
*:96 Internet application layer
protocols and standards

Compendium 7:
Allowed during the exam

Last revision: 12 Sep 2000

Extensible Markup Language (XML) 1.0 WRC Recommendation913-929

Compendium 7 page 912

Extensible Markup Language (XML) 1.0 (Second Edition)

W3C Recommendation 6 October 2000

This version:
(, , , with color-

coded revision indicators)
http://www.w3.org/TR/2000/REC-xml-20001006 XHTML XML PDF XHTML review version

Latest version:
http://www.w3.org/TR/REC-xml

Previous versions:
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1998/REC-xml-19980210

Editors:
Tim Bray, Textuality and Netscape <tbray@textuality.com>
Jean Paoli, Microsoft <jeanpa@microsoft.com>
C. M. Sperberg-McQueen, University of Illinois at Chicago and Text Encoding Initiative <
cmsmcq@uic.edu>
Eve Maler, Sun Microsystems, Inc. - Second Edition<eve.maler@east.sun.com>

 © 2000 (, ,), All Rights Reserved. W3C , , , and rules apply.Copyright W3C® MIT INRIA Keio liability trademark document use software licensing

Abstract

The Extensible Markup Language (XML) is a subset of SGML that is completely described in this document. Its
goal is to enable generic SGML to be served, received, and processed on the Web in the way that is now
possible with HTML. XML has been designed for ease of implementation and for interoperability with both
SGML and HTML.

Status of this Document

This document has been reviewed by W3C Members and other interested parties and has been endorsed by
the Director as a W3C Recommendation. It is a stable document and may be used as reference material or
cited as a normative reference from another document. W3C's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used international text processing
standard (Standard Generalized Markup Language, ISO 8879:1986(E) as amended and corrected) for use on
the World Wide Web. It is a product of the W3C XML Activity, details of which can be found at

. The English version of this specification is the only normative version. However, for
translations of this document, see . A list of current W3C Recommendations and
other technical documents can be found at .

http://
www.w3.org/XML

http://www.w3.org/XML/#trans
http://www.w3.org/TR

This second edition is a new version of XML (first published 10 February 1998); it merely incorporates the
changes dictated by the first-edition errata (available at) as a
convenience to readers. The errata list for this second edition is available at

.

not
http://www.w3.org/XML/xml-19980210-errata

http://www.w3.org/XML/xml-V10-2e-
errata

Please report errors in this document to ; are available.xml-editor@w3.org archives

Note:

C. M. Sperberg-McQueen's affiliation has changed since the publication of the first edition. He is now at the
World Wide Web Consortium, and can be contacted at .cmsmcq@w3.org

Table of Contents

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 1 of 49http://www.w3.org/TR/2000/REC-xml-20001006

1
 1.1
 1.2
2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8
 2.9
 2.10
 2.11
 2.12
3
 3.1
 3.2
 3.2.1
 3.2.2
 3.3
 3.3.1
 3.3.2
 3.3.3
 3.4
4
 4.1
 4.2
 4.2.1
 4.2.2
 4.3
 4.3.1
 4.3.2
 4.3.3
 4.4
 4.4.1
 4.4.2
 4.4.3
 4.4.4
 4.4.5
 4.4.6
 4.4.7
 4.4.8
 4.5
 4.6
 4.7
 4.8
5
 5.1
 5.2
6

Introduction
Origin and Goals
Terminology

Documents
Well-Formed XML Documents
Characters
Common Syntactic Constructs
Character Data and Markup
Comments
Processing Instructions
CDATA Sections
Prolog and Document Type Declaration
Standalone Document Declaration

White Space Handling
End-of-Line Handling
Language Identification

Logical Structures
Start-Tags, End-Tags, and Empty-Element Tags
Element Type Declarations

Element Content
Mixed Content

Attribute-List Declarations
Attribute Types
Attribute Defaults
Attribute-Value Normalization

Conditional Sections
Physical Structures

Character and Entity References
Entity Declarations

Internal Entities
External Entities

Parsed Entities
The Text Declaration
Well-Formed Parsed Entities
Character Encoding in Entities

XML Processor Treatment of Entities and References
Not Recognized
Included
Included If Validating
Forbidden
Included in Literal
Notify
Bypassed
Included as PE

Construction of Internal Entity Replacement Text
Predefined Entities
Notation Declarations
Document Entity

Conformance
Validating and Non-Validating Processors
Using XML Processors

Notation

Appendices

A
 A.1
 A.2
B
C (Non-Normative)
D (Non-Normative)
E (Non-Normative)
F (Non-Normative)
 F.1
 F.2
G (Non-Normative)
H (Non-Normative)
I (Non-Normative)

References
Normative References
Other References

Character Classes
XML and SGML
Expansion of Entity and Character References
Deterministic Content Models
Autodetection of Character Encodings

Detection Without External Encoding Information
Priorities in the Presence of External Encoding Information

W3C XML Working Group
W3C XML Core Group

Production Notes

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 2 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
3

1 Introduction

Extensible Markup Language, abbreviated XML, describes a class of data objects called and
partially describes the behavior of computer programs which process them. XML is an application profile or
restricted form of SGML, the Standard Generalized Markup Language . By construction, XML
documents are conforming SGML documents.

XML documents

[ISO 8879]

XML documents are made up of storage units called , which contain either parsed or unparsed data.
Parsed data is made up of , some of which form , and some of which form .
Markup encodes a description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.

entities
characters character data markup

[: A software module called an is used to read XML documents and provide access
to their content and structure.] [: It is assumed that an XML processor is doing its work on behalf of
another module, called the .] This specification describes the required behavior of an XML
processor in terms of how it must read XML data and the information it must provide to the application.

Definition XML processor
Definition

application

1.1 Origin and Goals

XML was developed by an XML Working Group (originally known as the SGML Editorial Review Board) formed
under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by Jon Bosak of Sun
Microsystems with the active participation of an XML Special Interest Group (previously known as the SGML
Working Group) also organized by the W3C. The membership of the XML Working Group is given in an
appendix. Dan Connolly served as the WG's contact with the W3C.

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646 for characters, Internet
RFC 1766 for language identification tags, ISO 639 for language name codes, and ISO 3166 for country name
codes), provides all the information necessary to understand XML Version 1.0 and construct computer programs
to process it.

This version of the XML specification may be distributed freely, as long as all text and legal notices remain intact.

1.2 Terminology

The terminology used to describe XML documents is defined in the body of this specification. The terms
defined in the following list are used in building those definitions and in describing the actions of an XML
processor:

may

[: Conforming documents and XML processors are permitted to but need not behave as described.]Definition

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 3 of 49http://www.w3.org/TR/2000/REC-xml-20001006

must

[: Conforming documents and XML processors are required to behave as described; otherwise they
are in error.]
Definition

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 4 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
4

error

[: A violation of the rules of this specification; results are undefined. Conforming software may detect
and report an error and may recover from it.]
Definition

fatal error

[: An error which a conforming must detect and report to the application. After
encountering a fatal error, the processor may continue processing the data to search for further errors and may
report such errors to the application. In order to support correction of errors, the processor may make
unprocessed data from the document (with intermingled character data and markup) available to the application.
Once a fatal error is detected, however, the processor must not continue normal processing (i.e., it must not
continue to pass character data and information about the document's logical structure to the application in the
normal way).]

Definition XML processor

at user option

[: Conforming software may or must (depending on the modal verb in the sentence) behave as
described; if it does, it must provide users a means to enable or disable the behavior described.]
Definition

validity constraint

[: A rule which applies to all XML documents. Violations of validity constraints are errors; they
must, at user option, be reported by .]
Definition valid

validating XML processors

well-formedness constraint

[: A rule which applies to all XML documents. Violations of well-formedness constraints are
.]

Definition well-formed
fatal errors

match

[: (Of strings or names:) Two strings or names being compared must be identical. Characters with
multiple possible representations in ISO/IEC 10646 (e.g. characters with both precomposed and base+diacritic
forms) match only if they have the same representation in both strings. No case folding is performed. (Of strings
and rules in the grammar:) A string matches a grammatical production if it belongs to the language generated by
that production. (Of content and content models:) An element matches its declaration when it conforms in the
fashion described in the constraint .]

Definition

[VC: Element Valid]

for compatibility

[: Marks a sentence describing a feature of XML included solely to ensure that XML remains
compatible with SGML.]
Definition

for interoperability

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 5 of 49http://www.w3.org/TR/2000/REC-xml-20001006

[: Marks a sentence describing a non-binding recommendation included to increase the chances that
XML documents can be processed by the existing installed base of SGML processors which predate the
WebSGML Adaptations Annex to ISO 8879.]

Definition

2 Documents

[: A data object is an if it is , as defined in this specification. A well-formed
XML document may in addition be if it meets certain further constraints.]
Definition XML document well-formed

valid

Each XML document has both a logical and a physical structure. Physically, the document is composed of units
called . An entity may to other entities to cause their inclusion in the document. A document begins
in a "root" or . Logically, the document is composed of declarations, elements, comments,
character references, and processing instructions, all of which are indicated in the document by explicit markup.
The logical and physical structures must nest properly, as described in .

entities refer
document entity

4.3.2 Well-Formed Parsed Entities

2.1 Well-Formed XML Documents

[: A textual object is a XML document if:]Definition well-formed

1. Taken as a whole, it matches the production labeled .document

2. It meets all the well-formedness constraints given in this specification.

3. Each of the which is referenced directly or indirectly within the document is .parsed entities well-formed

Document

[1] document ::= *prolog element Misc

Matching the production implies that:document

1. It contains one or more .elements

2. [: There is exactly one element, called the , or document element, no part of which appears
in the of any other element.] For all other elements, if the is in the content of another
element, the is in the content of the same element. More simply stated, the elements, delimited by
start- and end-tags, nest properly within each other.

Definition root
content start-tag

end-tag

[: As a consequence of this, for each non-root element in the document, there is one other element
in the document such that is in the content of , but is not in the content of any other element that is in the
content of . is referred to as the of , and as a of .]

Definition C P

C P

P P parent C C child P

2.2 Characters

[: A parsed entity contains , a sequence of , which may represent markup or character
data.] [: A is an atomic unit of text as specified by ISO/IEC 10646 (see
also). Legal characters are tab, carriage return, line feed, and the legal characters of
Unicode and ISO/IEC 10646. The versions of these standards cited in were current
at the time this document was prepared. New characters may be added to these standards by amendments or
new editions. Consequently, XML processors must accept any character in the range specified for . The use
of "compatibility characters", as defined in section 6.8 of (see also D21 in section 3.6 of),
is discouraged.]

Definition text characters
Definition character [ISO/IEC 10646]

[ISO/IEC 10646-2000]
A.1 Normative References

Char
[Unicode] [Unicode3]

Character Range

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-
#xFFFD] | [#x10000-#x10FFFF]

/* any Unicode character, excluding the
surrogate blocks, FFFE, and FFFF. */

The mechanism for encoding character code points into bit patterns may vary from entity to entity. All XML
processors must accept the UTF-8 and UTF-16 encodings of 10646; the mechanisms for signaling which of the
two is in use, or for bringing other encodings into play, are discussed later, in

.
4.3.3 Character Encoding in

Entities

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 6 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
5

2.3 Common Syntactic Constructs

This section defines some symbols used widely in the grammar.

