

*:96 Internet application layer
protocols and standards

Com
pendium

 9:
Allow

ed during the exam

Latest revision: 11 Aug 2007
 C

ascading Style Sheets, level 2 revision 1, C
SS 2.1 Specification..2

X
SL Transform

ations (X
SLT) V

ersion 1.0...148
R

SS 2.0 Specification...180
R

FC
 2518: W

ebD
A

V
..185-220

Only this page is rotated wrongly. All the other pages are rotated rightly.

[p. ??]

Cascading Style Sheets, level 2 revision 1
CSS 2.1 Specification

W3C Working Draft 15 September 2003
This version:

http://www.w3.org/TR/2003/WD-CSS21-20030915 [p. ??]
Latest version:

http://www.w3.org/TR/CSS21 [p. ??]
Previous version:

http://www.w3.org/TR/2003/WD-CSS21-20030128 [p. ??]
Editors:

Bert Bos [p. ??] <bert @w3.org>
Tantek Çelik [p. ??] <tantekc @microsoft.com>
Ian Hickson [p. ??] <ian @hixie.ch>
Håkon Wium Lie [p. ??] <howcome @opera.com>

This document is also available in these non-normative formats: plain text [p. ??] ,
gzip’ed tar file [p. ??] , zip file [p. ??] , gzip’ed PostScript [p. ??] , PDF [p. ??] . See
also translations [p. ??] .

Copyright [p. ??] © 2003 W3C [p. ??] ® (MIT [p. ??] , European Research Consor-
tium for Informatics and MathematicsERCIM [p. ??] , Keio [p. ??]), All Rights
Reserved. W3C liability [p. ??] , trademark [p. ??] , document use [p. ??] and soft-
ware licensing [p. ??] rules apply.

Abstract
This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1).
CSS 2.1 is a style sheet language that allows authors and users to attach style (e.g.,
fonts and spacing) to structured documents (e.g., HTML documents and XML appli-
cations). By separating the presentation style of documents from the content of
documents, CSS 2.1 simplifies Web authoring and site maintenance.

CSS 2.1 builds on CSS2 [CSS2] which builds on CSS1 [CSS1]. It supports
media-specific style sheets so that authors may tailor the presentation of their docu-
ments to visual browsers, aural devices, printers, braille devices, handheld devices,
etc. It also supports content positioning, table layout, features for internationalization
and some properties related to user interface.

15 Sep 2003 14:501

Cascading Style Sheets, level 2 revision 1

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition
of the height/width of absolutely positioned elements, more influence for HTML’s
"style" attribute and a new calculation of the ’clip’ property), and adds a few highly
requested features which have already been widely implemented. But most of all
CSS 2.1 represents a "snapshot" of CSS usage: it consists of all CSS features that
are implemented interoperably at the date of publication of the Recommendation.

Status of this document
This is a W3C Last Call Working Draft [p. ??] . "Last call" means that the working
group believes that this specification is ready and therefore wishes this to be the last
call for comments. If the feedback is positive, the working group plans to submit it for
consideration as a W3C Candidate Recommendation [p. ??] . Comments can be
sent until 10 October 2003.

This document is produced by the CSS working group [p. ??] (part of the Style
Activity [p. ??] , see summary [p. ??]).

The (archived [p. ??]) public mailing list www-style@w3.org [p. ??] (see instruc-
tions [p. ??]) is preferred for discussion of this and other drafts in the Style area.
When commenting on this draft, please put the text "CSS21" in the subject, prefer-
ably like this: "[CSS21] <summary of comment>"

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index [p. ??] at http://www.w3.org/TR/. [p. ??] It is inappropriate to use W3C
Working Drafts as reference material or to cite them as other than "work in
progress."

For this specification to exit the CR stage, the following conditions shall be met:

1. There must be at least two interoperable implementations implementing ’all’ the
features. An implementation can implement a superset of the features and claim
conformance to the profile. For the purposes of this criterion, we define the
following terms:
feature

An individual test case in the test suite.
interoperable

passing the respective test case(s) in the CSS test suite, or, if the imple-
mentation is not a web browser, an equivalent test. Every relevant test in
the test suite should have an equivalent test created if such a UA is to be
used to claim interoperability. In addition if such a UA is to be used to claim
interoperability, then there must one or more additional UAs which can also
pass those equivalent tests in the same way for the purpose of interoper-
ability. The equivalent tests must be made publicly available for the
purposes of peer review.

215 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 2

implementation

a user agent which:
1. implements the feature.
2. is available (i.e. publicly downloadable or available through some other

public point of sale mechanism). This is the "show me" requirement.
3. is shipping (i.e. development, private or unofficial versions are insuffi-

cient).
4. is not experimental (i.e. is intended for a wide audience and could be

used on a daily basis.)

