserver 600/udp Sun IPC server
Bill Schiefelbein <schief@aspen.cray.com>
601-605 Unassigned
urm 606/tcp Cray Unified Resource Manager
urm 606/udp Cray Unified Resource Manager
nqs 607/tcp nqs
nqs 607/udp nqs
Bill Schiefelbein <schief@aspen.cray.com>
sift-uft 608/tcp Sender-Initiated/Unsolicited File Transfer
sift-uft 608/udp Sender-Initiated/Unsolicited File Transfer
Rick Troth <troth@rice.edu>
npmp-trap 609/tcp npmp-trap
npmp-trap 609/udp npmp-trap
npmp-local 610/tcp npmp-local
npmp-local 610/udp npmp-local
npmp-gui 611/tcp npmp-gui
npmp-gui 611/udp npmp-gui
John Barnes <jbarnes@crl.com>
hmmp-ind612/tcp HMMP Indication
hmmp-ind612/udp HMMP Indication
hmmp-op 613/tcp HMMP Operation
hmmp-op 613/udp HMMP Operation
Andrew Sinclair <andrsin@microsoft.com>
sshell 614/tcp SSLshell
sshell 614/udp SSLshell
Simon J. Gerraty <sjg@quick.com.au>
sco-inetmgr 615/tcp Internet Configuration Manager
sco-inetmgr 615/udp Internet Configuration Manager
sco-sysmgr 616/tcp SCO System Administration Server
sco-sysmgr 616/udp SCO System Administration Server
sco-dtmgr 617/tcp SCO Desktop Administration Server
sco-dtmgr 617/udp SCO Desktop Administration Server
Christopher Durham <chrisdu@sco.com>
dei-icda618/tcp DEI-ICDA
dei-icda618/udp DEI-ICDA
David Turner <digital@Quetico.tbaytel.net>
digital-evm 619/tcp Digital EVM
digital-evm 619/udp Digital EVM
Jem Treadwell <jem@unx.dec.com>
sco-websrvrmgr 620/tcp SCO WebServer Manager
sco-websrvrmgr 620/udp SCO WebServer Manager
Christopher Durham <chrisdu@sco.com>
escp-ip 621/tcp ESCP
escp-ip 621/udp ESCP
Lai Zit Seng <lzs@pobox.com>
collaborator 622/tcp Collaborator
collaborator 622/udp Collaborator
Johnson Davis <johnsond@opteamasoft.com>

C
om

pendium
 2 page 456

Registered port numbers Page 25

aux_bus_shunt 623/tcp Aux Bus Shunt
aux_bus_shunt 623/udp Aux Bus Shunt
Steve Williams <Steven_D_Williams@ccm.jf.intel.com>
cryptoadmin 624/tcp Crypto Admin
cryptoadmin 624/udp Crypto Admin
Tony Walker <tony@cryptocard.com>
dec_dlm 625/tcp DEC DLM
dec_dlm 625/udp DEC DLM
Rudi Martin <Rudi.Martin@edo.mts.dec.com>
asia 626/tcp ASIA
asia 626/udp ASIA
Michael Dasenbrock <dasenbro@apple.com>
passgo-tivoli 627/tcp PassGo Tivoli
passgo-tivoli 627/udp PassGo Tivoli
Chris Hall <chall@passgo.com>
qmqp 628/tcp QMQP
qmqp 628/udp QMQP
Dan Bernstein <djb@cr.yp.to>
3com-amp3 629/tcp 3Com AMP3
3com-amp3 629/udp 3Com AMP3
Prakash Banthia <prakash_banthia@3com.com>
rda 630/tcp RDA
rda 630/udp RDA
John Hadjioannou <john@minster.co.uk>
ipp 631/tcp IPP (Internet Printing Protocol)
ipp 631/udp IPP (Internet Printing Protocol)
Carl-Uno Manros <manros@cp10.es.xerox.com>
bmpp 632/tcp bmpp
bmpp 632/udp bmpp
Troy Rollo <troy@kroll.corvu.com.au>
servstat633/tcp Service Status update (Sterling Software)
servstat633/udp Service Status update (Sterling Software)
Greg Rose <Greg_Rose@sydney.sterling.com>
ginad 634/tcp ginad
ginad 634/udp ginad
Mark Crother <mark@eis.calstate.edu>
rlzdbase 635/tcp RLZ DBase
rlzdbase 635/udp RLZ DBase
Michael Ginn <ginn@tyxar.com>
ldaps 636/tcp ldap protocol over TLS/SSL (was sldap)
ldaps 636/udp ldap protocol over TLS/SSL (was sldap)
Pat Richard <patr@xcert.com>
lanserver 637/tcp lanserver
lanserver 637/udp lanserver
Chris Larsson <clarsson@VNET.IBM.COM>
mcns-sec638/tcp mcns-sec
mcns-sec638/udp mcns-sec
Kaz Ozawa <k.ozawa@cablelabs.com>
msdp 639/tcp MSDP
msdp 639/udp MSDP
Dino Farinacci <dino@cisco.com>
entrust-sps 640/tcp entrust-sps
entrust-sps 640/udp entrust-sps
Marek Buchler <Marek.Buchler@entrust.com>
repcmd 641/tcp repcmd
repcmd 641/udp repcmd
Scott Dale <scott@Replicase.com>
esro-emsdp 642/tcp ESRO-EMSDP V1.3
esro-emsdp 642/udp ESRO-EMSDP V1.3
Mohsen Banan <mohsen@neda.com>
sanity 643/tcp SANity
sanity 643/udp SANity
Peter Viscarola <PeterGV@osr.com>
dwr 644/tcp dwr
dwr 644/udp dwr
Bill Fenner <fenner@parc.xerox.com>
pssc 645/tcp PSSC

Registered port numbers Page 26

pssc 645/udp PSSC
Egon Meier-Engelen <egon.meier-engelen@dlr.de>
ldp 646/tcp LDP
ldp 646/udp LDP
Bob Thomas <rhthomas@cisco.com>
dhcp-failover 647/tcp DHCP Failover
dhcp-failover 647/udp DHCP Failover
Bernard Volz <volz@ipworks.com>
rrp 648/tcp Registry Registrar Protocol (RRP)
rrp 648/udp Registry Registrar Protocol (RRP)
Scott Hollenbeck <shollenb@netsol.com>
aminet 649/tcp Aminet
aminet 649/udp Aminet
Martin Toeller <mtoeller@adaptivemedia.com>
obex 650/tcp OBEX
obex 650/udp OBEX
Jeff Garbers <FJG030@email.mot.com>
ieee-mms651/tcp IEEE MMS
ieee-mms651/udp IEEE MMS
Curtis Anderson <canderson@turbolinux.com>
hello-port 652/tcp HELLO_PORT
hello-port 652/udp HELLO_PORT
Patrick Cipiere <Patrick.Cipiere@UDcast.com>
repscmd 653/tcp RepCmd
repscmd 653/udp RepCmd
Scott Dale <scott@tioga.com>
aodv 654/tcp AODV
aodv 654/udp AODV
Charles Perkins <cperkins@eng.sun.com>
tinc 655/tcp TINC
tinc 655/udp TINC
Ivo Timmermans <itimmermans@bigfoot.com>
spmp 656/tcp SPMP
spmp 656/udp SPMP
Jakob Kaivo <jkaivo@nodomainname.net>
rmc 657/tcp RMC
rmc 657/udp RMC
Michael Schmidt <mmaass@us.ibm.com>
tenfold 658/tcp TenFold
tenfold 658/udp TenFold
Louis Olszyk <lolszyk@10fold.com>
659 De-Registered (2001 June 06)
mac-srvr-admin 660/tcp MacOS Server Admin
mac-srvr-admin 660/udp MacOS Server Admin
Forest Hill <forest@apple.com>
hap 661/tcp HAP
hap 661/udp HAP
Igor Plotnikov <igor@uroam.com>
pftp 662/tcp PFTP
pftp 662/udp PFTP
Ben Schluricke <pftp@star.trek.org>
purenoise 663/tcp PureNoise
purenoise 663/udp PureNoise
Sam Osa <pristine@mailcity.com>
secure-aux-bus 664/tcp Secure Aux Bus
secure-aux-bus 664/udp Secure Aux Bus
Steven Williams <steven.d.williams@intel.com>
sun-dr 665/tcp Sun DR
sun-dr 665/udp Sun DR
Harinder Bhasin <Harinder.Bhasin@Sun.COM>
mdqs 666/tcp
mdqs 666/udp
doom 666/tcp doom Id Software
doom 666/udp doom Id Software
<ddt@idcube.idsoftware.com>
disclose 667/tcp campaign contribution disclosures - SDR Technologies
disclose 667/udp campaign contribution disclosures - SDR Technologies