 (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs.S

White Space

[3] S ::= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. A letter consists of an alphabetic
or syllabic base character or an ideographic character. Full definitions of the specific characters in each class
are given in .B Character Classes

[: A is a token beginning with a letter or one of a few punctuation characters, and continuing with
letters, digits, hyphens, underscores, colons, or full stops, together known as name characters.] Names
beginning with the string " ", or any string which would match , are reserved
for standardization in this or future versions of this specification.

Definition Name

xml (('X'|'x') ('M'|'m') ('L'|'l'))

Note:

The Namespaces in XML Recommendation assigns a meaning to names containing colon
characters. Therefore, authors should not use the colon in XML names except for namespace purposes,
but XML processors must accept the colon as a name character.

[XML Names]

An (name token) is any mixture of name characters.Nmtoken

Names and Tokens

[4] NameChar ::= | | '.' | '-' | '_' | ':' | |Letter Digit CombiningChar Extender

[5] Name ::= (| '_' | ':') ()*Letter NameChar

[6] Names ::= ()*Name S Name

[7] Nmtoken ::= ()+NameChar

[8] Nmtokens ::= ()*Nmtoken S Nmtoken

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string. Literals are
used for specifying the content of internal entities (), the values of attributes (), and external
identifiers (). Note that a can be parsed without scanning for markup.

EntityValue AttValue
SystemLiteral SystemLiteral

Literals

[9] EntityValue ::= '"' ([^%&"] | |)* '"' PEReference Reference

| "'" ([^%&'] | |)* "'"PEReference Reference

[10] AttValue ::= '"' ([^<&"] |)* '"' Reference

| "'" ([^<&'] |)* "'"Reference

[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")
[12] PubidLiteral ::= '"' * '"' | "'" (- "'")* "'"PubidChar PubidChar

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]

Note:

Although the production allows the definition of an entity consisting of a single explicit in the
literal (e.g.,), it is strongly advised to avoid this practice since any reference to that entity
will cause a well-formedness error.

EntityValue <

<!ENTITY mylt "<">

2.4 Character Data and Markup

 consists of intermingled and markup. [: takes the form of ,
, , , , , delimiters,

, , , , and any white space
that is at the top level of the document entity (that is, outside the document element and not inside any other
markup).]

Text character data Definition Markup start-tags end-
tags empty-element tags entity references character references comments CDATA section
document type declarations processing instructions XML declarations text declarations

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 7 of 49http://www.w3.org/TR/2000/REC-xml-20001006

[: All text that is not markup constitutes the of the document.]Definition character data

The ampersand character (&) and the left angle bracket (<) may appear in their literal form when used as
markup delimiters, or within a , a , or a . If they are needed
elsewhere, they must be using either or the strings " " and " "
respectively. The right angle bracket (>) may be represented using the string " ", and must, ,
be escaped using " " or a character reference when it appears in the string " " in content, when that string
is not marking the end of a .

only
comment processing instruction CDATA section

escaped numeric character references & <

> for compatibility
>]]>

CDATA section

In the content of elements, character data is any string of characters which does not contain the start-delimiter of
any markup. In a CDATA section, character data is any string of characters not including the CDATA-section-
close delimiter, " ".]]>

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote character (')
may be represented as " ", and the double-quote character (") as " ".' "

Character Data

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

2.5 Comments

[: may appear anywhere in a document outside other ; in addition, they may appear
within the document type declaration at places allowed by the grammar. They are not part of the document's

; an XML processor may, but need not, make it possible for an application to retrieve the text of
comments. , the string " " (double-hyphen) must not occur within comments.] Parameter entity
references are not recognized within comments.

Definition Comments markup

character data
For compatibility --

Comments

[15] Comment ::= '<!--' ((- '-') | ('-' (- '-')))* '-->'Char Char

An example of a comment:

<!-- declarations for <head> & <body> -->

Note that the grammar does not allow a comment ending in . The following example is well-formed.---> not

<!-- B+, B, or B--->

2.6 Processing Instructions

[: (PIs) allow documents to contain instructions for applications.]Definition Processing instructions

Processing Instructions

[16] PI ::= '<?' ((* - (* '?>' *)))? '?>'PITarget S Char Char Char

[17] PITarget ::= - (('X' | 'x') ('M' | 'm') ('L' | 'l'))Name

PIs are not part of the document's , but must be passed through to the application. The PI begins
with a target () used to identify the application to which the instruction is directed. The target names
 " ", " ", and so on are reserved for standardization in this or future versions of this specification. The XML

mechanism may be used for formal declaration of PI targets. Parameter entity references are not
recognized within processing instructions.

character data
PITarget

XML xml

Notation

2.7 CDATA Sections

[: may occur anywhere character data may occur; they are used to escape blocks of
text containing characters which would otherwise be recognized as markup. CDATA sections begin with the string
 " " and end with the string " ":]

Definition CDATA sections

<![CDATA[]]>

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 8 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
6

CDATA Sections

[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= '<![CDATA['
[20] CData ::= (* - (* ']]>' *)) Char Char Char

[21] CDEnd ::= ']]>'

Within a CDATA section, only the string is recognized as markup, so that left angle brackets and
ampersands may occur in their literal form; they need not (and cannot) be escaped using " " and " ".
CDATA sections cannot nest.

CDEnd
< &

An example of a CDATA section, in which " " and " " are recognized as , not
:

<greeting> </greeting> character data
markup

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration

[: XML documents should begin with an which specifies the version of XML being
used.] For example, the following is a complete XML document, but not :
Definition XML declaration

well-formed valid

<?xml version="1.0"?> <greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

The version number " " should be used to indicate conformance to this version of this specification; it is an
error for a document to use the value " " if it does not conform to this version of this specification. It is the
intent of the XML working group to give later versions of this specification numbers other than " ", but this intent
does not indicate a commitment to produce any future versions of XML, nor if any are produced, to use any
particular numbering scheme. Since future versions are not ruled out, this construct is provided as a means to
allow the possibility of automatic version recognition, should it become necessary. Processors may signal an
error if they receive documents labeled with versions they do not support.

1.0

1.0

1.0

The function of the markup in an XML document is to describe its storage and logical structure and to associate
attribute-value pairs with its logical structures. XML provides a mechanism, the , to
define constraints on the logical structure and to support the use of predefined storage units. [: An XML
document is if it has an associated document type declaration and if the document complies with the
constraints expressed in it.]

document type declaration
Definition

valid

The document type declaration must appear before the first in the document.element

Prolog

[22] prolog ::= ? * (*)?XMLDecl Misc doctypedecl Misc

[23] XMLDecl ::= '<?xml' ? ? ? '?>'VersionInfo EncodingDecl SDDecl S

[24] VersionInfo ::= 'version' ("'" "'" | '"' '"')S Eq VersionNum VersionNum /* */

[25] Eq ::= ? '=' ?S S

[26] VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
[27] Misc ::= | | Comment PI S

[: The XML contains or points to that provide a
grammar for a class of documents. This grammar is known as a document type definition, or . The
document type declaration can point to an external subset (a special kind of) containing markup
declarations, or can contain the markup declarations directly in an internal subset, or can do both. The DTD for a
document consists of both subsets taken together.]

Definition document type declaration markup declarations
DTD

external entity

[: A is an , an , an
, or a .] These declarations may be contained in whole or in part within

, as described in the well-formedness and validity constraints below. For further information, see
.

Definition markup declaration element type declaration attribute-list declaration entity
declaration notation declaration parameter
entities 4
Physical Structures

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 9 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Document Type Definition

[28] doctypedecl ::= '<!DOCTYPE' ()? ? ('['
 (|)* ']' ?)? '>'

S Name S ExternalID S
markupdecl DeclSep S

[VC: Root Element Type]

[WFC: External Subset]
/* */

[28a] DeclSep ::= | PEReference S [WFC: PE Between
Declarations]
/* */

[29] markupdecl ::= | | |
| |
elementdecl AttlistDecl EntityDecl NotationDecl
PI Comment

[VC: Proper Declaration/PE
Nesting]
[WFC: PEs in Internal
Subset]

Note that it is possible to construct a well-formed document containing a that neither points to an
external subset nor contains an internal subset.

doctypedecl

The markup declarations may be made up in whole or in part of the of . The
productions later in this specification for individual nonterminals (, , and so on) describe
the declarations all the parameter entities have been .

replacement text parameter entities
elementdecl AttlistDecl

after included

Parameter entity references are recognized anywhere in the DTD (internal and external subsets and external
parameter entities), except in literals, processing instructions, comments, and the contents of ignored
conditional sections (see). They are also recognized in entity value literals. The use of
parameter entities in the internal subset is restricted as described below.

3.4 Conditional Sections

Validity constraint: Root Element Type

The in the document type declaration must match the element type of the .Name root element

Validity constraint: Proper Declaration/PE Nesting

Parameter-entity must be properly nested with markup declarations. That is to say, if either
the first character or the last character of a markup declaration (above) is contained in the
replacement text for a , both must be contained in the same replacement text.

replacement text
markupdecl

parameter-entity reference

Well-formedness constraint: PEs in Internal Subset

In the internal DTD subset, can occur only where markup declarations can
occur, not within markup declarations. (This does not apply to references that occur in external parameter
entities or to the external subset.)

parameter-entity references

Well-formedness constraint: External Subset

The external subset, if any, must match the production for .extSubset

Well-formedness constraint: PE Between Declarations

The replacement text of a parameter entity reference in a must match the production
.

DeclSep
extSubsetDecl

Like the internal subset, the external subset and any external parameter entities referenced in a must
consist of a series of complete markup declarations of the types allowed by the non-terminal symbol

, interspersed with white space or . However, portions of the contents of
the external subset or of these external parameter entities may conditionally be ignored by using the

construct; this is not allowed in the internal subset.

DeclSep

markupdecl parameter-entity references
conditional

section

External Subset

[30] extSubset ::= ?TextDecl extSubsetDecl

[31] extSubsetDecl ::= (| |)*markupdecl conditionalSect DeclSep /* */

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 10 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
7

The external subset and external parameter entities also differ from the internal subset in that in them,
 are permitted markup declarations, not only markup declarations.parameter-entity references within between

An example of an XML document with a document type declaration:

<?xml version="1.0"?> <!DOCTYPE greeting SYSTEM "hello.dtd"> <greeting>Hello, world!</greeting>

The " " gives the address (a URI reference) of a DTD for the document.system identifier hello.dtd

The declarations can also be given locally, as in this example:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered to occur before the external
subset. This has the effect that entity and attribute-list declarations in the internal subset take precedence over
those in the external subset.