2. A minimum of sixth months of the CR period must have elapsed. This is to
ensure that enough time is given for any remaining major errors to be caught.

3. Features may/will be dropped if two or more interoperable implementations are
not found by the end of the CR period.

4. Features may/will also be dropped if adequate/sufficient (by judgment of CSS
WG) tests have not been produced for those feature(s) by the end of the CR
period.

Patent disclosures relevant to CSS may be found on the Working Group’s public
patent disclosure page. [p. ??]

15 Sep 2003 14:503

Cascading Style Sheets, level 2 revision 1

Quick Table of Contents
........... 151 About the CSS 2.1 Specification
............. 232 Introduction to CSS 2.1
...... 313 Conformance: Requirements and Recommendations
............ 374 Syntax and basic data types
................. 595 Selectors
...... 796 Assigning property values, Cascading, and Inheritance
................ 877 Media types
................ 918 Box model
............. 1079 Visual formatting model
........... 14910 Visual formatting model details
............... 16911 Visual effects
...... 17712 Generated content, automatic numbering, and lists
............... 19513 Paged media
............. 20514 Colors and Backgrounds
................. 21315 Fonts
.................. 22516 Text
................. 23517 Tables
............... 25918 User interface
............ 273Appendix A. Aural style sheets
............. 323Appendix B. Bibliography
.............. 295Appendix C. Changes
........ 293Appendix D. Default style sheet for HTML 4.0
...... 267Appendix E. Elaborate description of Stacking Contexts
............ 327Appendix F. Full property table
........... 317Appendix G. Grammar of CSS 2.1
............... 335Appendix I. Index

415 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 3

Full Table of Contents
........... 151 About the CSS 2.1 Specification
............. 151.1 CSS 2.1 vs CSS 2
........... 161.2 Reading the specification
......... 161.3 How the specification is organized
.............. 171.4 Conventions
..... 171.4.1 Document language elements and attributes
.......... 171.4.2 CSS property definitions
............... 17Value
............... 19Initial
.............. 19Applies to
.............. 19Inherited
............ 19Percentage values
............. 19Media groups
............ 19Computed value
........... 191.4.3 Shorthand properties
........... 201.4.4 Notes and examples
......... 201.4.5 Images and long descriptions
............. 201.5 Acknowledgments
............. 211.6 Copyright Notice
............. 232 Introduction to CSS 2.1
......... 232.1 A brief CSS 2.1 tutorial for HTML
.......... 262.2 A brief CSS 2.1 tutorial for XML
.......... 272.3 The CSS 2.1 processing model
............. 282.3.1 The canvas
......... 282.3.2 CSS 2.1 addressing model
............ 292.4 CSS design principles
...... 313 Conformance: Requirements and Recommendations
............... 313.1 Definitions
.............. 343.2 Conformance
.............. 353.3 Error conditions
........... 363.4 The text/css content type
............ 374 Syntax and basic data types
................ 374.1 Syntax
............. 374.1.1 Tokenization
............. 414.1.2 Keywords
.......... 41Vendor-specific extensions
......... 41Informative Historical Notes
........... 424.1.3 Characters and case
............. 434.1.4 Statements
.............. 434.1.5 At-rules
.............. 444.1.6 Blocks