C
om

pendium
 2 page 457

Registered port numbers Page 27

Jim Dixon <jim@lambda.com>
mecomm 668/tcp MeComm
mecomm 668/udp MeComm
meregister 669/tcp MeRegister
meregister 669/udp MeRegister
Armin Sawusch <armin@esd1.esd.de>
vacdsm-sws 670/tcp VACDSM-SWS
vacdsm-sws 670/udp VACDSM-SWS
vacdsm-app 671/tcp VACDSM-APP
vacdsm-app 671/udp VACDSM-APP
vpps-qua 672/tcp VPPS-QUA
vpps-qua 672/udp VPPS-QUA
cimplex 673/tcp CIMPLEX
cimplex 673/udp CIMPLEX
Ulysses G. Smith Jr. <ugsmith@cesi.com>
acap 674/tcp ACAP
acap 674/udp ACAP
Chris Newman <Chris.Newman@innosoft.com>
dctp 675/tcp DCTP
dctp 675/udp DCTP
Andre Kramer <Andre.Kramer@ansa.co.uk>
vpps-via676/tcp VPPS Via
vpps-via676/udp VPPS Via
Ulysses G. Smith Jr. <ugsmith@cesi.com>
vpp 677/tcp Virtual Presence Protocol
vpp 677/udp Virtual Presence Protocol
Klaus Wolf <wolf@cobrow.com>
ggf-ncp 678/tcp GNU Generation Foundation NCP
ggf-ncp 678/udp GNU Generation Foundation NCP
Noah Paul <noahp@altavista.net>
mrm 679/tcp MRM
mrm 679/udp MRM
Liming Wei <lwei@cisco.com>
entrust-aaas 680/tcp entrust-aaas
entrust-aaas 680/udp entrust-aaas
entrust-aams 681/tcp entrust-aams
entrust-aams 681/udp entrust-aams
Adrian Mancini <adrian.mancini@entrust.com>
xfr 682/tcp XFR
xfr 682/udp XFR
Noah Paul <noahp@ultranet.com>
corba-iiop 683/tcp CORBA IIOP
corba-iiop 683/udp CORBA IIOP
corba-iiop-ssl 684/tcp CORBA IIOP SSL
corba-iiop-ssl 684/udp CORBA IIOP SSL
Henry Lowe <lowe@omg.org>
mdc-portmapper 685/tcp MDC Port Mapper
mdc-portmapper 685/udp MDC Port Mapper
Noah Paul <noahp@altavista.net>
hcp-wismar 686/tcp Hardware Control Protocol Wismar
hcp-wismar 686/udp Hardware Control Protocol Wismar
David Merchant <d.f.merchant@livjm.ac.uk>
asipregistry 687/tcp asipregistry
asipregistry 687/udp asipregistry
Erik Sea <sea@apple.com>
realm-rusd 688/tcp REALM-RUSD
realm-rusd 688/udp REALM-RUSD
Jerry Knight <jknight@realminfo.com>
nmap 689/tcp NMAP
nmap 689/udp NMAP
Peter Dennis Bartok <peter@novonyx.com>
vatp 690/tcp VATP
vatp 690/udp VATP
Atica Software <comercial@aticasoft.es>
msexch-routing 691/tcp MS Exchange Routing
msexch-routing 691/udp MS Exchange Routing
David Lemson <dlemson@microsoft.com>

Registered port numbers Page 28

hyperwave-isp 692/tcp Hyperwave-ISP
hyperwave-isp 692/udp Hyperwave-ISP
Gerald Mesaric <gmesaric@hyperwave.com>
connendp693/tcp connendp
connendp693/udp connendp
Ronny Bremer <rbremer@future-gate.com>
ha-cluster 694/tcp ha-cluster
ha-cluster 694/udp ha-cluster
Alan Robertson <alanr@unix.sh>
ieee-mms-ssl 695/tcp IEEE-MMS-SSL
ieee-mms-ssl 695/udp IEEE-MMS-SSL
Curtis Anderson <ecanderson@turbolinux.com>
rushd 696/tcp RUSHD
rushd 696/udp RUSHD
Greg Ercolano <erco@netcom.com>
uuidgen 697/tcp UUIDGEN
uuidgen 697/udp UUIDGEN
James Falkner <jhf@eng.sun.com>
olsr 698/tcp OLSR
olsr 698/udp OLSR
Thomas Clausen <thomas.clausen@inria.fr>
accessnetwork 699/tcp Access Network
accessnetwork 699/udp Access Network
Yingchun Xu <Yingchun_Xu@3com.com>
700-703 Unassigned
elcsd 704/tcp errlog copy/server daemon
elcsd 704/udp errlog copy/server daemon
agentx 705/tcp AgentX
agentx 705/udp AgentX
Bob Natale <natale@acec.com>
silc 706/tcp SILC
silc 706/udp SILC
Pekka Riikonen <priikone@poseidon.pspt.fi>
borland-dsj 707/tcp Borland DSJ
borland-dsj 707/udp Borland DSJ
Gerg Cole <gcole@corp.borland.com>
708 Unassigned
entrust-kmsh 709/tcp Entrust Key Management Service Handler
entrust-kmsh 709/udp Entrust Key Management Service Handler
entrust-ash 710/tcp Entrust Administration Service Handler
entrust-ash 710/udp Entrust Administration Service Handler
Peter Whittaker <pww@entrust.com>
cisco-tdp 711/tcp Cisco TDP
cisco-tdp 711/udp Cisco TDP
Bruce Davie <bsd@cisco.com>
712-728 Unassigned
netviewdm1 729/tcp IBM NetView DM/6000 Server/Client
netviewdm1 729/udp IBM NetView DM/6000 Server/Client
netviewdm2 730/tcp IBM NetView DM/6000 send/tcp
netviewdm2 730/udp IBM NetView DM/6000 send/tcp
netviewdm3 731/tcp IBM NetView DM/6000 receive/tcp
netviewdm3 731/udp IBM NetView DM/6000 receive/tcp
Philippe Binet (phbinet@vnet.IBM.COM)
732-740 Unassigned
netgw 741/tcp netGW
netgw 741/udp netGW
Oliver Korfmacher (okorf@netcs.com)
netrcs 742/tcp Network based Rev. Cont. Sys.
netrcs 742/udp Network based Rev. Cont. Sys.
Gordon C. Galligher <gorpong@ping.chi.il.us>
743 Unassigned
flexlm 744/tcp Flexible License Manager
flexlm 744/udp Flexible License Manager
Matt Christiano
<globes@matt@oliveb.atc.olivetti.com>
745-746 Unassigned
fujitsu-dev 747/tcp Fujitsu Device Control

C
om

pendium
 2 page 458

Registered port numbers Page 29

fujitsu-dev 747/udp Fujitsu Device Control
ris-cm 748/tcp Russell Info Sci Calendar Manager
ris-cm 748/udp Russell Info Sci Calendar Manager
kerberos-adm 749/tcp kerberos administration
kerberos-adm 749/udp kerberos administration
rfile 750/tcp
loadav 750/udp
kerberos-iv 750/udp kerberos version iv
Martin Hamilton <martin@mrrl.lut.as.uk>
pump 751/tcp
pump 751/udp
qrh 752/tcp
qrh 752/udp
rrh 753/tcp
rrh 753/udp
tell 754/tcp send
tell 754/udp send
Josyula R. Rao <jrrao@watson.ibm.com>
755-756 Unassigned
nlogin 758/tcp
nlogin 758/udp
con 759/tcp
con 759/udp
ns 760/tcp
ns 760/udp
rxe 761/tcp
rxe 761/udp
quotad 762/tcp
quotad 762/udp
cycleserv 763/tcp
cycleserv 763/udp
omserv 764/tcp
omserv 764/udp
webster 765/tcp
webster 765/udp
Josyula R. Rao <jrrao@watson.ibm.com>
766 Unassigned
phonebook 767/tcp phone
phonebook 767/udp phone
Josyula R. Rao <jrrao@watson.ibm.com>
768 Unassigned
vid 769/tcp
vid 769/udp
cadlock 770/tcp
cadlock 770/udp
rtip 771/tcp
rtip 771/udp
cycleserv2 772/tcp
cycleserv2 772/udp
submit 773/tcp
notify 773/udp
rpasswd 774/tcp
acmaint_dbd 774/udp
entomb 775/tcp
acmaint_transd 775/udp
wpages 776/tcp
wpages 776/udp
Josyula R. Rao <jrrao@watson.ibm.com>
multiling-http 777/tcp Multiling HTTP
multiling-http 777/udp Multiling HTTP
Alejandro Bonet <babel@ctv.es>
778-779 Unassigned
wpgs 780/tcp
wpgs 780/udp
Josyula R. Rao <jrrao@watson.ibm.com>
781-785 Unassigned
concert 786/tcp Concert