2.9 Standalone Document Declaration

Markup declarations can affect the content of the document, as passed from an to an
application; examples are attribute defaults and entity declarations. The standalone document declaration, which
may appear as a component of the XML declaration, signals whether or not there are such declarations which
appear external to the or in parameter entities. [: An is
defined as a markup declaration occurring in the external subset or in a parameter entity (external or internal, the
latter being included because non-validating processors are not required to read them).]

XML processor

document entity Definition external markup declaration

Standalone Document Declaration

[32] SDDecl ::= 'standalone' (("'" ('yes' | 'no') "'") | ('"'
('yes' | 'no') '"'))
S Eq [VC: Standalone Document

Declaration]

In a standalone document declaration, the value "yes" indicates that there are no
which affect the information passed from the XML processor to the application. The value "no" indicates that
there are or may be such external markup declarations. Note that the standalone document declaration only
denotes the presence of external ; the presence, in a document, of references to external ,
when those entities are internally declared, does not change its standalone status.

external markup declarations

declarations entities

If there are no external markup declarations, the standalone document declaration has no meaning. If there are
external markup declarations but there is no standalone document declaration, the value "no" is assumed.

Any XML document for which holds can be converted algorithmically to a standalone document,
which may be desirable for some network delivery applications.

standalone="no"

Validity constraint: Standalone Document Declaration

The standalone document declaration must have the value "no" if any external markup declarations contain
declarations of:

attributes with values, if elements to which these attributes apply appear in the document
without specifications of values for these attributes, or

default

entities (other than , , , ,), if to those entities appear in the document, oramp lt gt apos quot references

attributes with values subject to , where the attribute appears in the document with a
value which will change as a result of normalization, or

normalization

element types with , if white space occurs directly within any instance of those types.element content

An example XML declaration with a standalone document declaration:

<?xml version="1.0" standalone='yes'?>

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 11 of 49http://www.w3.org/TR/2000/REC-xml-20001006

2.10 White Space Handling

In editing XML documents, it is often convenient to use "white space" (spaces, tabs, and blank lines) to set apart
the markup for greater readability. Such white space is typically not intended for inclusion in the delivered version
of the document. On the other hand, "significant" white space that should be preserved in the delivered version
is common, for example in poetry and source code.

An must always pass all characters in a document that are not markup through to the application.
A must also inform the application which of these characters constitute white space
appearing in .

XML processor
validating XML processor

element content

A special named may be attached to an element to signal an intention that in that element,
white space should be preserved by applications. In valid documents, this attribute, like any other, must be

if it is used. When declared, it must be given as an whose values are one or both of
"default" and "preserve". For example:

attribute xml:space

declared enumerated type

<!ATTLIST poem xml:space (default|preserve) 'preserve'>

<!-- -->
<!ATTLIST pre xml:space (preserve) #FIXED 'preserve'>

The value "default" signals that applications' default white-space processing modes are acceptable for this
element; the value "preserve" indicates the intent that applications preserve all the white space. This declared
intent is considered to apply to all elements within the content of the element where it is specified, unless
overriden with another instance of the attribute.xml:space

The of any document is considered to have signaled no intentions as regards application space
handling, unless it provides a value for this attribute or the attribute is declared with a default value.

root element

2.11 End-of-Line Handling

XML are often stored in computer files which, for editing convenience, are organized into lines.
These lines are typically separated by some combination of the characters carriage-return (#xD) and line-feed
(#xA).

parsed entities

To simplify the tasks of , the characters passed to an application by the must be as
if the XML processor normalized all line breaks in external parsed entities (including the document entity) on
input, before parsing, by translating both the two-character sequence #xD #xA and any #xD that is not followed
by #xA to a single #xA character.

applications XML processor

2.12 Language Identification

In document processing, it is often useful to identify the natural or formal language in which the content is written.
A special named may be inserted in documents to specify the language used in the contents
and attribute values of any element in an XML document. In valid documents, this attribute, like any other, must
be if it is used. The values of the attribute are language identifiers as defined by ,

, or its successor on the IETF Standards Track.

attribute xml:lang

declared [IETF RFC 1766]
Tags for the Identification of Languages

Note:

 tags are constructed from two-letter language codes as defined by , from two-
letter country codes as defined by , or from language identifiers registered with the Internet
Assigned Numbers Authority . It is expected that the successor to
will introduce three-letter language codes for languages not presently covered by .

[IETF RFC 1766] [ISO 639]
[ISO 3166]

[IANA-LANGCODES] [IETF RFC 1766]
[ISO 639]

(Productions 33 through 38 have been removed.)

For example:

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 12 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
8

<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p>
<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>
<sp who="Faust" desc='leise' xml:lang="de">
 <l>Habe nun, ach! Philosophie,</l>
 <l>Juristerei, und Medizin</l>
 <l>und leider auch Theologie</l>
 <l>durchaus studiert mit heißem Bemüh'n.</l>
</sp>

The intent declared with is considered to apply to all attributes and content of the element where it is
specified, unless overridden with an instance of on another element within that content.

xml:lang

xml:lang

A simple declaration for might take the formxml:lang

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of French poems for English
students, with glosses and notes in English, the attribute might be declared this way:xml:lang

<!ATTLIST poem xml:lang NMTOKEN 'fr'>
<!ATTLIST gloss xml:lang NMTOKEN 'en'>
<!ATTLIST note xml:lang NMTOKEN 'en'>

3 Logical Structures

[: Each contains one or more , the boundaries of which are either delimited by
 and , or, for elements, by an . Each element has a type, identified by

name, sometimes called its "generic identifier" (GI), and may have a set of attribute specifications.] Each attribute
specification has a and a .

Definition XML document elements
start-tags end-tags empty empty-element tag

name value

Element

[39] element ::= EmptyElemTag
| STag content ETag [WFC: Element Type Match]

[VC: Element Valid]

This specification does not constrain the semantics, use, or (beyond syntax) names of the element types and
attributes, except that names beginning with a match to are reserved for
standardization in this or future versions of this specification.

(('X'|'x')('M'|'m')('L'|'l'))

Well-formedness constraint: Element Type Match

The in an element's end-tag must match the element type in the start-tag.Name

Validity constraint: Element Valid

An element is valid if there is a declaration matching where the matches the element
type, and one of the following holds:

elementdecl Name

1. The declaration matches and the element has no .EMPTY content

2. The declaration matches and the sequence of belongs to the language
generated by the regular expression in the content model, with optional white space (characters
matching the nonterminal) between the start-tag and the first child element, between child elements,
or between the last child element and the end-tag. Note that a CDATA section containing only white
space does not match the nonterminal , and hence cannot appear in these positions.

children child elements

S

S

3. The declaration matches and the content consists of and whose
types match names in the content model.

Mixed character data child elements

4. The declaration matches , and the types of any have been declared.ANY child elements

3.1 Start-Tags, End-Tags, and Empty-Element Tags

[: The beginning of every non-empty XML element is marked by a .]Definition start-tag

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 13 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Start-tag

[40] STag ::= '<' ()* ? '>'Name S Attribute S [WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue [VC: Attribute Value Type]

[WFC: No External Entity References]
[WFC: No < in Attribute Values]

The in the start- and end-tags gives the element's . [: The - pairs are referred
to as the of the element], [: with the in each pair referred to as the

] and [: the content of the (the text between the or delimiters) as the
.]Note that the order of attribute specifications in a start-tag or empty-element tag is not

significant.

Name type Definition Name AttValue
attribute specifications Definition Name

attribute name Definition AttValue ' "

attribute value

Well-formedness constraint: Unique Att Spec

No attribute name may appear more than once in the same start-tag or empty-element tag.

Validity constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for it. (For attribute types,
see .)3.3 Attribute-List Declarations

Well-formedness constraint: No External Entity References

Attribute values cannot contain direct or indirect entity references to external entities.

Well-formedness constraint: No in Attribute Values<

The of any entity referred to directly or indirectly in an attribute value must not contain a .replacement text <

An example of a start-tag:

<termdef id="dt-dog" term="dog">

[: The end of every element that begins with a start-tag must be marked by an containing a
name that echoes the element's type as given in the start-tag:]
Definition end-tag

End-tag

[42] ETag ::= '</' ? '>'Name S

An example of an end-tag:

</termdef>

[: The between the start-tag and end-tag is called the element's :]Definition text content

Content of Elements

[43] content ::= ? ((| | | |) ?)*CharData element Reference CDSect PI Comment CharData /* */

[: An element with no content is said to be .] The representation of an empty element is either a
start-tag immediately followed by an end-tag, or an empty-element tag. [: An takes
a special form:]

Definition empty
Definition empty-element tag

Tags for Empty Elements

[44] EmptyElemTag ::= '<' ()* ? '/>'Name S Attribute S [WFC: Unique Att Spec]

Empty-element tags may be used for any element which has no content, whether or not it is declared using the

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 14 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

1
9

keyword . , the empty-element tag should be used, and should only be used, for
elements which are declared EMPTY.

EMPTY For interoperability

Examples of empty elements:

<IMG align="left"
 src="http://www.w3.org/Icons/WWW/w3c_home" />

</br>

3.2 Element Type Declarations

The structure of an may, for purposes, be constrained using element type
and attribute-list declarations. An element type declaration constrains the element's .

element XML document validation
content

Element type declarations often constrain which element types can appear as of the element. At user
option, an XML processor may issue a warning when a declaration mentions an element type for which no
declaration is provided, but this is not an error.

children

[: An takes the form:]Definition element type declaration

Element Type Declaration

[45] elementdecl ::= '<!ELEMENT' ? '>'S Name S contentspec S [VC: Unique Element Type Declaration]
[46] contentspec ::= 'EMPTY' | 'ANY' | |Mixed children

where the gives the element type being declared.Name

Validity constraint: Unique Element Type Declaration

No element type may be declared more than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >
<!ELEMENT container ANY>

3.2.1 Element Content

[: An element has when elements of that type must contain only elements
(no character data), optionally separated by white space (characters matching the nonterminal).][: In
this case, the constraint includes a , a simple grammar governing the allowed types of the child
elements and the order in which they are allowed to appear.] The grammar is built on content particles (s),
which consist of names, choice lists of content particles, or sequence lists of content particles:

Definition type element content child
S Definition

content model
cp

Element-content Models

[47] children ::= (|) ('?' | '*' | '+')?choice seq

[48] cp ::= (| |) ('?' | '*' | '+')?Name choice seq

[49] choice ::= '(' ? (? '|' ?)+ ? ')'S cp S S cp S /* */
/* */
[VC: Proper Group/PE Nesting]

[50] seq ::= '(' ? (? ',' ?)* ? ')'S cp S S cp S /* */
[VC: Proper Group/PE Nesting]

where each is the type of an element which may appear as a . Any content particle in a choice list
may appear in the at the location where the choice list appears in the grammar; content particles
occurring in a sequence list must each appear in the in the order given in the list. The optional
character following a name or list governs whether the element or the content particles in the list may occur one
or more (), zero or more (), or zero or one times (). The absence of such an operator means that the element

Name child
element content

element content

+ * ?