15 Sep 2003 14:505

Cascading Style Sheets, level 2 revision 1

..... 444.1.7 Rule sets, declaration blocks, and selectors

......... 454.1.8 Declarations and properties

............. 464.1.9 Comments

......... 464.2 Rules for handling parsing errors

................ 484.3 Values

......... 484.3.1 Integers and real numbers

.............. 484.3.2 Lengths

............. 514.3.3 Percentages

........... 514.3.4 URL + URN = URI

.............. 524.3.5 Counters

.............. 534.3.6 Colors

.............. 544.3.7 Strings

........... 554.3.8 Unsupported Values

.......... 554.4 CSS document representation
564.4.1 Referring to characters not represented in a character encoding
................. 595 Selectors
............. 595.1 Pattern matching
.............. 615.2 Selector syntax
.............. 615.2.1 Grouping
............. 625.3 Universal selector
.............. 625.4 Type selectors
............ 625.5 Descendant selectors
.............. 635.6 Child selectors
........... 635.7 Adjacent sibling selectors
............. 645.8 Attribute selectors
...... 645.8.1 Matching attributes and attribute values
........ 665.8.2 Default attribute values in DTDs
............ 665.8.3 Class selectors
............... 675.9 ID selectors
........ 695.10 Pseudo-elements and pseudo-classes
............. 695.11 Pseudo-classes
.......... 705.11.1 :first-child pseudo-class
..... 705.11.2 The link pseudo-classes: :link and :visited
.. 715.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
....... 725.11.4 The language pseudo-class: :lang
............. 735.12 Pseudo-elements
........ 735.12.1 The :first-line pseudo-element
........ 755.12.2 The :first-letter pseudo-element
...... 775.12.3 The :before and :after pseudo-elements
...... 796 Assigning property values, Cascading, and Inheritance
........ 796.1 Specified, computed, and actual values
............ 796.1.1 Specified values
............ 806.1.2 Computed values

615 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 4

............. 806.1.3 Actual values

............... 806.2 Inheritance

............ 816.2.1 The ’inherit’ value

............. 816.3 The @import rule

.............. 826.4 The cascade

............ 836.4.1 Cascading order

............ 836.4.2 !important rules

........ 846.4.3 Calculating a selector’s specificity

..... 856.4.4 Precedence of non-CSS presentational hints

................ 877 Media types

........... 877.1 Introduction to media types

....... 877.2 Specifying media-dependent style sheets

............ 887.2.1 The @media rule

........... 887.3 Recognized media types

............. 897.3.1 Media groups

................ 918 Box model

.............. 918.1 Box dimensions

....... 938.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’,

............ 95’margin-left’, and ’margin’

........... 978.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............ 98’padding-left’, and ’padding’

............. 1008.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

... 100’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

... 101’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

... 102’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-bottom’,

........ 104’border-right’, ’border-left’, and ’border’

...... 1058.6 The box model for inline elements in bidi context

............. 1079 Visual formatting model

....... 1079.1 Introduction to the visual formatting model

............. 1089.1.1 The viewport

............ 1089.1.2 Containing blocks

........... 1099.2 Controlling box generation

....... 1099.2.1 Block-level elements and block boxes

.......... 109Anonymous block boxes

....... 1119.2.2 Inline-level elements and inline boxes

.......... 111Anonymous inline boxes

............. 1119.2.3 Run-in boxes

........... 1129.2.4 The ’display’ property

15 Sep 2003 14:507

Cascading Style Sheets, level 2 revision 1

............ 1149.3 Positioning schemes

.... 1149.3.1 Choosing a positioning scheme: ’position’ property

....... 1159.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............... 1179.4 Normal flow

.......... 1179.4.1 Block formatting context

.......... 1189.4.2 Inline formatting context

........... 1209.4.3 Relative positioning

................ 1219.5 Floats

...... 1269.5.1 Positioning the float: the ’float’ property

.... 1289.5.2 Controlling flow next to floats: the ’clear’ property

............. 1299.6 Absolute positioning

............ 1299.6.1 Fixed positioning

..... 1319.7 Relationships between ’display’, ’position’, and ’float’

... 1329.8 Comparison of normal flow, floats, and absolute positioning

............. 1339.8.1 Normal flow

........... 1349.8.2 Relative positioning

............ 1359.8.3 Floating a box

........... 1379.8.4 Absolute positioning

............ 1419.9 Layered presentation

.... 1419.9.1 Specifying the stack level: the ’z-index’ property

... 1449.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

........... 14910 Visual formatting model details

.......... 14910.1 Definition of "containing block"

......... 15210.2 Content width: the ’width’ property

.......... 15310.3 Calculating widths and margins

........ 15310.3.1 Inline, non-replaced elements

......... 15310.3.2 Inline, replaced elements

... 15310.3.3 Block-level, non-replaced elements in normal flow

..... 15410.3.4 Block-level, replaced elements in normal flow

........ 15410.3.5 Floating, non-replaced elements

......... 15410.3.6 Floating, replaced elements

.... 15410.3.7 Absolutely positioned, non-replaced elements

...... 15610.3.8 Absolutely positioned, replaced elements

... 15610.3.9 ’Inline-block’, non-replaced elements in normal flow

.... 15610.3.10 ’Inline-block’, replaced elements in normal flow

... 15610.4 Minimum and maximum widths: ’min-width’ and ’max-width’

........ 15810.5 Content height: the ’height’ property

......... 15910.6 Calculating heights and margins

........ 16010.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in
normal flow, ’inline-block’ replaced elements in normal flow and floating

............. 160replaced elements
10.6.3 Block-level and ’inline-block’, non-replaced elements in normal

815 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 5

................ 160flow

.... 16110.6.4 Absolutely positioned, non-replaced elements

...... 16210.6.5 Absolutely positioned, replaced elements

........ 16210.6.6 Floating, non-replaced elements

.. 16310.7 Minimum and maximum heights: ’min-height’ and ’max-height’
16410.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