Registered port numbers Page 30

concert 786/udp Concert
Josyula R. Rao <jrrao@watson.ibm.com>
qsc 787/tcp QSC
qsc 787/udp QSC
James Furness <furn@bluenews.com>
788-799 Unassigned
mdbs_daemon 800/tcp
mdbs_daemon 800/udp
device 801/tcp
device 801/udp
802-809 Unassigned
fcp-udp 810/tcp FCP
fcp-udp 810/udp FCP Datagram
Paul Whittemore <paul@softarc.com>
811-827 Unassigned
itm-mcell-s 828/tcp itm-mcell-s
itm-mcell-s 828/udp itm-mcell-s
Miles O'Neal <meo@us.itmasters.com>
pkix-3-ca-ra 829/tcp PKIX-3 CA/RA
pkix-3-ca-ra 829/udp PKIX-3 CA/RA
Carlisle Adams <Cadams@entrust.com>
830-846 Unassigned
dhcp-failover2 847/tcp dhcp-failover 2
dhcp-failover2 847/udp dhcp-failover 2
Bernard Volz <volz@ipworks.com>
848-872 Unassigned
rsync 873/tcp rsync
rsync 873/udp rsync
Andrew Tridgell <tridge@samba.anu.edu.au>
874-885 Unassigned
iclcnet-locate 886/tcp ICL coNETion locate server
iclcnet-locate 886/udp ICL coNETion locate server
Bob Lyon <bl@oasis.icl.co.uk>
iclcnet_svinfo 887/tcp ICL coNETion server info
iclcnet_svinfo 887/udp ICL coNETion server info
Bob Lyon <bl@oasis.icl.co.uk>
accessbuilder 888/tcp AccessBuilder
accessbuilder 888/udp AccessBuilder
Steve Sweeney <Steven_Sweeney@3mail.3com.com>
The following entry records an unassigned but widespread use
cddbp 888/tcp CD Database Protocol
Steve Scherf <steve@moonsoft.com>
#
889-899 Unassigned
omginitialrefs 900/tcp OMG Initial Refs
omginitialrefs 900/udp OMG Initial Refs
Christian Callsen <Christian.Callsen@eng.sun.com>
smpnameres 901/tcp SMPNAMERES
smpnameres 901/udp SMPNAMERES
Leif Ekblad <leif@rdos.net>
ideafarm-chat 902/tcp IDEAFARM-CHAT
ideafarm-chat 902/udp IDEAFARM-CHAT
ideafarm-catch 903/tcp IDEAFARM-CATCH
ideafarm-catch 903/udp IDEAFARM-CATCH
Wo'o Ideafarm <wo@ideafarm.com>
904-910 Unassigned
xact-backup 911/tcp xact-backup
xact-backup 911/udp xact-backup
Bill Carroll <billc@xactlabs.com>
912-988 Unassigned
ftps-data 989/tcp ftp protocol, data, over TLS/SSL
ftps-data 989/udp ftp protocol, data, over TLS/SSL
ftps 990/tcp ftp protocol, control, over TLS/SSL
ftps 990/udp ftp protocol, control, over TLS/SSL
Christopher Allen <ChristopherA@consensus.com>
nas 991/tcp Netnews Administration System
nas 991/udp Netnews Administration System

C
om

pendium
 2 page 459

Registered port numbers Page 31

Vera Heinau <heinau@fu-berlin.de>
Heiko Schlichting <heiko@fu-berlin.de>
telnets 992/tcp telnet protocol over TLS/SSL
telnets 992/udp telnet protocol over TLS/SSL
imaps 993/tcp imap4 protocol over TLS/SSL
imaps 993/udp imap4 protocol over TLS/SSL
ircs 994/tcp irc protocol over TLS/SSL
ircs 994/udp irc protocol over TLS/SSL
Christopher Allen <ChristopherA@consensus.com>
pop3s 995/tcp pop3 protocol over TLS/SSL (was spop3)
pop3s 995/udp pop3 protocol over TLS/SSL (was spop3)
Gordon Mangione <gordm@microsoft.com>
vsinet 996/tcp vsinet
vsinet 996/udp vsinet
Rob Juergens <robj@vsi.com>
maitrd 997/tcp
maitrd 997/udp
busboy 998/tcp
puparp 998/udp
garcon 999/tcp
applix 999/udp Applix ac
puprouter 999/tcp
puprouter 999/udp
cadlock21000/tcp
cadlock21000/udp
1001-1009 Unassigned
1008/udp Possibly used by Sun Solaris????
surf 1010/tcp surf
surf 1010/udp surf
Joseph Geer <jgeer@peapod.com>
1011-1022 Reserved
 1023/tcp Reserved

 1023/udp Reserved
IANA <iana@iana.org>

REGISTERED PORT NUMBERS

The Registered Ports are listed by the IANA and on most systems can be
used by ordinary user processes or programs executed by ordinary
users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port.

The IANA registers uses of these ports as a convenience to the
community.

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The Registered Ports are in the range 1024-49151.

The rest of this document is omitted. The full text can be found at

http://www.iana.org/assignments/port-numbers.

C
om

pendium
 2 page 460

Media types Page 1

MEDIA TYPES

(last updated 2001 August 23)

[RFC2045,RFC2046] specifies that Content Types, Content Subtypes, Character
Sets, Access Types, and conversion values for MIME mail will be
assigned and listed by the IANA.

Content Types and Subtypes

Type Subtype Description Reference
---- ------- ----------- ---------
text plain [RFC2646,RFC2046]
 richtext [RFC2045,RFC2046]
 enriched [RFC1896]
 tab-separated-values [Paul Lindner]
 html [RFC2854]
 sgml [RFC1874]
 vnd.latex-z [Lubos]
 vnd.fmi.flexstor [Hurtta]

uri-list [RFC2483]
vnd.abc [Allen]
rfc822-headers [RFC1892]
vnd.in3d.3dml [Powers]
prs.lines.tag [Lines]
vnd.in3d.spot [Powers]

 css [RFC2318]
 xml [RFC3023]
 xml-external-parsed-entity [RFC3023]

rtf [Lindner]
 directory [RFC2425]
 calendar [RFC2445]

vnd.wap.wml [Stark]
vnd.wap.wmlscript [Stark]
vnd.motorola.reflex [Patton]
vnd.fly [Gurney]

 vnd.wap.sl [WAP-Forum]
 vnd.wap.si [WAP-Forum]
 t140 [RFC2793]
 vnd.ms-mediapackage [Nelson]

vnd.IPTC.NewsML [IPTC]
vnd.IPTC.NITF [IPTC]
vnd.curl [Hodge]

 vnd.DMClientScript [Bradley]
 parityfec [RFC3009]

multipart mixed [RFC2045,RFC2046]
 alternative [RFC2045,RFC2046]
 digest [RFC2045,RFC2046]
 parallel [RFC2045,RFC2046]
 appledouble [MacMime,Patrik Faltstrom]
 header-set [Dave Crocker]
 form-data [RFC2388]

related [RFC2387]
 report [RFC1892]
 voice-message [RFC2421,RFC2423]
 signed [RFC1847]
 encrypted [RFC1847]
 byteranges [RFC2068]

message rfc822 [RFC2045,RFC2046]