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 15 of 49http://www.w3.org/TR/2000/REC-xml-20001006

or content particle must appear exactly once. This syntax and meaning are identical to those used in the
productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path through the
content model, obeying the sequence, choice, and repetition operators and matching each element in the
content against an element type in the content model. , it is an error if an element in the
document can match more than one occurrence of an element type in the content model. For more information,
see .

For compatibility

E Deterministic Content Models

Validity constraint: Proper Group/PE Nesting

Parameter-entity must be properly nested with parenthesized groups. That is to say, if
either of the opening or closing parentheses in a , , or construct is contained in the
replacement text for a , both must be contained in the same replacement text.

replacement text
choice seq Mixed

parameter entity

, if a parameter-entity reference appears in a , , or construct, its
replacement text should contain at least one non-blank character, and neither the first nor last non-blank
character of the replacement text should be a connector (or).

For interoperability choice seq Mixed

| ,

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>
<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content

[: An element has when elements of that type may contain character data,
optionally interspersed with elements.] In this case, the types of the child elements may be constrained, but
not their order or their number of occurrences:

Definition type mixed content
child

Mixed-content Declaration

[51] Mixed ::= '(' ? '#PCDATA' (? '|' ?)* ? ')*' S S S Name S

| '(' ? '#PCDATA' ? ')' S S [VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

where the s give the types of elements that may appear as children. The keyword derives
historically from the term "parsed character data."

Name #PCDATA

Validity constraint: No Duplicate Types

The same name must not appear more than once in a single mixed-content declaration.

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* >
<!ELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations

 are used to associate name-value pairs with . Attribute specifications may appear only within
and ; thus, the productions used to recognize them appear in

. Attribute-list declarations may be used:

Attributes elements
start-tags empty-element tags 3.1 Start-Tags,
End-Tags, and Empty-Element Tags

To define the set of attributes pertaining to a given element type.

To establish type constraints for these attributes.

To provide for attributes.default values

[: specify the name, data type, and default value (if any) of each attribute
associated with a given element type:]
Definition Attribute-list declarations

Attribute-list Declaration

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 16 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
0

[52] AttlistDecl ::= '<!ATTLIST' * ? '>'S Name AttDef S

[53] AttDef ::= S Name S AttType S DefaultDecl

The in the rule is the type of an element. At user option, an XML processor may issue a warning
if attributes are declared for an element type not itself declared, but this is not an error. The in the
rule is the name of the attribute.

Name AttlistDecl
Name AttDef

When more than one is provided for a given element type, the contents of all those provided are
merged. When more than one definition is provided for the same attribute of a given element type, the first
declaration is binding and later declarations are ignored. writers of DTDs may choose to
provide at most one attribute-list declaration for a given element type, at most one attribute definition for a given
attribute name in an attribute-list declaration, and at least one attribute definition in each attribute-list declaration.
For interoperability, an XML processor may at user option issue a warning when more than one attribute-list
declaration is provided for a given element type, or more than one attribute definition is provided for a given
attribute, but this is not an error.

AttlistDecl

For interoperability,

3.3.1 Attribute Types

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The string
type may take any literal string as a value; the tokenized types have varying lexical and semantic constraints. The
validity constraints noted in the grammar are applied after the attribute value has been normalized as described in

.3.3 Attribute-List Declarations

Attribute Types

[54] AttType ::= | | StringType TokenizedType EnumeratedType

[55] StringType ::= 'CDATA'
[56] TokenizedType ::= 'ID' [VC: ID]

[VC: One ID per Element Type]
[VC: ID Attribute Default]

| 'IDREF' [VC: IDREF]
| 'IDREFS' [VC: IDREF]
| 'ENTITY' [VC: Entity Name]
| 'ENTITIES' [VC: Entity Name]
| 'NMTOKEN' [VC: Name Token]
| 'NMTOKENS' [VC: Name Token]

Validity constraint: ID

Values of type must match the production. A name must not appear more than once in an XML
document as a value of this type; i.e., ID values must uniquely identify the elements which bear them.

ID Name

Validity constraint: One ID per Element Type

No element type may have more than one ID attribute specified.

Validity constraint: ID Attribute Default

An ID attribute must have a declared default of or .#IMPLIED #REQUIRED

Validity constraint: IDREF

Values of type must match the production, and values of type must match ;
each must match the value of an ID attribute on some element in the XML document; i.e.
values must match the value of some ID attribute.

IDREF Name IDREFS Names
Name IDREF

Validity constraint: Entity Name

Values of type must match the production, values of type must match ;
each must match the name of an declared in the .

ENTITY Name ENTITIES Names
Name unparsed entity DTD

Validity constraint: Name Token

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 17 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Values of type must match the production; values of type must match
.

NMTOKEN Nmtoken NMTOKENS
Nmtokens

[: can take one of a list of values provided in the declaration]. There are two
kinds of enumerated types:
Definition Enumerated attributes

Enumerated Attribute Types

[57] EnumeratedType ::= |NotationType Enumeration

[58] NotationType ::= 'NOTATION' '(' ? (? '|' ?)*
? ')'

S S Name S S Name
S

[VC: Notation Attributes]

[VC: One Notation Per Element
Type]
[VC: No Notation on Empty
Element]

[59] Enumeration ::= '(' ? (? '|' ?)* ? ')'S Nmtoken S S Nmtoken S [VC: Enumeration]

A attribute identifies a , declared in the DTD with associated system and/or public
identifiers, to be used in interpreting the element to which the attribute is attached.

NOTATION notation

Validity constraint: Notation Attributes

Values of this type must match one of the names included in the declaration; all notation names in
the declaration must be declared.

notation

Validity constraint: One Notation Per Element Type

No element type may have more than one attribute specified.NOTATION

Validity constraint: No Notation on Empty Element

, an attribute of type must not be declared on an element declared .For compatibility NOTATION EMPTY

Validity constraint: Enumeration

Values of this type must match one of the tokens in the declaration.Nmtoken

 the same should not occur more than once in the enumerated attribute types of a
single element type.
For interoperability, Nmtoken

3.3.2 Attribute Defaults

An provides information on whether the attribute's presence is required, and if not, how an
XML processor should react if a declared attribute is absent in a document.

attribute declaration

Attribute Defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED'
| (('#FIXED' S)?)AttValue [VC: Required Attribute]

[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

In an attribute declaration, means that the attribute must always be provided, that no
default value is provided. [: If the declaration is neither nor , then the
value contains the declared value; the keyword states that the attribute must always have the
default value. If a default value is declared, when an XML processor encounters an omitted attribute, it is to
behave as though the attribute were present with the declared default value.]

#REQUIRED #IMPLIED
Definition #REQUIRED #IMPLIED AttValue

default #FIXED

Validity constraint: Required Attribute

If the default declaration is the keyword , then the attribute must be specified for all elements
of the type in the attribute-list declaration.

#REQUIRED

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 18 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
1

Validity constraint: Attribute Default Legal

The declared default value must meet the lexical constraints of the declared attribute type.

Validity constraint: Fixed Attribute Default

If an attribute has a default value declared with the keyword, instances of that attribute must match
the default value.

#FIXED

Examples of attribute-list declarations:

<!ATTLIST termdef
 id ID #REQUIRED
 name CDATA #IMPLIED>
<!ATTLIST list
 type (bullets|ordered|glossary) "ordered">
<!ATTLIST form
 method CDATA #FIXED "POST">

3.3.3 Attribute-Value Normalization

Before the value of an attribute is passed to the application or checked for validity, the XML processor must
normalize the attribute value by applying the algorithm below, or by using some other method such that the value
passed to the application is the same as that produced by the algorithm.

1. All line breaks must have been normalized on input to #xA as described in , so
the rest of this algorithm operates on text normalized in this way.

2.11 End-of-Line Handling

2. Begin with a normalized value consisting of the empty string.

3. For each character, entity reference, or character reference in the unnormalized attribute value, beginning
with the first and continuing to the last, do the following:

For a character reference, append the referenced character to the normalized value.

For an entity reference, recursively apply step 3 of this algorithm to the replacement text of the entity.

For a white space character (#x20, #xD, #xA, #x9), append a space character (#x20) to the
normalized value.

For another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor must further process the normalized attribute value
by discarding any leading and trailing space (#x20) characters, and by replacing sequences of space (#x20)
characters by a single space (#x20) character.

Note that if the unnormalized attribute value contains a character reference to a white space character other than
space (#x20), the normalized value contains the referenced character itself (#xD, #xA or #x9). This contrasts
with the case where the unnormalized value contains a white space character (not a reference), which is
replaced with a space character (#x20) in the normalized value and also contrasts with the case where the
unnormalized value contains an entity reference whose replacement text contains a white space character; being
recursively processed, the white space character is replaced with a space character (#x20) in the normalized
value.

All attributes for which no declaration has been read should be treated by a non-validating processor as if
declared .CDATA

Following are examples of attribute normalization. Given the following declarations:

<!ENTITY d "">
<!ENTITY a "
">
<!ENTITY da "
">

the attribute specifications in the left column below would be normalized to the character sequences of the
middle column if the attribute is declared and to those of the right columns if is declared

.
a NMTOKENS a

CDATA

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 19 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Attribute specification a is NMTOKENS a is CDATA

a="

xyz"
x y z #x20 #x20 x y z

a="&d;&d;A&a;&a;B&da;" A #x20 B #x20 #x20 A #x20 #x20 B #x20 #x20

a=
"A

B
"

#xD #xD A #xA #xA B #xD #xA #xD #xD A #xA #xA B #xD #xD

Note that the last example is invalid (but well-formed) if is declared to be of type .a NMTOKENS

3.4 Conditional Sections

[: are portions of the which are
included in, or excluded from, the logical structure of the DTD based on the keyword which governs them.]
Definition Conditional sections document type declaration external subset

Conditional Section

[61] conditionalSect ::= |includeSect ignoreSect

[62] includeSect ::= '<![' S? 'INCLUDE' S? '['
']]>'

extSubsetDecl /* */

[VC: Proper Conditional Section/
PE Nesting]

[63] ignoreSect ::= '<![' S? 'IGNORE' S? '['
* ']]>'ignoreSectContents

/* */

[VC: Proper Conditional Section/
PE Nesting]

[64] ignoreSectContents ::= ('<![' ']]>'
)*

Ignore ignoreSectContents
Ignore

[65] Ignore ::= * - (* ('<![' | ']]>') *) Char Char Char

Validity constraint: Proper Conditional Section/PE Nesting

If any of the " ", " ", or " " of a conditional section is contained in the replacement text for a parameter-
entity reference, all of them must be contained in the same replacement text.

<![[]]>

Like the internal and external DTD subsets, a conditional section may contain one or more complete
declarations, comments, processing instructions, or nested conditional sections, intermingled with white space.