Media types Page 2

 partial [RFC2045,RFC2046]
 external-body [RFC2045,RFC2046]
 news [RFC 1036, Henry Spencer]
 http [RFC2616]

delivery-status [RFC1894]
 disposition-notification [RFC2298]
 s-http [RFC2660]

application octet-stream [RFC2045,RFC2046]
 postscript [RFC2045,RFC2046]
 oda [RFC2045,RFC2046]
 atomicmail [atomicmail,Borenstein]
 andrew-inset [andrew-inset,Borenstein]
 slate [slate,terry crowley]
 wita [Wang Info Transfer,Larry Campbell]
 dec-dx [Digital Doc Trans, Larry Campbell]
 dca-rft [IBM Doc Content Arch, Larry Campbell]
 activemessage [Ehud Shapiro]
 rtf [Paul Lindner]
 applefile [MacMime,Patrik Faltstrom]
 mac-binhex40 [MacMime,Patrik Faltstrom]
 news-message-id [RFC1036, Henry Spencer]
 news-transmission [RFC1036, Henry Spencer]
 wordperfect5.1 [Paul Lindner]
 pdf [Paul Lindner]
 zip [Paul Lindner]
 macwriteii [Paul Lindner]
 msword [Paul Lindner]
 remote-printing [RFC1486,Rose]
 mathematica [Van Nostern]
 cybercash [Eastlake]
 commonground [Glazer]
 iges [Parks]
 riscos [Smith]
 eshop [Katz]
 x400-bp [RFC1494]
 sgml [RFC1874]
 cals-1840 [RFC1895]
 pgp-encrypted [RFC3156]
 pgp-signature [RFC3156]
 pgp-keys [RFC3156]
 vnd.framemaker [Wexler]
 vnd.mif [Wexler]

vnd.ms-excel [Gill]
 vnd.ms-powerpoint [Gill]
 vnd.ms-project [Gill]
 vnd.ms-works [Gill]
 vnd.ms-tnef [Gill]
 vnd.svd [Becker]
 vnd.music-niff [Butler]
 vnd.ms-artgalry [Slawson]
 vnd.truedoc [Chase]
 vnd.koan [Cole]
 vnd.street-stream [Levitt]
 vnd.fdf [Zilles]
 set-payment-initiation [Korver]
 set-payment [Korver]
 set-registration-initiation [Korver]
 set-registration [Korver]
 vnd.seemail [Webb]
 vnd.businessobjects [Imoucha]
 vnd.meridian-slingshot [Wedel]
 vnd.xara [Matthewman]
 sgml-open-catalog [Grosso]
 vnd.rapid [Szekely]
 vnd.enliven [Santinelli]
 vnd.japannet-registration-wakeup [Fujii]

C
om

pendium
 2 page 461

Media types Page 3

 vnd.japannet-verification-wakeup [Fujii]
 vnd.japannet-payment-wakeup [Fujii]
 vnd.japannet-directory-service [Fujii]
 vnd.intertrust.digibox [Tomasello]
 vnd.intertrust.nncp [Tomasello]
 prs.alvestrand.titrax-sheet [Alvestrand]

vnd.noblenet-web [Solomon]
 vnd.noblenet-sealer [Solomon]

vnd.noblenet-directory [Solomon]
prs.nprend [Doggett]

 vnd.webturbo [Rehem]
hyperstudio [Domino]
vnd.shana.informed.formtemplate [Selzler]
vnd.shana.informed.formdata [Selzler]
vnd.shana.informed.package [Selzler]
vnd.shana.informed.interchange [Selzler]
vnd.$commerce_battelle [Applebaum]
vnd.osa.netdeploy [Klos]
vnd.ibm.MiniPay [Herzberg]
vnd.japannet-jpnstore-wakeup [Yoshitake]
vnd.japannet-setstore-wakeup [Yoshitake]
vnd.japannet-verification [Yoshitake]
vnd.japannet-registration [Yoshitake]
vnd.hp-HPGL [Pentecost]
vnd.hp-PCL [Pentecost]
vnd.hp-PCLXL [Pentecost]
vnd.musician [Adams]
vnd.FloGraphIt [Floersch]
vnd.intercon.formnet [Gurak]

 vemmi [RFC2122]
vnd.ms-asf [Fleischman]
vnd.ecdis-update [Buettgenbach]
vnd.powerbuilder6 [Guy]
vnd.powerbuilder6-s [Guy]
vnd.lotus-wordpro [Wattenberger]
vnd.lotus-approach [Wattenberger]
vnd.lotus-1-2-3 [Wattenberger]
vnd.lotus-organizer [Wattenberger]
vnd.lotus-screencam [Wattenberger]
vnd.lotus-freelance [Wattenberger]
vnd.fujitsu.oasys [Togashi]
vnd.fujitsu.oasys2 [Togashi]
vnd.swiftview-ics [Widener]
vnd.dna [Searcy]
prs.cww [Rungchavalnont]
vnd.wt.stf [Wohler]
vnd.dxr [Duffy]
vnd.mitsubishi.misty-guard.trustweb [Tanaka]
vnd.ibm.modcap [Hohensee]
vnd.acucobol [Lubin]

 vnd.fujitsu.oasys3 [Okudaira]
 marc [RFC2220]

vnd.fujitsu.oasysprs [Ogita]
 vnd.fujitsu.oasysgp [Sugimoto]

vnd.visio [Sandal]
vnd.netfpx [Mutz]
vnd.audiograph [Slusanschi]
vnd.epson.salt [Nagatomo]
vnd.3M.Post-it-Notes [O'Brien]
vnd.novadigm.EDX [Swenson]
vnd.novadigm.EXT [Swenson]
vnd.novadigm.EDM [Swenson]
vnd.claymore [Simpson]
vnd.comsocaller [Dellutri]

 pkcs7-mime [RFC2311]
 pkcs7-signature [RFC2311]
 pkcs10 [RFC2311]

Media types Page 4

vnd.yellowriver-custom-menu [Yellow]
vnd.ecowin.chart [Olsson]
vnd.ecowin.series [Olsson]
vnd.ecowin.filerequest [Olsson]
vnd.ecowin.fileupdate [Olsson]
vnd.ecowin.seriesrequest [Olsson]
vnd.ecowin.seriesupdate [Olsson]
EDIFACT [RFC1767]
EDI-X12 [RFC1767]
EDI-Consent [RFC1767]
vnd.wrq-hp3000-labelled [Bartram]
vnd.minisoft-hp3000-save [Bartram]
vnd.ffsns [Holstage]
vnd.hp-hps [Aubrey]
vnd.fujixerox.docuworks [Taguchi]

 xml [RFC3023]
 xml-external-parsed-entity [RFC3023]
 xml-dtd [RFC3023]

vnd.anser-web-funds-transfer-initiation [Mori]
 vnd.anser-web-certificate-issue-initiation [Mori]

vnd.is-xpr [Natarajan]
vnd.intu.qbo [Scratchley]
vnd.publishare-delta-tree [Ben-Kiki]
vnd.cybank [Helmee]

 batch-SMTP [RFC2442]
vnd.uplanet.alert [Martin]
vnd.uplanet.cacheop [Martin]
vnd.uplanet.list [Martin]
vnd.uplanet.listcmd [Martin]
vnd.uplanet.channel [Martin]
vnd.uplanet.bearer-choice [Martin]
vnd.uplanet.signal [Martin]
vnd.uplanet.alert-wbxml [Martin]
vnd.uplanet.cacheop-wbxml [Martin]
vnd.uplanet.list-wbxml [Martin]
vnd.uplanet.listcmd-wbxml [Martin]
vnd.uplanet.channel-wbxml [Martin]
vnd.uplanet.bearer-choice-wbxml [Martin]
vnd.epson.quickanime [Gu]
vnd.commonspace [Chandhok]
vnd.fut-misnet [Pruulmann]
vnd.xfdl [Manning]
vnd.intu.qfx [Scratchley]
vnd.epson.ssf [Hoshina]
vnd.epson.msf [Hoshina]
vnd.powerbuilder7 [Shilts]

 vnd.powerbuilder7-s [Shilts]
vnd.lotus-notes [Laramie]

 pkixcmp [RFC2510]
vnd.wap.wmlc [Stark]
vnd.wap.wmlscriptc [Stark]
vnd.motorola.flexsuite [Patton]
vnd.wap.wbxml [Stark]
vnd.motorola.flexsuite.wem [Patton]
vnd.motorola.flexsuite.kmr [Patton]
vnd.motorola.flexsuite.adsi [Patton]
vnd.motorola.flexsuite.fis [Patton]
vnd.motorola.flexsuite.gotap [Patton]
vnd.motorola.flexsuite.ttc [Patton]
vnd.ufdl [Manning]
vnd.accpac.simply.imp [Leow]
vnd.accpac.simply.aso [Leow]
vnd.vcx [T.Sugimoto]

 ipp [RFC2910]
 ocsp-request [RFC2560]
 ocsp-response [RFC2560]

vnd.previewsystems.box [Smolgovsky]