If the keyword of the conditional section is , then the contents of the conditional section are part of the
DTD. If the keyword of the conditional section is , then the contents of the conditional section are not
logically part of the DTD. If a conditional section with a keyword of occurs within a larger conditional
section with a keyword of , both the outer and the inner conditional sections are ignored. The contents
of an ignored conditional section are parsed by ignoring all characters after the " " following the keyword, except
conditional section starts " " and ends " ", until the matching conditional section end is found. Parameter
entity references are not recognized in this process.

INCLUDE
IGNORE

INCLUDE
IGNORE

[

<![]]>

If the keyword of the conditional section is a parameter-entity reference, the parameter entity must be replaced
by its content before the processor decides whether to include or ignore the conditional section.

An example:

<!ENTITY % draft 'INCLUDE' >
<!ENTITY % final 'IGNORE' >

<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

4 Physical Structures

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 20 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
2

[: An XML document may consist of one or many storage units. These are called ; they all have
 and are all (except for the and the) identified by entity .]

Each XML document has one entity called the , which serves as the starting point for the
 and may contain the whole document.

Definition entities
content document entity external DTD subset name

document entity XML
processor

Entities may be either parsed or unparsed. [: A contents are referred to as its
; this is considered an integral part of the document.]

Definition parsed entity's
replacement text text

[: An is a resource whose contents may or may not be , and if text, may be other
than XML. Each unparsed entity has an associated , identified by name. Beyond a requirement that an
XML processor make the identifiers for the entity and notation available to the application, XML places no
constraints on the contents of unparsed entities.]

Definition unparsed entity text
notation

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the value of
or attributes.ENTITY ENTITIES

[: are entities for use within the document content. In this specification, general
entities are sometimes referred to with the unqualified term when this leads to no ambiguity.] [:

 are parsed entities for use within the DTD.] These two types of entities use different forms
of reference and are recognized in different contexts. Furthermore, they occupy different namespaces; a
parameter entity and a general entity with the same name are two distinct entities.

Definition General entities
entity Definition

Parameter entities

4.1 Character and Entity References

[: A refers to a specific character in the ISO/IEC 10646 character set, for
example one not directly accessible from available input devices.]
Definition character reference

Character Reference

[66] CharRef ::= '&#' [0-9]+ ';'
| '&#x' [0-9a-fA-F]+ ';' [WFC: Legal Character]

Well-formedness constraint: Legal Character

Characters referred to using character references must match the production for .Char

If the character reference begins with " ", the digits and letters up to the terminating provide a hexadecimal
representation of the character's code point in ISO/IEC 10646. If it begins just with " ", the digits up to the
terminating provide a decimal representation of the character's code point.

&#x ;

&#

;

[: An refers to the content of a named entity.] [: References to parsed
general entities use ampersand () and semicolon () as delimiters.] [:
use percent-sign () and semicolon () as delimiters.]

Definition entity reference Definition
& ; Definition Parameter-entity references

% ;

Entity Reference

[67] Reference ::= |EntityRef CharRef

[68] EntityRef ::= '&' ';'Name [WFC: Entity Declared]
[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= '%' ';'Name [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

Well-formedness constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD subset which contains no parameter
entity references, or a document with " ", for an entity reference that does not occur within
the external subset or a parameter entity, the given in the entity reference must that in an

 that does not occur within the external subset or a parameter entity, except that well-formed
documents need not declare any of the following entities: , , , , . The declaration of a

standalone='yes'

Name match entity
declaration

amp lt gt apos quot

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 21 of 49http://www.w3.org/TR/2000/REC-xml-20001006

general entity must precede any reference to it which appears in a default value in an attribute-list
declaration.

Note that if entities are declared in the external subset or in external parameter entities, a non-validating
processor is read and process their declarations; for such documents, the rule that an entity
must be declared is a well-formedness constraint only if .

not obligated to
standalone='yes'

Validity constraint: Entity Declared

In a document with an external subset or external parameter entities with " ", the given
in the entity reference must that in an . For interoperability, valid documents should
declare the entities , , , , , in the form specified in . The declaration
of a parameter entity must precede any reference to it. Similarly, the declaration of a general entity must
precede any attribute-list declaration containing a default value with a direct or indirect reference to that
general entity.

standalone='no' Name
match entity declaration

amp lt gt apos quot 4.6 Predefined Entities

Well-formedness constraint: Parsed Entity

An entity reference must not contain the name of an . Unparsed entities may be referred to
only in declared to be of type or .

unparsed entity
attribute values ENTITY ENTITIES

Well-formedness constraint: No Recursion

A parsed entity must not contain a recursive reference to itself, either directly or indirectly.

Well-formedness constraint: In DTD

Parameter-entity references may only appear in the .DTD

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Example of a parameter-entity reference:

<!-- declare the parameter entity "ISOLat2"... -->
<!ENTITY % ISOLat2
 SYSTEM "http://www.xml.com/iso/isolat2-xml.entities" >
<!-- ... now reference it. -->
%ISOLat2;

4.2 Entity Declarations

[: Entities are declared thus:]Definition

Entity Declaration

[70] EntityDecl ::= | GEDecl PEDecl

[71] GEDecl ::= '<!ENTITY' ? '>'S Name S EntityDef S

[72] PEDecl ::= '<!ENTITY' '%' ? '>'S S Name S PEDef S

[73] EntityDef ::= | (?)EntityValue ExternalID NDataDecl

[74] PEDef ::= | EntityValue ExternalID

The identifies the entity in an or, in the case of an unparsed entity, in the value of an
 or attribute. If the same entity is declared more than once, the first declaration encountered

is binding; at user option, an XML processor may issue a warning if entities are declared multiple times.

Name entity reference
ENTITY ENTITIES

4.2.1 Internal Entities

[: If the entity definition is an , the defined entity is called an . There is no
separate physical storage object, and the content of the entity is given in the declaration.] Note that some
processing of entity and character references in the may be required to produce the correct

: see .

Definition EntityValue internal entity

literal entity value
replacement text 4.5 Construction of Internal Entity Replacement Text

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 22 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
3

An internal entity is a .parsed entity

Example of an internal entity declaration:

<!ENTITY Pub-Status "This is a pre-release of the
 specification.">

4.2.2 External Entities

[: If the entity is not internal, it is an , declared as follows:]Definition external entity

External Entity Declaration

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
| 'PUBLIC' S PubidLiteral S SystemLiteral

[76] NDataDecl ::= 'NDATA' S S Name [VC: Notation Declared]

If the is present, this is a general ; otherwise it is a parsed entity.NDataDecl unparsed entity

Validity constraint: Notation Declared

The must match the declared name of a .Name notation

[: The is called the entity's . It is a URI reference (as defined in
, updated by), meant to be dereferenced to obtain input for the XML processor to

construct the entity's replacement text.] It is an error for a fragment identifier (beginning with a character) to be
part of a system identifier. Unless otherwise provided by information outside the scope of this specification (e.g.
a special XML element type defined by a particular DTD, or a processing instruction defined by a particular
application specification), relative URIs are relative to the location of the resource within which the entity
declaration occurs. A URI might thus be relative to the , to the entity containing the

, or to some other .

Definition SystemLiteral system identifier [IETF
RFC 2396] [IETF RFC 2732]

#

document entity external DTD
subset external parameter entity

URI references require encoding and escaping of certain characters. The disallowed characters include all non-
ASCII characters, plus the excluded characters listed in Section 2.4 of , except for the number
sign () and percent sign () characters and the square bracket characters re-allowed in .
Disallowed characters must be escaped as follows:

[IETF RFC 2396]
% [IETF RFC 2732]

1. Each disallowed character is converted to UTF-8 as one or more bytes.[IETF RFC 2279]

2. Any octets corresponding to a disallowed character are escaped with the URI escaping mechanism (that
is, converted to , where HH is the hexadecimal notation of the byte value).%HH

3. The original character is replaced by the resulting character sequence.

[: In addition to a system identifier, an external identifier may include a .] An XML
processor attempting to retrieve the entity's content may use the public identifier to try to generate an alternative
URI reference. If the processor is unable to do so, it must use the URI reference specified in the system literal.
Before a match is attempted, all strings of white space in the public identifier must be normalized to single space
characters (#x20), and leading and trailing white space must be removed.

Definition public identifier

Examples of external entity declarations:

<!ENTITY open-hatch
 SYSTEM "http://www.textuality.com/boilerplate/OpenHatch.xml">
<!ENTITY open-hatch
 PUBLIC "-//Textuality//TEXT Standard open-hatch boilerplate//EN"
 "http://www.textuality.com/boilerplate/OpenHatch.xml">
<!ENTITY hatch-pic
 SYSTEM "../grafix/OpenHatch.gif"
 NDATA gif >

4.3 Parsed Entities

4.3.1 The Text Declaration

External parsed entities should each begin with a .text declaration

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 23 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Text Declaration

[77] TextDecl ::= '<?xml' ? ? '?>'VersionInfo EncodingDecl S

The text declaration must be provided literally, not by reference to a parsed entity. No text declaration may
appear at any position other than the beginning of an external parsed entity. The text declaration in an external
parsed entity is not considered part of its .replacement text

4.3.2 Well-Formed Parsed Entities

The document entity is well-formed if it matches the production labeled . An external general parsed
entity is well-formed if it matches the production labeled . All external parameter entities are well-
formed by definition.

document
extParsedEnt

Well-Formed External Parsed Entity

[78] extParsedEnt ::= ? TextDecl content

An internal general parsed entity is well-formed if its replacement text matches the production labeled . All
internal parameter entities are well-formed by definition.

content

A consequence of well-formedness in entities is that the logical and physical structures in an XML document are
properly nested; no , , , , , ,

, or can begin in one entity and end in another.
start-tag end-tag empty-element tag element comment processing instruction character

reference entity reference

4.3.3 Character Encoding in Entities

Each external parsed entity in an XML document may use a different encoding for its characters. All XML
processors must be able to read entities in both the UTF-8 and UTF-16 encodings. The terms "UTF-8" and
"UTF-16" in this specification do not apply to character encodings with any other labels, even if the encodings or
labels are very similar to UTF-8 or UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by Annex F of ,
Annex H of , section 2.4 of , and section 2.7 of (the ZERO WIDTH
NO-BREAK SPACE character, #xFEFF). This is an encoding signature, not part of either the markup or the
character data of the XML document. XML processors must be able to use this character to differentiate
between UTF-8 and UTF-16 encoded documents.

[ISO/IEC 10646]
[ISO/IEC 10646-2000] [Unicode] [Unicode3]

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is recognized
that other encodings are used around the world, and it may be desired for XML processors to read entities that
use them. In the absence of external character encoding information (such as MIME headers), parsed entities
which are stored in an encoding other than UTF-8 or UTF-16 must begin with a text declaration (see

) containing an encoding declaration:
4.3.1 The

Text Declaration

Encoding Declaration

[80] EncodingDecl ::= 'encoding' ('"' '"' | "'"
"'")

S Eq EncName
EncName

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')* /* Encoding name contains only Latin
characters */

In the , the encoding declaration is part of the . The is the name of the
encoding used.

document entity XML declaration EncName

In an encoding declaration, the values " ", " ", " ", and " " should be
used for the various encodings and transformations of Unicode / ISO/IEC 10646, the values " ", "

", ... " " (where is the part number) should be used for the parts of ISO 8859, and the values
" ", " ", and " " should be used for the various encoded forms of JIS X-0208-1997. It is
recommended that character encodings registered (as s) with the Internet Assigned Numbers Authority

, other than those just listed, be referred to using their registered names; other encodings
should use names starting with an "x-" prefix. XML processors should match character encoding names in a
case-insensitive way and should either interpret an IANA-registered name as the encoding registered at IANA
for that name or treat it as unknown (processors are, of course, not required to support all IANA-registered
encodings).

UTF-8 UTF-16 ISO-10646-UCS-2 ISO-10646-UCS-4

ISO-8859-1 ISO-

8859-2 ISO-8859-n n
ISO-2022-JP Shift_JIS EUC-JP

charset
[IANA-CHARSETS]

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 24 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
4

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it is an for an
entity including an encoding declaration to be presented to the XML processor in an encoding other than that
named in the declaration, or for an entity which begins with neither a Byte Order Mark nor an encoding
declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of UTF-8, ordinary ASCII
entities do not strictly need an encoding declaration.

error

It is a fatal error for a to occur other than at the beginning of an external entity.TextDecl

It is a when an XML processor encounters an entity with an encoding that it is unable to process. It is a
fatal error if an XML entity is determined (via default, encoding declaration, or higher-level protocol) to be in a
certain encoding but contains octet sequences that are not legal in that encoding. It is also a fatal error if an XML
entity contains no encoding declaration and its content is not legal UTF-8 or UTF-16.

fatal error

Examples of text declarations containing encoding declarations:

<?xml encoding='UTF-8'?>
<?xml encoding='EUC-JP'?>

4.4 XML Processor Treatment of Entities and References

The table below summarizes the contexts in which character references, entity references, and invocations of
unparsed entities might appear and the required behavior of an in each case. The labels in the
leftmost column describe the recognition context:

XML processor

Reference in Content

as a reference anywhere after the and before the of an element; corresponds to the nonterminal
.

start-tag end-tag
content

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 25 of 49http://www.w3.org/TR/2000/REC-xml-20001006

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 26 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

2
5

Reference in Attribute Value

as a reference within either the value of an attribute in a , or a default value in an ;
corresponds to the nonterminal .

start-tag attribute declaration
AttValue

Occurs as Attribute Value

as a , not a reference, appearing either as the value of an attribute which has been declared as type
, or as one of the space-separated tokens in the value of an attribute which has been declared as type

.

Name
ENTITY
ENTITIES

Reference in Entity Value

as a reference within a parameter or internal entity's in the entity's declaration; corresponds to
the nonterminal .

literal entity value
EntityValue

Reference in DTD

as a reference within either the internal or external subsets of the , but outside of an , ,
, , , , or the contents of an ignored conditional section (see

).

DTD EntityValue AttValue
PI Comment SystemLiteral PubidLiteral 3.4
Conditional Sections

P
a
g
e
s 9

2
6
-9

2
9
 d

o
 n

o
t e

xist

.

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 35 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Entity Type

Character

Parameter
Internal
General

External Parsed
General Unparsed

Reference in Content Not recognized Included Included if
validating

Forbidden Included

Reference in Attribute
Value

Not recognized Included in
literal

Forbidden Forbidden Included

Occurs as Attribute
Value

Not recognized Forbidden Forbidden Notify Not
recognized

Reference in
EntityValue

Included in
literal

Bypassed Bypassed Forbidden Included

Reference in DTD Included as PE Forbidden Forbidden Forbidden Forbidden

4.4.1 Not Recognized

Outside the DTD, the character has no special significance; thus, what would be parameter entity references in
the DTD are not recognized as markup in . Similarly, the names of unparsed entities are not recognized
except when they appear in the value of an appropriately declared attribute.

%

content

4.4.2 Included

[: An entity is when its is retrieved and processed, in place of the reference
itself, as though it were part of the document at the location the reference was recognized.] The replacement text
may contain both and (except for parameter entities) , which must be recognized in the
usual way. (The string " " expands to " " and the remaining ampersand is not recognized as an
entity-reference delimiter.) A character reference is when the indicated character is processed in
place of the reference itself.

Definition included replacement text

character data markup
AT&T; AT&T;

included

4.4.3 Included If Validating

When an XML processor recognizes a reference to a parsed entity, in order to the document, the
processor must its replacement text. If the entity is external, and the processor is not attempting to
validate the XML document, the processor , but need not, include the entity's replacement text. If a non-
validating processor does not include the replacement text, it must inform the application that it recognized, but
did not read, the entity.

validate
include

may

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML entity
mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate for other
applications, in particular document browsing. Browsers, for example, when encountering an external parsed
entity reference, might choose to provide a visual indication of the entity's presence and retrieve it for display
only on demand.

4.4.4 Forbidden

The following are forbidden, and constitute errors:fatal

the appearance of a reference to an .unparsed entity

the appearance of any character or general-entity reference in the DTD except within an or
.

EntityValue
AttValue

a reference to an external entity in an attribute value.

4.4.5 Included in Literal

When an appears in an attribute value, or a parameter entity reference appears in a literal entity
value, its is processed in place of the reference itself as though it were part of the document at
the location the reference was recognized, except that a single or double quote character in the replacement text
is always treated as a normal data character and will not terminate the literal. For example, this is well-formed:

entity reference
replacement text

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 36 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
0

P
a
g
e
s 9

2
6
-9

2
9
 d

o
 n

o
t e

xist

<!-- -->
<!ENTITY % YN '"Yes"' >
<!ENTITY WhatHeSaid "He said %YN;" >

while this is not:

<!ENTITY EndAttr "27'" >
<element attribute='a-&EndAttr;>

4.4.6 Notify

When the name of an appears as a token in the value of an attribute of declared type or
, a validating processor must inform the application of the and (if any) identifiers for

both the entity and its associated .

unparsed entity ENTITY
ENTITIES system public

notation

4.4.7 Bypassed

When a general entity reference appears in the in an entity declaration, it is bypassed and left as is.EntityValue

4.4.8 Included as PE

Just as with external parsed entities, parameter entities need only be . When a parameter-
entity reference is recognized in the DTD and included, its is enlarged by the attachment of
one leading and one following space (#x20) character; the intent is to constrain the replacement text of
parameter entities to contain an integral number of grammatical tokens in the DTD. This behavior does not apply
to parameter entity references within entity values; these are described in .

included if validating
replacement text

4.4.5 Included in Literal

4.5 Construction of Internal Entity Replacement Text

In discussing the treatment of internal entities, it is useful to distinguish two forms of the entity's value. [:
The is the quoted string actually present in the entity declaration, corresponding to the non-
terminal .] [: The is the content of the entity, after replacement of
character references and parameter-entity references.]

Definition
literal entity value

EntityValue Definition replacement text

The literal entity value as given in an internal entity declaration () may contain character, parameter-
entity, and general-entity references. Such references must be contained entirely within the literal entity value.
The actual replacement text that is as described above must contain the of any
parameter entities referred to, and must contain the character referred to, in place of any character references in
the literal entity value; however, general-entity references must be left as-is, unexpanded. For example, given the
following declarations:

EntityValue

included replacement text

<!ENTITY % pub "Éditions Gallimard" >
<!ENTITY rights "All rights reserved" >
<!ENTITY book "La Peste: Albert Camus,
© 1947 %pub;. &rights;" >

then the replacement text for the entity " " is:book

La Peste: Albert Camus,
© 1947 Éditions Gallimard. &rights;

The general-entity reference " " would be expanded should the reference " " appear in the
document's content or an attribute value.

&rights; &book;

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see
.

D
Expansion of Entity and Character References

4.6 Predefined Entities

[: Entity and character references can both be used to the left angle bracket, ampersand, and
other delimiters. A set of general entities (, , , ,) is specified for this purpose. Numeric character
references may also be used; they are expanded immediately when recognized and must be treated as
character data, so the numeric character references " " and " " may be used to escape and when
they occur in character data.]

Definition escape
amp lt gt apos quot

< & < &

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 37 of 49http://www.w3.org/TR/2000/REC-xml-20001006

All XML processors must recognize these entities whether they are declared or not. , valid
XML documents should declare these entities, like any others, before using them. If the entities or are
declared, they must be declared as internal entities whose replacement text is a character reference to the
respective character (less-than sign or ampersand) being escaped; the double escaping is required for these
entities so that references to them produce a well-formed result. If the entities , , or are declared,
they must be declared as internal entities whose replacement text is the single character being escaped (or a
character reference to that character; the double escaping here is unnecessary but harmless). For example:

For interoperability
lt amp

gt apos quot

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

4.7 Notation Declarations

[: identify by name the format of , the format of elements which bear a
notation attribute, or the application to which a is addressed.]
Definition Notations unparsed entities

processing instruction

[: provide a name for the notation, for use in entity and attribute-list declarations
and in attribute specifications, and an external identifier for the notation which may allow an XML processor or its
client application to locate a helper application capable of processing data in the given notation.]

Definition Notation declarations

Notation Declarations

[82] NotationDecl ::= '<!NOTATION' (|) ? '>'S Name S ExternalID PublicID S [VC: Unique Notation Name]
[83] PublicID ::= 'PUBLIC' S PubidLiteral

Validity constraint: Unique Notation Name

Only one notation declaration can declare a given .Name

XML processors must provide applications with the name and external identifier(s) of any notation declared and
referred to in an attribute value, attribute definition, or entity declaration. They may additionally resolve the
external identifier into the , file name, or other information needed to allow the application to call
a processor for data in the notation described. (It is not an error, however, for XML documents to declare and
refer to notations for which notation-specific applications are not available on the system where the XML
processor or application is running.)

system identifier

4.8 Document Entity

[: The serves as the root of the entity tree and a starting-point for an .]
This specification does not specify how the document entity is to be located by an XML processor; unlike other
entities, the document entity has no name and might well appear on a processor input stream without any
identification at all.

Definition document entity XML processor

5 Conformance

5.1 Validating and Non-Validating Processors

Conforming fall into two classes: validating and non-validating.XML processors

Validating and non-validating processors alike must report violations of this specification's well-formedness
constraints in the content of the and any other that they read.document entity parsed entities

[: must, at user option, report violations of the constraints expressed by the
declarations in the , and failures to fulfill the validity constraints given in this specification.] To accomplish
this, validating XML processors must read and process the entire DTD and all external parsed entities
referenced in the document.