C
om

pendium
 2 page 462

Media types Page 5

vnd.mediastation.cdkey [Flurry]
vnd.pg.format [Gandert]
vnd.pg.osasli [Gandert]
vnd.hp-hpid [Gupta]

 pkix-cert [RFC2585]
 pkix-crl [RFC2585]

vnd.Mobius.TXF [Kabayama]
vnd.Mobius.PLC [Kabayama]
vnd.Mobius.DIS [Kabayama]
vnd.Mobius.DAF [Kabayama]
vnd.Mobius.MSL [Kabayama]
vnd.cups-raster [Sweet]
vnd.cups-postscript [Sweet]
vnd.cups-raw [Sweet]

 index [RFC2652]
 index.cmd [RFC2652]
 index.response [RFC2652]
 index.obj [RFC2652]
 index.vnd [RFC2652]

vnd.triscape.mxs [Simonoff]
vnd.powerbuilder75 [Shilts]
vnd.powerbuilder75-s [Shilts]
vnd.dpgraph [Parker]
http [RFC2616]
sdp [RFC2327]

 vnd.eudora.data [Resnick]
 vnd.fujixerox.docuworks.binder [Matsumoto]
 vnd.vectorworks [Pharr]
 vnd.grafeq [Tupper]
 vnd.bmi [Gotoh]
 vnd.ericsson.quickcall [Tidwell]
 vnd.hzn-3d-crossword [Minnis]
 vnd.wap.slc [WAP-Forum]
 vnd.wap.sic [WAP-Forum]
 vnd.groove-injector [Joseph]
 vnd.fujixerox.ddd [Onda]
 vnd.groove-account [Joseph]
 vnd.groove-identity-message [Joseph]
 vnd.groove-tool-message [Joseph]
 vnd.groove-tool-template [Joseph]
 vnd.groove-vcard [Joseph]
 vnd.ctc-posml [Kohlhepp]
 vnd.canon-lips [Muto]
 vnd.canon-cpdl [Muto]
 vnd.trueapp [Hepler]
 vnd.s3sms [Tarkkala]
 iotp [RFC2935]
 vnd.mcd [Gotoh]

vnd.httphone [Lefevre]
vnd.informix-visionary [Gales]
vnd.msign [Borcherding]
vnd.ms-lrm [Ledoux]

 vnd.contact.cmsg [Patz]
 vnd.epson.esf [Hoshina]
 whoispp-query [RFC2957]
 whoispp-response [RFC2958]
 vnd.mozilla.xul+xml [McDaniel]
 parityfec [RFC3009]
 vnd.palm [Peacock]
 vnd.fsc.weblaunch [D.Smith]
 vnd.tve-trigger [Welsh]
 dvcs [RFC3029]
 sieve [RFC3028]
 vnd.vividence.scriptfile [Risher]
 vnd.hhe.lesson-player [Jones]
 beep+xml [RFC3080]
 font-tdpfr [RFC3073]

Media types Page 6

 vnd.mseq [Le Bodic]
 vnd.aether.imp [Moskowitz]
 vnd.Mobius.MQY [Devasia]
 vnd.Mobius.MBK [Devasia]
 vnd.vidsoft.vidconference [Hess]
 vnd.ibm.afplinedata [Buis]
 vnd.irepository.package+xml [Knowles]
 vnd.sss-ntf [Bruno]
 vnd.sss-dtf [Bruno]
 vnd.sss-cod [Dani]
 vnd.pvi.ptid1 [Lamb]
 isup [RFCISUP]
 qsig [RFCISUP]

timestamp-query [RFC3161]
 timestamp-reply [RFC3161]

image jpeg [RFC2045,RFC2046]
 gif [RFC2045,RFC2046]
 ief Image Exchange Format [RFC1314]
 g3fax [RFC1494]
 tiff Tag Image File Format [RFC2302]

cgm Computer Graphics Metafile [Francis]
naplps [Ferber]

 vnd.dwg [Moline]
 vnd.svf [Moline]
 vnd.dxf [Moline]
 png [Randers-Pehrson]
 vnd.fpx [Spencer]
 vnd.net-fpx [Spencer]

vnd.xiff [SMartin]
prs.btif [Simon]
vnd.fastbidsheet [Becker]
vnd.wap.wbmp [Stark]
prs.pti [Laun]
vnd.cns.inf2 [McLaughlin]
vnd.mix [Reddy]

 vnd.fujixerox.edmics-rlc [Onda]
 vnd.fujixerox.edmics-mmr [Onda]
 vnd.fst [Fuldseth]

audio basic [RFC2045,RFC2046]
 32kadpcm [RFC2421,RFC2422]
 vnd.qcelp [Lundblade]

vnd.digital-winds [Strazds]
vnd.lucent.voice [Vaudreuil]
vnd.octel.sbc [Vaudreuil]
vnd.rhetorex.32kadpcm [Vaudreuil]
vnd.vmx.cvsd [Vaudreuil]
vnd.nortel.vbk [Parsons]
vnd.cns.anp1 [McLaughlin]
vnd.cns.inf1 [McLaughlin]

 L16 [RFC2586]
 vnd.everad.plj [Cicelsky]
 telephone-event [RFC2833]
 tone [RFC2833]

prs.sid [Walleij]
vnd.nuera.ecelp4800 [Fox]
vnd.nuera.ecelp7470 [Fox]

 mpeg [RFC3003]
 parityfec [RFC3009]
 MP4A-LATM [RFC3016]
 vnd.nuera.ecelp9600 [Fox]
 G.722.1 [RFC3047]
 mpa-robust [RFC3119]
 vnd.cisco.nse [Kumar]

video mpeg [RFC2045,RFC2046]

C
om

pendium
 2 page 463

Media types Page 7

 quicktime [Paul Lindner]
 vnd.vivo [Wolfe]
 vnd.motorola.video [McGinty]
 vnd.motorola.videop [McGinty]
 vnd.fvt [Fuldseth]
 pointer [RFC2862]
 parityfec [RFC3009]
 vnd.mpegurl [Recktenwald]
 MP4V-ES [RFC3016]
 vnd.nokia.interleaved-multimedia [Kangaslampi]

model [RFC2077]
 iges [Parks]
 vrml [RFC2077]
 mesh [RFC2077]

vnd.dwf [Pratt]
vnd.gtw [Ozaki]
vnd.flatland.3dml [Powers]

 vnd.vtu [Rabinovitch]
 vnd.mts [Rabinovitch]
 vnd.gdl [Babits]
 vnd.gs-gdl [Babits]
 vnd.parasolid.transmit.text [Dearnaley,Juckes]
 vnd.parasolid.transmit.binary [Dearnaley,Juckes]

The "media-types" directory contains a subdirectory for each content
type and each of those directories contains a file for each content
subtype.

 |-application-
 |-audio-------
 |-image-------
 |-media-types-|-message-----
 |-model-------
 |-multipart---
 |-text--------
 |-video-------

 URL = ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

Character Sets

All of the character sets listed the section on Character Sets are
registered for use with MIME as MIME Character Sets. The
correspondance between the few character sets listed in the MIME
specifications [RFC2045,RFC2046] and the list in that section are:

Type Description Reference
---- ----------- ---------
US-ASCII see ANSI_X3.4-1968 below [RFC2045,RFC2046]
ISO-8859-1 see ISO_8859-1:1987 below [RFC2045,RFC2046]
ISO-8859-2 see ISO_8859-2:1987 below [RFC2045,RFC2046]
ISO-8859-3 see ISO_8859-3:1988 below [RFC2045,RFC2046]
ISO-8859-4 see ISO_8859-4:1988 below [RFC2045,RFC2046]
ISO-8859-5 see ISO_8859-5:1988 below [RFC2045,RFC2046]
ISO-8859-6 see ISO_8859-6:1987 below [RFC2045,RFC2046]
ISO-8859-7 see ISO_8859-7:1987 below [RFC2045,RFC2046]
ISO-8859-8 see ISO_8859-8:1988 below [RFC2045,RFC2046]
ISO-8859-9 see ISO_8859-9:1989 below [RFC2045,RFC2046]

Access Types

Type Description Reference

Media types Page 8

---- ----------- ---------
FTP [RFC2045,RFC2046]
ANON-FTP [RFC2045,RFC2046]
TFTP [RFC2045,RFC2046]
AFS [RFC2045,RFC2046]
LOCAL-FILE [RFC2045,RFC2046]
MAIL-SERVER [RFC2045,RFC2046]
content-id [RFC1873]

Conversion Values

Conversion values or Content Transfer Encodings.

Type Description Reference
---- ----------- ---------
7BIT [RFC2045,RFC2046]
8BIT [RFC2045,RFC2046]
BASE64 [RFC2045,RFC2046]
BINARY [RFC2045,RFC2046]
QUOTED-PRINTABLE [RFC2045,RFC2046]

MIME / X.400 MAPPING TABLES

MIME to X.400 Table

 MIME content-type X.400 Body Part Reference
 ----------------- ------------------ ---------
 text/plain
 charset=us-ascii ia5-text [RFC1494]
 charset=iso-8859-x EBP - GeneralText [RFC1494]
 text/richtext no mapping defined [RFC1494]
 application/oda EBP - ODA [RFC1494]
 application/octet-stream bilaterally-defined [RFC1494]
 application/postscript EBP - mime-postscript-body [RFC1494]
 image/g3fax g3-facsimile [RFC1494]
 image/jpeg EBP - mime-jpeg-body [RFC1494]
 image/gif EBP - mime-gif-body [RFC1494]
 audio/basic no mapping defined [RFC1494]
 video/mpeg no mapping defined [RFC1494]

 Abbreviation: EBP - Extended Body Part

X.400 to MIME Table

 Basic Body Parts

 X.400 Basic Body Part MIME content-type Reference
 --------------------- -------------------- ---------
 ia5-text text/plain;charset=us-ascii [RFC1494]
 voice No Mapping Defined [RFC1494]
 g3-facsimile image/g3fax [RFC1494]
 g4-class1 no mapping defined [RFC1494]
 teletex no mapping defined [RFC1494]
 videotex no mapping defined [RFC1494]
 encrypted no mapping defined [RFC1494]
 bilaterally-defined application/octet-stream [RFC1494]
 nationally-defined no mapping defined [RFC1494]
 externally-defined See Extended Body Parts [RFC1494]

 X.400 Extended Body Part MIME content-type Reference
 ------------------------- -------------------- ---------
 GeneralText text/plain;charset=iso-8859-x[RFC1494]

C
om

pendium
 2 page 464

Media types Page 9

 ODA application/oda [RFC1494]
 mime-postscript-body application/postscript [RFC1494]
 mime-jpeg-body image/jpeg [RFC1494]
 mime-gif-body image/gif [RFC1494]

REFERENCES

[MacMime] Work in Progress.

[RFC1036] Horton, M., and R. Adams, "Standard for Interchange of
 USENET Messages", RFC 1036, AT&T Bell Laboratories,
 Center for Seismic Studies, December 1987.

[RFC1494] Alvestrand, H., and S. Thompson, "Equivalences between 1988
 X.400 and RFC-822 Message Bodies", RFC 1494, SINTEF DELAB,
 Soft*Switch, Inc., August 1993.

[RFC1563] Borenstien, N., "The text/enriched MIME content-type". RFC
 1563, Bellcore, January 1994.

[RFC1767] Crocker, D., "MIME Encapsulation of EDI Objects". RFC 1767,
 Brandenburg Consulting, March 1995.

[RFC1866] Berners-Lee, T., and D. Connolly, "Hypertext Markup Language
 - 2.0", RFC 1866, MIT/W3C, November 1995.

[RFC1873] Levinson, E., "Message/External-Body Content-ID Access
 Type", RFC 1873, Accurate Information Systems, Inc. December
 1995.

[RFC1874] Levinson, E., "SGML Media Types", RFC 1874, Accurate
 Information Systems, Inc. December 1995.

[RFC1892] Vaudreuil, G., "The Multipart/Report Content Type for the
 Reporting of Mail System Administrative Messages", RFC 1892,
 Octel Network Services, January 1996.

[RFC1894] Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 1894, University of
 Tennessee, Octel Network Services, January 1996.

[RFC1895] Levinson, E., "The Application/CALS-1840 Content Type", RFC
 1895, Accurate Information Systems, February 1996.

[RFC1896] Resnick, P., and A. Walker, "The Text/Enriched MIME Content
 Type", RFC 1896, Qualcomm, Intercon, February 1996.

[RFC1945] Berners-Lee, Y., R. Feilding, and H.Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945. MIT/LCS, UC
 Irvine, MIT/LCS, May 1996.

[RFC2045] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

[RFC2046] Freed, N., and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

[RFC2077] Nelson, S., C. Parks, and Mitra, "The Model Primary Content
 Type for Multipurpose Internet Mail Extensions", RFC 2077,
 LLNL, NIST, WorldMaker, January 1997.

[RFC2122] Mavrakis, D., Layec, H., and K. Kartmann, "VEMMI URL
 Specification", RFC 2122, Monaco Telematique MC-TEL,
 ETSI, Telecommunication+Multimedia, March 1997.

Media types Page 10

[RFC2220] Guenther, R., "The Application/MARC Content-type", RFC 2220,
 Library of Congress, Network Devt. & MARC Standards Office,
 October 1997.

[RFC2298] Fajman, R., "An Extensible Message Format for Message
 Disposition Notifications", RFC 2298, March 1998.

[RFC2302] Parsons, G., et. al., "Tag Image File Format (TIFF) -
 image/tiff", RFC 2302, March 1998.

[RFC2311] Dusse, S., et. al., "S/MIME Version 2 Message Specification,
 RFC 2311, March 1998.

[RFC2318] Lie, H., Bos, B., and C. Lilley, "The text/css Media Type",
 RFC 2318, March 1998.

[RFC2327] Handley, M., and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1999.

[RFC2387] Levinson, E., "The MIME Multipart/Related Content-type", RFC
 2387, XIson Inc, August 1998.

[RFC2388] Masinter, L., "Form-based File Upload in HTML",
 RFC 2388, Xerox Corporation, August 1998.

[RFC2421] Vaudreuil, G., and G. Parsons, "Voice Profile for Internet
 Mail - version 2", RFC 2421, September 1998.

[RFC2422] Vaudreuil, G., and G. Parsons, "Toll Quality Voice - 32
 kbit/s ADPCM MIME Sub-type Registration", RFC 2422,
 September 1998.

[RFC2423] Vaudreuil, G., and G. Parsons, "VPIM Voice Message MIME
 Sub-type Registration", RFC 2423, September 1998.

[RFC2425] Howes, T., Smith, M., and F. Dawson, "A MIME Content-Type
 for Directory Information", RFC 2425, September 1998.

[RFC2442] Freed, N., Newman, D., Belissent, J. and M. Hoy, "The
 Batch SMTP Media Type", RFC 2442, November 1998.

[RFC2445] Dawson, F., and D. Stenerson, "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC 2445,
 November 1998.

[RFC2483] M. Mealling and R. Daniel, "URI resolution services
 necessary for URN resolution", RFC 2483, January 1999.

[RFC2510] Adams, C., and S. Farrell, "Internet X.509 Public Key
 Infrastructure Certificate Management Protocols", RFC 2510,
 March 1999.

[RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

[RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP",
 RFC 2585, May 1999.

[RFC2586] Salsman, J and H. Alvestrand, "The Audio/L16 MIME content
 type", RFC 2586, May 1999.

[RFC2616] Fielding, R., et. al., "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

[RFC2652] Allen, J., and M. Mealling, "MIME Object Definitions for the

C
om

pendium
 2 page 465

Media types Page 11

 Common Indexing Protocol (CIP)", RFC 2652, August 1999.

[RFC2793] Hellstrom, G., "RTP Payload for Text Conversation", RFC
 2793, May 2000.

[RFC2833] Schulzrinne, H., "RTP Payload for DTMF Digits, Telephony
 Tones and Telephony Signals", RFC 2833, May 2000.

[RFC2854] Connolly, D., and L. Masinter, "The 'text/html' Media Type",
 RFC 2854, June 2000.

[RFC2862] Civanlar, M., and G. Cash, "RTP Payload Format for Real-Time
 Pointers", RFC 2862, June 2000.

[RFC2910] Herriot, R., Editor, Butler, S., Moore, P., Turner, R. and
 J. Wenn, "Internet Printing Protocol/1.0: Encoding and
 Transport", RFC 2910, September 2000.

[RFC2935] Eastlake, D. and C. Smith, "Internet Open Trading Protocol
 (IOTP) HTTP Supplement", RFC 2935, September 2000.

[RFC3003] M. Nilsson, "The audio/mpeg Media Type", RFC 3003,
 November 2000.

[RFC3009] J.Rosenberg and H.Schulzrinne, "Registration of parityfec
 MIME types", RFC 3009, November 2000.

[RFC3016] Kikuchi, Y., T. Nomura, S. Fukunaga, Y. Matsui, and
 H. Kimata, "RTP payload format for MPEG-4 Audio/Visual
 streams", RFC 3016, November 2000.

[RFC3023] M. Murata, S. St.Laurent, and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

[RFC3028] T. Showalter, "Sieve: A Mail Filtering Language",
 RFC 3028, January 2001.