Definition Validating processors
DTD

Non-validating processors are required to check only the , including the entire internal DTD
subset, for well-formedness. [: While they are not required to check the document for validity, they are
required to all the declarations they read in the internal DTD subset and in any parameter entity that they
read, up to the first reference to a parameter entity that they do read; that is to say, they must use the
information in those declarations to attribute values, the replacement text of internal entities,

document entity
Definition

process
not

normalize include

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 38 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
1

and supply .] Except when , they must not or
encountered after a reference to a parameter entity that is not read, since the entity may

have contained overriding declarations.

default attribute values standalone="yes" process entity declarations
attribute-list declarations

5.2 Using XML Processors

The behavior of a validating XML processor is highly predictable; it must read every piece of a document and
report all well-formedness and validity violations. Less is required of a non-validating processor; it need not read
any part of the document other than the document entity. This has two effects that may be important to users of
XML processors:

Certain well-formedness errors, specifically those that require reading external entities, may not be
detected by a non-validating processor. Examples include the constraints entitled ,

, and , as well as some of the cases described as in
.

Entity Declared Parsed
Entity No Recursion forbidden 4.4 XML Processor
Treatment of Entities and References

The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, a non-validating processor may not

attribute values, the replacement text of internal entities, or supply
, where doing so depends on having read declarations in external or parameter entities.

normalize include default attribute
values

For maximum reliability in interoperating between different XML processors, applications which use non-
validating processors should not rely on any behaviors not required of such processors. Applications which
require facilities such as the use of default attributes or internal entities which are declared in external entities
should use validating XML processors.

6 Notation

The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form (EBNF)
notation. Each rule in the grammar defines one symbol, in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are the start symbol of a regular language, otherwise with an
initial lower case letter. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used to match strings of one
or more characters:

#xN

where is a hexadecimal integer, the expression matches the character in ISO/IEC 10646 whose canonical
(UCS-4) code value, when interpreted as an unsigned binary number, has the value indicated. The number of
leading zeros in the form is insignificant; the number of leading zeros in the corresponding code value is
governed by the character encoding in use and is not significant for XML.

N

#xN

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 39 of 49http://www.w3.org/TR/2000/REC-xml-20001006

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 40 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
2

, [a-zA-Z] [#xN-#xN]

matches any with a value in the range(s) indicated (inclusive).Char

, [abc] [#xN#xN#xN]

matches any with a value among the characters enumerated. Enumerations and ranges can be mixed in
one set of brackets.

Char

, [^a-z] [^#xN-#xN]

matches any with a value the range indicated.Char outside

, [^abc] [^#xN#xN#xN]

matches any with a value not among the characters given. Enumerations and ranges of forbidden values
can be mixed in one set of brackets.

Char

"string"

matches a literal string that given inside the double quotes.matching

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 41 of 49http://www.w3.org/TR/2000/REC-xml-20001006

'string'

matches a literal string that given inside the single quotes.matching

These symbols may be combined to match more complex patterns as follows, where and represent simple
expressions:

A B

()expression

 is treated as a unit and may be combined as described in this list.expression

A?

matches or nothing; optional .A A

A B

matches followed by . This operator has higher precedence than alternation; thus is identical to
.
A B A B | C D (A

B) | (C D)

A | B

matches or but not both.A B

A - B

matches any string that matches but does not match .A B

A+

matches one or more occurrences of .Concatenation has higher precedence than alternation; thus is
identical to .

A A+ | B+

(A+) | (B+)

A*

matches zero or more occurrences of . Concatenation has higher precedence than alternation; thus is
identical to .

A A* | B*

(A*) | (B*)

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on documents associated with a
production.

well-formed

[vc: ...]

validity constraint; this identifies by name a constraint on documents associated with a production.valid

A References

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 42 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
3

A.1 Normative References

IANA-CHARSETS (Internet Assigned Numbers Authority) , ed. Keld
Simonsen et al. See .

Official Names for Character Sets
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

IETF RFC 1766 IETF (Internet Engineering Task Force). ,
ed. H. Alvestrand. 1995. (See .)

RFC 1766: Tags for the Identification of Languages
http://www.ietf.org/rfc/rfc1766.txt

ISO/IEC 10646 ISO (International Organization for Standardization).

 [Geneva]: International Organization for Standardization, 1993 (plus amendments AM 1
through AM 7).

ISO/IEC 10646-1993 (E). Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane.

ISO/IEC 10646-2000 ISO (International Organization for Standardization).

 [Geneva]: International Organization for Standardization, 2000.

ISO/IEC 10646-1:2000. Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane.

Unicode The Unicode Consortium. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

The Unicode Standard, Version 2.0.

Unicode3 The Unicode Consortium. Reading, Mass.: Addison-Wesley
Developers Press, 2000. ISBN 0-201-61633-5.

The Unicode Standard, Version 3.0.

A.2 Other References

Aho/Ullman Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. .
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Compilers: Principles, Techniques, and Tools

Berners-Lee et al. Berners-Lee, T., R. Fielding, and L. Masinter.
. 1997. (Work in progress; see updates to RFC1738.)

Uniform Resource Identifiers (URI): Generic
Syntax and Semantics

Brüggemann-Klein Brüggemann-Klein, Anne. Formal Models in Document Processing. Habilitationsschrift.
Faculty of Mathematics at the University of Freiburg, 1993. (See

.)
ftp://ftp.informatik.uni-freiburg.de/documents/

papers/brueggem/habil.ps

Brüggemann-Klein and Wood Brüggemann-Klein, Anne, and Derick Wood.
. Universität Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended abstract in A. Finkel,

M. Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag, Berlin 1992. Lecture Notes in Computer Science
577. Full version titled in Information and Computation 140 (2): 229-
253, February 1998.

Deterministic Regular
Languages

One-Unambiguous Regular Languages

Clark James Clark. Comparison of SGML and XML. See . http://www.w3.org/TR/NOTE-sgml-xml-971215

IANA-LANGCODES (Internet Assigned Numbers Authority) , ed. Keld Simonsen et
al. (See .)

Registry of Language Tags
http://www.isi.edu/in-notes/iana/assignments/languages/

IETF RFC2141 IETF (Internet Engineering Task Force). , ed. R. Moats. 1997. (See
.)

RFC 2141: URN Syntax
http://www.ietf.org/rfc/rfc2141.txt

IETF RFC 2279 IETF (Internet Engineering Task Force). RFC 2279: UTF-8, a transformation format of ISO

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 43 of 49http://www.w3.org/TR/2000/REC-xml-20001006

, ed. F. Yergeau, 1998. (See .)10646 http://www.ietf.org/rfc/rfc2279.txt

IETF RFC 2376 IETF (Internet Engineering Task Force). . ed. E. Whitehead, M.
Murata. 1998. (See .)

RFC 2376: XML Media Types
http://www.ietf.org/rfc/rfc2376.txt

IETF RFC 2396 IETF (Internet Engineering Task Force).
. T. Berners-Lee, R. Fielding, L. Masinter. 1998. (See .)

RFC 2396: Uniform Resource Identifiers (URI):
Generic Syntax http://www.ietf.org/rfc/rfc2396.txt

IETF RFC 2732 IETF (Internet Engineering Task Force).
. R. Hinden, B. Carpenter, L. Masinter. 1999. (See .)

RFC 2732: Format for Literal IPv6 Addresses in
URL's http://www.ietf.org/rfc/rfc2732.txt

IETF RFC 2781 IETF (Internet Engineering Task Force). , ed.
P. Hoffman, F. Yergeau. 2000. (See .)

RFC 2781: UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

ISO 639 (International Organization for Standardization).
 [Geneva]: International Organization for Standardization, 1988.

ISO 639:1988 (E). Code for the representation of
names of languages.

ISO 3166 (International Organization for Standardization).
 [Geneva]: International Organization for

Standardization, 1997.

ISO 3166-1:1997 (E). Codes for the representation of
names of countries and their subdivisions -- Part 1: Country codes

ISO 8879 ISO (International Organization for Standardization).
 First edition -- 1986-10-15.

[Geneva]: International Organization for Standardization, 1986.

ISO 8879:1986(E). Information processing --
Text and Office Systems -- Standard Generalized Markup Language (SGML).

ISO/IEC 10744 ISO (International Organization for Standardization).
[Geneva]: International Organization

for Standardization, 1992. [Geneva]: International Organization for Standardization,
1996.

ISO/IEC 10744-1992 (E). Information
technology -- Hypermedia/Time-based Structuring Language (HyTime).

Extended Facilities Annexe.

WEBSGML ISO (International Organization for Standardization).
[Geneva]: International Organization for Standardization,

1998. (See .)

ISO 8879:1986 TC2. Information technology -
- Document Description and Processing Languages.

http://www.sgmlsource.com/8879rev/n0029.htm

XML Names Tim Bray, Dave Hollander, and Andrew Layman, editors. . Textuality, Hewlett-
Packard, and Microsoft. World Wide Web Consortium, 1999. (See .)

Namespaces in XML
http://www.w3.org/TR/REC-xml-names/

B Character Classes

Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin alphabet), ideographic characters, and
combining characters (among others, this class contains most diacritics) Digits and extenders are also
distinguished.

Characters

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 44 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
4

[84] Letter ::= | BaseChar Ideographic

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386 | [#x0388-
#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6]
| #x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-#x0586] | [#x05D0-
#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-
#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5
| [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-
#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2
| [#x09B6-#x09B9] | [#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] | #x0A8D | [#x0A8F-#x0A91]
| [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9]
| #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-
#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-
#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-
#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39] | [#x0D60-
#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-#x0E45]
| [#x0E81-#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-
#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-
#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-
#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-
#x10F6] | #x1100 | [#x1102-#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-
#x110C] | [#x110E-#x1112] | #x113C | #x113E | #x1140 | #x114C | #x114E
| #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163 | #x1165
| #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E
| #x11A8 | #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-
#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9]
| [#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D]
| [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-
#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182]
| [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1]

| [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-
#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C
| [#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-
#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8]
| [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E
| #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-
#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-
#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-
#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03]
| [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56]
| [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD]
| [#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48]
| [#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E]
| #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-
#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-
#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099
| #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-#x0B6F]
| [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode 2.0 character database as follows:

Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

Name characters other than Name-start characters must have one of the categories Mc, Me, Mn, Lm, or
Nd.

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 45 of 49http://www.w3.org/TR/2000/REC-xml-20001006

Characters in the compatibility area (i.e. with character code greater than #xF900 and less than #xFFFE)
are not allowed in XML names.

Characters which have a font or compatibility decomposition (i.e. those with a "compatibility formatting tag"
in field 5 of the database -- marked by field 5 beginning with a "<") are not allowed.

The following characters are treated as name-start characters rather than name characters, because the
property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

Characters #x20DD-#x20E0 are excluded (in accordance with Unicode 2.0, section 5.14).

Character #x00B7 is classified as an extender, because the property list so identifies it.

Character #x0387 is added as a name character, because #x00B7 is its canonical equivalent.

Characters ':' and '_' are allowed as name-start characters.

Characters '-' and '.' are allowed as name characters.