[RFC3029] Adams,C. , P. Sylvester, M. Zolotarev, and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Data Validation and
 Certification Server Protocols", RFC 3029, January 2001.

[RFC3047] Luthi, P. "RTP Payload Format for ITU-T Recommendation
 G.772.1", RFC 3047, January 2001.

[RFC3073] Collins, J., "Portable Font Resource (PFR) -
 application/font-tdpfr MIME Sub-type Registration",
 RFC 3073, February 2001.

[RFC3080] Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, February 2001.

[RFC3119] R. Finlayson, "A More Loss-Tolerant RTP Payload Format
 for MP3 Audio", RFC 3119, June 2001.

[RFCISUP] E. Zimmerer, J. Peterson, A. Vemuri, L. Ong, F. Audet,
 M. Watson, and M. Zonoun, "MIME media types for ISUP and
 QSIG Objects", RFC XXXX, Month Year.

[RFC3156] M. Elkins, D. Del Torto, R. Levien, and T. Roessler,
 "MIME Security with OpenPGP", RFC 3156, August 2001.

[RFC3161] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time Stamp
 Protocol (TSP)", RFC 3161, August 2001.

Media types Page 12

PEOPLE

[Adams] Greg Adams <gadams@waynesworld.ucsd.edu>, March 1997.

[Allen] Steve Allen <sla@ucolick.org>, September 1997.

[Alvestrand] Harald T. Alvestrand <Harald.T.Alvestrand@uninett.no>,
 January 1997.

[Applebaum] David Applebaum, <applebau@battelle.org>, February 1997.

[Aubrey] Steve Aubrey, <steve_aubrey@hp.com>, July 1998.

[Babits] Attila Babits, <ababits@graphisoft.hu>, April 2000, May 2000.

[Bartram] Chris Bartram, <RCB@3k.com>, May 1998.

[Becker] Scott Becker, <scottb@bxwa.com>, April 1996, October 1998.

[Ben-Kiki] Oren Ben-Kiki, <oren@capella.co.il>, October 1998.

[Berners-Lee] Tim Berners-Lee, <timbl@w3.org>, May 1996.

[Borcherding] Malte Borcherding, <Malte.Borcherding@brokat.com>,
 August 2000.

[Borenstein] Nathaniel Borenstein, <NSB@bellcore.com>, April 1994.

[Bradley] Dan Bradley, <dan@dantom.com>, October 2000.

[Bruno] Eric Bruno, <ebruno@solution-soft.com>, June 2001.

[Buettgenbach] Gert Buettgenbach, <bue@sevencs.com>, May 1997.

[Buis] Roger Buis, <buis@us.ibm.com>, March 2001.

[Butler] Tim Butler, <tim@its.bldrdoc.gov>, April 1996.

[Larry Campbell]

[Chandhok] Ravinder Chandhok, <chandhok@within.com>, December 1998.

[Chase] Brad Chase, <brad_chase@bitstream.com>, May 1996.

[Cicelsky] Shay Cicelsky, <shayc@everad.com>, May 2000.

[Cole] Pete Cole, <pcole@sseyod.demon.co.uk>, June 1996.

[Dave Crocker] Dave Crocker <dcrocker@mordor.stanford.edu>

[Terry Crowley]

[Dani] Asang Dani, <adani@solution-soft.com>, June 2001.

[Daniel] Ron Daniel, Jr. <rdaniel@lanl.gov>, June 1997.

[Dearnaley] Roger Dearnaley, <x_dearna@ugsolutions.com>, October 2000.

[Dellutri] Steve Dellutri, <sdellutri@cosmocom.com>, March 1998.

[Devasia] Alex Devasia, <adevasia@mobius.com>, March 2001.

[Doggett] Jay Doggett, <jdoggett@tiac.net>, February 1997.

[Domino] Michael Domino, <michaeldomino@mediaone.net>, February 1997.

C
om

pendium
 2 page 466

Media types Page 13

[Duffy] Michael Duffy, <miked@psiaustin.com>, September 1997.

[Eastlake] Donald E. Eastlake 3rd, <Donald.Eastlake@motorola.com>, April 1995,
 May 2000.

[Faltstrom] Patrik Faltstrom <paf@nada.kth.se>

[Fleischman] Eric Fleischman <ericfl@MICROSOFT.com>, April 1997.

[Floersch] Dick Floersch <floersch@echo.sound.net>, March 1997.

[Flurry] Henry Flurry <henryf@mediastation.com>, April 1999.

[Fox] Michael Fox, <mfox@nuera.com>, August 2000, January 2001.

[Francis] Alan Francis, A.H.Francis@open.ac.uk, December 1995.

[Fujii] Kiyofusa Fujii <kfujii@japannet.or.jp>, February 1997.

[Fuldseth] Arild Fuldseth, <Arild.Fuldseth@fast.no>, June 2000.

[Gales] Christopher Gales, <christopher.gales@informix.com>,
August 2000.

[Gandert] April Gandert <gandert.am@pg.com>, April 1999.

[Gill] Sukvinder S. Gill, <sukvg@microsoft.com>, April 1996.

[Glazer] David Glazer, <dglazer@best.com>, April 1995.

[Gotoh] Tadashi Gotoh, <tgotoh@cadamsystems.co.jp>, February 2000,
 June 2000.

[Gu] Yu Gu, <guyu@rd.oda.epson.co.jp>, December 1998.

[Gupta] Aloke Gupta <Aloke_Gupta@ex.cv.hp.com>, April 1999.

[Gurak] Tom Gurak, <assoc@intercon.roc.servtech.com>, March 1997.

[Gurney] John-Mark Gurney <jmg@flyidea.com>, August 1999.

[Guy] David Guy, <dguy@powersoft.com>, June 1997.

[Helmee] Nor Helmee, <helmee@my.cybank.net>, November 1998.

[Hepler] J. Scott Hepler, <scott@truebasic.com>, May 2000.

[Herzberg] Amir Herzberg, <amirh@haifa.vnet.ibm.com>, February 1997.

[Hess] Robert Hess, <hess@vidsoft.de>, March 2001.

[Hodge] Tim Hodge, <thodge@curl.com>, August 2000.

[Hohensee] Reinhard Hohensee <rhohensee@VNET.IBM.COM>, September 1997.

[Holstage] Mary Holstage <holstege@firstfloor.com>, May 1998.

[Hoshina] Shoji Hoshina <Hoshina.Shoji@exc.epson.co.jp>, January 1999,
 September 2000.

[Hurtta] Kari E. Hurtta <flexstor@ozone.FMI.FI>

[Imoucha] Philippe Imoucha <pimoucha@businessobjects.com>, October 1996.

[IPTC] International Press Telecommunications Council (David Allen),
 <m_director_iptc@dial.pipex.com>, July 2000.

Media types Page 14

[Jones] Randy Jones, <randy_jones@archipelago.com>, January 2001.

[Joseph] Todd Joseph <todd_joseph@groove.net>, February 2000, March 2000,
 April 2000.

[Juckes] John Juckes, <johnj@ugsolutions.com>, October 2000.

[Kangaslampi] Petteri Kangaslampi, <petteri.kangaslampi@nokia.com>,
 March 2001.

[Katz] Steve Katz, <skatz@eshop.com>, June 1995.

[Klos] Steven Klos, <stevek@osa.com>, February 1997.

[Knowles] Martin Knowles, <mjk@irepository.net>, June 2001.

[Kohlhepp] Bayard Kohlhepp, <bayard@ctcexchange.com>, April 2000.

[Korver] Brian Korver <briank@terisa.com>, October 1996.

[Kumar] Rajesh Kumar, <rkumar@cisco.com>, August 2001.

[Lamb] Charles P. Lamb, <CLamb@pvimage.com>, June 2001.

[Laramie] Michael Laramie <laramiem@btv.ibm.com>, February 1999.

[Laun] Juern Laun <juern.laun@gmx.de>, April 1999.

[Le Bodic] Gwenael Le Bodic <Gwenael.Le_Bodic@alcatel.fr>, March 2001.

[Ledoux] Eric Ledoux, <ericle@microsoft.com>, August 2000.

[Lefevre] Franck Lefevre, <franck@k1info.com>, August 2000.

[Leow] Steve Leow <Leost01@accpac.com>, April 1999.

[Levitt] Glenn Levitt <streetd1@ix.netcom.com>, October 1996.

[Lines] John Lines <john@paladin.demon.co.uk>, January 1998.

[Lubin] Dovid Lubin <dovid@acucobol.com>, October 1997.

[Lubos] Mikusiak Lubos <lmikusia@blava-s.bratisla.ingr.com>, October 1996.

[Lundblade] Laurence Lundblade <lgl@qualcomm.com>, October 1996.

[Manning] Dave Manning <dmanning@uwi.com>, January, March 1999.

[Martin] Bruce Martin <iana-registrar@uplanet.com>, November 1998.

[Martin] Steven Martin <smartin@xis.xerox.com>, October 1997.

[Matsumoto] Takashi Matsumoto <takashi.matsumoto@fujixerox.co.jp>,
 February 2000

[Matthewman] David Matthewman <david@xara.com>, October 1996.

[McDaniel] Braden N. McDaniel, <braden@endoframe.com>, October 2000.

[McGinty] Tom McGinty <tmcginty@dma.isg.mot.com>

[McLaughlin] Ann McLaughlin <amclaughlin@comversens.com>, April 1999.

[Minnis] James Minnis <james-minnis@glimpse-of-tomorrow.com>,
 February 2000

[Moline] Jodi Moline, <jodim@softsource.com>, April 1996.

C
om

pendium
 2 page 467

Media types Page 15

[Mori] Hiroyoshi Mori, <mori@mm.rd.nttdata.co.jp>, August 1998.

[Moskowitz] Jay Moskowitz, <jay@aethersystems.com>, March 2001.

[Muto] Shin Muto, <shinmuto@pure.cpdc.canon.co.jp>, May 2000.

[Mutz] Andy Mutz, <andy_mutz@hp.com>, December 1997.

[Nagatomo] Yasuhito Nagatomo <naga@rd.oda.epson.co.jp>, January 1998.

[Natarajan] Satish Natarajan, <satish@infoseek.com>, August 1998.

[Nelson] Jan Nelson, <jann@microsoft.com>, May 2000.

[Nilsson] Martin Nilsson, <nilsson@id3.org>, October 2000.

[O'Brien] Michael O'Brien <meobrien1@mmm.com>, January 1998.

[Ogita] Masumi Ogita, <ogita@oa.tfl.fujitsu.co.jp>, October 1997.

[Okudaira] Seiji Okudaira <okudaira@candy.paso.fujitsu.co.jp>, October 1997.

[Olsson] Thomas Olsson <thomas@vinga.se>, April 1998.

[Onda] Masanori Onda <Masanori.Onda@fujixerox.co.jp>, February 2000.

[Ozaki] Yutaka Ozaki <yutaka_ozaki@gen.co.jp>, January 1999.

[Paul Lindner]

[Parker] David Parker <davidparker@davidparker.com>, August 1999.

[Parks] Curtis Parks, <parks@eeel.nist.gov>, April 1995.

[Parsons] Glenn Parsons <gparsons@nortelnetworks.com>, February 1999.

[Patton] Mark Patton <fmp014@email.mot.com>, March 1999.

[Patz] Frank Patz, <fp@contact.de>, September 2000.

[Peacock] Gavin Peacock, <gpeacock@palm.com>, November 2000.

[Pentecost] Bob Pentecost, <bpenteco@boi.hp.com>, March 1997.

[Pharr] Paul C. Pharr <pharr@diehlgraphsoft.com>, February 2000.

[Powers] Michael Powers, <powers@insideout.net>, January 1998.
<pow@flatland.com>, January 1999.

[Pratt] Jason Pratt, <jason.pratt@autodesk.com>, August 1997.

[Pruulmann] Jann Pruulmann, <jaan@fut.ee>, December 1998.

[Rabinovitch] Boris Rabinovitch <boris@virtue3d.com>, February 2000.

[Randers-Pehrson] Glenn Randers-Pehrson <glennrp@ARL.MIL>, October 1996.

[Recktenwald] Heiko Recktenwald, <uzs106@uni-bonn.de>, November 2000.

[Reddy] Saveen Reddy <saveenr@miscrosoft.com>, July 1999.

[Rehem] Yaser Rehem, <yrehem@sapient.com>, February 1997.

[Resnick] Pete Resnick, <presnick@qualcomm.com>, February 2000.

Media types Page 16

[Risher] Mark Risher, <markr@vividence.com>, December 2000.

[Rose] Marshall Rose, <mrose@dbc.mtview.ca.us>, April 1995.

[Rosenberg] Jonathan Rosenberg, <jdrosen@dynamicsoft.com>, October 2000.

[Rungchavalnont] Khemchart Rungchavalnont,
<khemcr@cpu.cp.eng.chula.ac.th>, July 1997.

[Sandal] Troy Sandal <troys@visio.com>, November 1997.

[Santinelli] Paul Santinelli, Jr. <psantinelli@narrative.com>, October 1996.

[Scrathcley] Greg Scratchley <greg_scratchley@intuit.com>, October 1998.

[Searcy] Meredith Searcy, <msearcy@newmoon.com>, June 1997.

[Shapiro] Ehud Shapiro

[Shilts] Reed Shilts <reed.shilts@sybase.com>, February 1999, August 1999.

[Simon] Ben Simon, <BenS@crt.com>, September 1998.

[Simonoff] Steven Simonoff <scs@triscape.com>, August 1999.

[Simpson] Ray Simpson <ray@cnation.com>, January 1998.

[Slawson] Dean Slawson, <deansl@microsoft.com>, May 1996.

[Slusanschi] Horia Cristian Slusanschi <H.C.Slusanschi@massey.ac.nz>,
 January 1998.

[D.Smith] Derek Smith, <derek@friendlysoftware.com>, November 2000.

[Smith] Nick Smith, <nas@ant.co.uk>, June 1995.

[Smolgovsky] Roman Smolgovsky <romans@previewsystems.com>, April 1999.

[Solomon] Monty Solomon, <monty@noblenet.com>, February 1997.

[Spencer] Marc Douglas Spencer <marcs@itc.kodak.com>, October 1996.

[Henry Spencer]

[Stark] Peter Stark <stark@uplanet.com>, March 1999.

[Strazds] Armands Strazds <armands.strazds@medienhaus-bremen.de>,
 January 1999.

[Sugimoto] Masahiko Sugimoto <sugimoto@sz.sel.fujitsu.co.jp>, October 1997.

[T.Sugimoto] Taisuke Sugimoto <sugimototi@noanet.nttdata.co.jp> April 1999.

[Sweet] Michael Sweet <mike@easysw.com>, July 1999.

[Swenson] Janine Swenson <janine@novadigm.com>, January 1998.

[Szekely] Etay Szekely <etay@emultek.co.il>, October 1996.

[Taguchi] Yasuo Taguchi <yasuo.taguchi@fujixerox.co.jp>, July 1998.

[Tanaka] Manabu Tanaka <mtana@iss.isl.melco.co.jp>, September 1997.

[Tarkkala] Lauri Tarkkala, <Lauri.Tarkkala@sonera.com>, May 2000.

[Tidwell] Paul Tidwell <paul.tidwell@ericsson.com>, February 2000.

C
om

pendium
 2 page 468

Media types Page 17

[Togashi] Nobukazu Togashi <togashi@ai.cs.fujitsu.co.jp>, June 1997.

[Tomasello] Luke Tomasello <luket@intertrust.com>

[Tupper] Jeff Tupper <tupper@peda.com>, February 2000.

[Vaudreuil] Greg Vaudreuil <gregv@lucent.com>, January 1999.

[Walleij] Linus Walleij, <triad@df.lth.se>, July 2000.

[WAP-Forum] WAP Forum Ltd. <wap-feedback@mail.wapforum.org>, February 2000.

[Wattenberger] Paul Wattenberger <Paul_Wattenberger@lotus.com>, June 1997.

[Webb] Steve Webb <steve@wynde.com>, October 1996.

[Wedel] Eric Wedel <ewedel@meridian-data.com>, October 1996.

[Welsh] Linda Welsh, <linda@intel.com>, November 2000.

[Wexler] Mike Wexler, <mwexler@frame.com>, April 1996.

[Widener] Glenn Widener <glennw@ndg.com>, June 1997.

[Wohler] Bill Wohler, <wohler@newt.com>, July 1997.

[Wolfe] John Wolfe, <John_Wolfe.VIVO@vivo.com>, April 1996.

[Van Nostern] Gene C. Van Nostern <gene@wri.com>, February 1995.

[Yellow] Mr. Yellow <yellowriversw@yahoo.com>, March 1998.

[Yoshitake] Jun Yoshitake, <yositake@iss.isl.melco.co.jp>, February 1997.

[Zilles] Steve Zilles <szilles@adobe.com>, October 1996.

[]

C
om

pendium
 2 page 469