C XML and SGML (Non-Normative)

XML is designed to be a subset of SGML, in that every XML document should also be a conforming SGML
document. For a detailed comparison of the additional restrictions that XML places on documents beyond those
of SGML, see .[Clark]

D Expansion of Entity and Character References (Non-Normative)

This appendix contains some examples illustrating the sequence of entity- and character-reference recognition
and expansion, as specified in .4.4 XML Processor Treatment of Entities and References

If the DTD contains the declaration

<!ENTITY example "<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>" >

then the XML processor will recognize the character references when it parses the entity declaration, and
resolve them before storing the following string as the value of the entity " ":example

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document to " " will cause the text to be reparsed, at which time the start- and end-
tags of the element will be recognized and the three references will be recognized and expanded, resulting in a

element with the following content (all data, no delimiters or markup):

&example;

p

p

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the following example, the line numbers
are solely for reference.

1 <?xml version='1.0'?>
2 <!DOCTYPE test [
3 <!ELEMENT test (#PCDATA) >
4 <!ENTITY % xx '%zz;'>
5 <!ENTITY % zz '<!ENTITY tricky "error-prone" >' >
6 %xx;
7]>
8 <test>This sample shows a &tricky; method.</test>

This produces the following:

in line 4, the reference to character 37 is expanded immediately, and the parameter entity " " is stored in
the symbol table with the value " ". Since the replacement text is not rescanned, the reference to
parameter entity " " is not recognized. (And it would be an error if it were, since " " is not yet declared.)

xx

%zz;

zz zz

in line 5, the character reference " " is expanded immediately and the parameter entity " " is stored
with the replacement text " ", which is a well-formed entity declaration.

< zz

<!ENTITY tricky "error-prone" >

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 46 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
5

in line 6, the reference to " " is recognized, and the replacement text of " " (namely " ") is parsed.
The reference to " " is recognized in its turn, and its replacement text ("

") is parsed. The general entity " " has now been declared, with the replacement text " ".

xx xx %zz;

zz <!ENTITY tricky "error-prone"

 > tricky error-prone

in line 8, the reference to the general entity " " is recognized, and it is expanded, so the full content of
the element is the self-describing (and ungrammatical) string

tricky

test This sample shows a error-prone
method.

E Deterministic Content Models (Non-Normative)

As noted in , it is required that content models in element type declarations be
deterministic. This requirement is with SGML (which calls deterministic content models
"unambiguous"); XML processors built using SGML systems may flag non-deterministic content models as
errors.

3.2.1 Element Content
for compatibility

For example, the content model is non-deterministic, because given an initial the XML
processor cannot know which in the model is being matched without looking ahead to see which element
follows the . In this case, the two references to can be collapsed into a single reference, making the model
read . An initial now clearly matches only a single name in the content model. The processor
doesn't need to look ahead to see what follows; either or would be accepted.

((b, c) | (b, d)) b

b

b b

(b, (c | d)) b

c d

More formally: a finite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman . In many such algorithms, a
follow set is constructed for each position in the regular expression (i.e., each leaf node in the syntax tree for the
regular expression); if any position has a follow set in which more than one following position is labeled with the
same element type name, then the content model is in error and may be reported as an error.

[Aho/Ullman]

Algorithms exist which allow many but not all non-deterministic content models to be reduced automatically to
equivalent deterministic models; see Brüggemann-Klein 1991 .[Brüggemann-Klein]

F Autodetection of Character Encodings (Non-Normative)

The XML encoding declaration functions as an internal label on each entity, indicating which character encoding
is in use. Before an XML processor can read the internal label, however, it apparently has to know what character
encoding is in use--which is what the internal label is trying to indicate. In the general case, this is a hopeless
situation. It is not entirely hopeless in XML, however, because XML limits the general case in two ways: each
implementation is assumed to support only a finite set of character encodings, and the XML encoding
declaration is restricted in position and content in order to make it feasible to autodetect the character encoding
in use in each entity in normal cases. Also, in many cases other sources of information are available in addition
to the XML data stream itself. Two cases may be distinguished, depending on whether the XML entity is
presented to the processor without, or with, any accompanying (external) information. We consider the first case
first.

F.1 Detection Without External Encoding Information

Because each XML entity not accompanied by external encoding information and not in UTF-8 or UTF-16
encoding begin with an XML encoding declaration, in which the first characters must be ' ', any
conforming processor can detect, after two to four octets of input, which of the following cases apply. In reading
this list, it may help to know that in UCS-4, '<' is " " and '?' is " ", and the Byte Order Mark
required of UTF-16 data streams is " ". The notation is used to denote any byte value except that two
consecutive s cannot be both 00.

must <?xml

#x0000003C #x0000003F

#xFEFF ##
##

With a Byte Order Mark:

00 00 FE FF UCS-4, big-endian machine (1234 order)
FF FE 00 00 UCS-4, little-endian machine (4321 order)
00 00 FF FE UCS-4, unusual octet order (2143)
FE FF 00 00 UCS-4, unusual octet order (3412)
FE FF ## ## UTF-16, big-endian
FF FE ## ## UTF-16, little-endian
EF BB BF UTF-8

Without a Byte Order Mark:

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 47 of 49http://www.w3.org/TR/2000/REC-xml-20001006

00 00 00 3C UCS-4 or other encoding with a 32-bit code unit and ASCII characters encoded as ASCII values,
in respectively big-endian (1234), little-endian (4321) and two unusual byte orders (2143 and
3412). The encoding declaration must be read to determine which of UCS-4 or other supported
32-bit encodings applies.

3C 00 00 00

00 00 3C 00

00 3C 00 00

00 3C 00 3F
UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in big-endian
order and ASCII characters encoded as ASCII values (the encoding declaration must be read to
determine which)

3C 00 3F 00
UTF-16LE or little-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in little-
endian order and ASCII characters encoded as ASCII values (the encoding declaration must be
read to determine which)

3C 3F 78 6D

UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any other 7-bit, 8-bit, or mixed-
width encoding which ensures that the characters of ASCII have their normal positions, width, and
values; the actual encoding declaration must be read to detect which of these applies, but since all
of these encodings use the same bit patterns for the relevant ASCII characters, the encoding
declaration itself may be read reliably

4C 6F A7 94 EBCDIC (in some flavor; the full encoding declaration must be read to tell which code page is in
use)

Other UTF-8 without an encoding declaration, or else the data stream is mislabeled (lacking a required
encoding declaration), corrupt, fragmentary, or enclosed in a wrapper of some kind

Note:

In cases above which do not require reading the encoding declaration to determine the encoding, section
4.3.3 still requires that the encoding declaration, if present, be read and that the encoding name be checked
to match the actual encoding of the entity. Also, it is possible that new character encodings will be invented
that will make it necessary to use the encoding declaration to determine the encoding, in cases where this is
not required at present.

This level of autodetection is enough to read the XML encoding declaration and parse the character-encoding
identifier, which is still necessary to distinguish the individual members of each family of encodings (e.g. to tell
UTF-8 from 8859, and the parts of 8859 from each other, or to distinguish the specific EBCDIC code page in
use, and so on).

Because the contents of the encoding declaration are restricted to characters from the ASCII repertoire
(however encoded), a processor can reliably read the entire encoding declaration as soon as it has detected
which family of encodings is in use. Since in practice, all widely used character encodings fall into one of the
categories above, the XML encoding declaration allows reasonably reliable in-band labeling of character
encodings, even when external sources of information at the operating-system or transport-protocol level are
unreliable. Character encodings such as UTF-7 that make overloaded usage of ASCII-valued bytes may fail to
be reliably detected.

Once the processor has detected the character encoding in use, it can act appropriately, whether by invoking a
separate input routine for each case, or by calling the proper conversion function on each character of input.

Like any self-labeling system, the XML encoding declaration will not work if any software changes the entity's
character set or encoding without updating the encoding declaration. Implementors of character-encoding
routines should be careful to ensure the accuracy of the internal and external information used to label the entity.

F.2 Priorities in the Presence of External Encoding Information

The second possible case occurs when the XML entity is accompanied by encoding information, as in some file
systems and some network protocols. When multiple sources of information are available, their relative priority
and the preferred method of handling conflict should be specified as part of the higher-level protocol used to
deliver XML. In particular, please refer to or its successor, which defines the and

MIME types and provides some useful guidance. In the interests of interoperability, however,
the following rule is recommended.

[IETF RFC 2376] text/xml

application/xml

If an XML entity is in a file, the Byte-Order Mark and encoding declaration are used (if present) to
determine the character encoding.

G W3C XML Working Group (Non-Normative)

This specification was prepared and approved for publication by the W3C XML Working Group (WG). WG
approval of this specification does not necessarily imply that all WG members voted for its approval. The current
and former members of the XML WG are:

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 48 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
6

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Jon Bosak, Sun () Chair
James Clark () Technical Lead
Tim Bray, Textuality and Netscape () XML Co-editor
Jean Paoli, Microsoft () XML Co-editor
C. M. Sperberg-McQueen, U. of Ill. () XML Co-editor
Dan Connolly, W3C () W3C Liaison
Paula Angerstein, Texcel
Steve DeRose, INSO
Dave Hollander, HP
Eliot Kimber, ISOGEN
Eve Maler, ArborText
Tom Magliery, NCSA
Murray Maloney, SoftQuad, Grif SA, Muzmo and Veo Systems
MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems
Joel Nava, Adobe
Conleth O'Connell, Vignette
Peter Sharpe, SoftQuad
John Tigue, DataChannel

H W3C XML Core Group (Non-Normative)

The second edition of this specification was prepared by the W3C XML Core Working Group (WG). The
members of the WG at the time of publication of this edition were:

Paula Angerstein, Vignette
Daniel Austin, Ask Jeeves
Tim Boland
Allen Brown, Microsoft
Dan Connolly, W3C () Staff Contact
John Cowan, Reuters Limited
John Evdemon, XMLSolutions Corporation
Paul Grosso, Arbortext () Co-Chair
Arnaud Le Hors, IBM () Co-Chair
Eve Maler, Sun Microsystems () Second Edition Editor
Jonathan Marsh, Microsoft
MURATA Makoto (FAMILY Given), IBM
Mark Needleman, Data Research Associates
David Orchard, Jamcracker
Lew Shannon, NCR
Richard Tobin, University of Edinburgh
Daniel Veillard, W3C
Dan Vint, Lexica
Norman Walsh, Sun Microsystems
François Yergeau, Alis Technologies () Errata List Editor
Kongyi Zhou, Oracle

I Production Notes (Non-Normative)

This Second Edition was encoded in the (which has available). The HTML
versions were produced with a combination of the , , and XSLT
stylesheets. The PDF version was produced with the facility and a distiller program.

XMLspec DTD documentation
xmlspec.xsl diffspec.xsl REC-xml-2e.xsl

html2ps

02-02-26 17.12Extensible Markup Language (XML) 1.0 (Second Edition)

Page 49 of 49http://www.w3.org/TR/2000/REC-xml-20001006

C
o
m

p
e
n
d
iu

m
 7

 p
a
g
e
 9

3
7