.......... 16410.8.1 Leading and half-leading

............... 16911 Visual effects

............ 16911.1 Overflow and clipping

........ 16911.1.1 Overflow: the ’overflow’ property

......... 17211.1.2 Clipping: the ’clip’ property

.......... 17411.2 Visibility: the ’visibility’ property

...... 17712 Generated content, automatic numbering, and lists

....... 17712.1 The :before and :after pseudo-elements

............ 17912.2 The ’content’ property

............. 18012.3 Quotation marks

..... 18112.3.1 Specifying quotes with the ’quotes’ property

..... 18312.3.2 Inserting quotes with the ’content’ property

......... 18412.4 Automatic counters and numbering

......... 18612.4.1 Nested counters and scope

............ 18712.4.2 Counter styles

...... 18712.4.3 Counters in elements with ’display: none’

................ 18712.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’,

........... 188and ’list-style’ properties

............... 19513 Paged media

.......... 19513.1 Introduction to paged media

.......... 19613.2 Page boxes: the @page rule

............ 19613.2.1 Page margins

.... 197Rendering page boxes that do not fit a target sheet

....... 197Positioning the page box on the sheet

... 19713.2.2 Page selectors: selecting left, right, and first pages

........ 19813.2.3 Content outside the page box

.............. 19913.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

............. 199’page-break-inside’

..... 20013.3.2 Breaks inside elements: ’orphans’, ’widows’

.......... 20113.3.3 Allowed page breaks

........... 20213.3.4 Forced page breaks

........... 20213.3.5 "Best" page breaks

.......... 20213.4 Cascading in the page context

............. 20514 Colors and Backgrounds

........ 20514.1 Foreground color: the ’color’ property

15 Sep 2003 14:509

Cascading Style Sheets, level 2 revision 1

............. 20514.2 The background
14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’,

............. 206and ’background’

............. 21214.3 Gamma correction

................. 21315 Fonts

.............. 21315.1 Introduction

........... 21315.2 Font matching algorithm

........ 21415.3 Font family: the ’font-family’ property

........ 21615.4 Font styling: the ’font-style’ property

........ 21615.5 Small-caps: the ’font-variant’ property

....... 21715.6 Font boldness: the ’font-weight’ property

......... 22015.7 Font size: the ’font-size’ property

....... 22115.8 Shorthand font property: the ’font’ property

.................. 22516 Text

........ 22516.1 Indentation: the ’text-indent’ property

......... 22616.2 Alignment: the ’text-align’ property

............... 22716.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the ’text-decora-

.............. 227tion’ property
16.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’ prop-

................. 229erties

....... 23116.5 Capitalization: the ’text-transform’ property

........ 23116.6 Whitespace: the ’white-space’ property

....... 23316.6.1 The ’white-space’ processing model

.. 23316.6.2 Example of bidirectionality with white-space collapsing

................. 23517 Tables

............ 23517.1 Introduction to tables

............ 23717.2 The CSS table model

......... 23817.2.1 Anonymous table objects

............... 24017.3 Columns

........ 24117.4 Tables in the visual formatting model

........ 24117.4.1 Caption position and alignment

.......... 24217.5 Visual layout of table contents

........ 24417.5.1 Table layers and transparency

.... 24617.5.2 Table width algorithms: the ’table-layout’ property

............ 247Fixed table layout

........... 248Automatic table layout

.......... 24917.5.3 Table height algorithms

........ 25117.5.4 Horizontal alignment in a column

........ 25117.5.5 Dynamic row and column effects

............... 25117.6 Borders

........ 25117.6.1 The separated borders model
Borders and Backgrounds around empty cells: the ’empty-cells’

1015 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 6

.............. 253property

......... 25417.6.2 The collapsing border model

.......... 255Border conflict resolution

............ 25817.6.3 Border styles

............... 25918 User interface

.......... 25918.1 Cursors: the ’cursor’ property

............ 26018.2 CSS2 System Colors

........... 26218.3 User preferences for fonts

........ 26218.4 Dynamic outlines: the ’outline’ property

.......... 26418.4.1 Outlines and the focus

.............. 26418.5 Magnification

............ 273Appendix A. Aural style sheets

........ 273A.1 The media types ’aural’ and ’speech’

......... 274A.2 Introduction to aural style sheets

.............. 275A.2.1 Angles

.............. 275A.2.2 Times

............. 275A.2.3 Frequencies

........... 276A.3 Volume properties: ’volume’

.......... 277A.4 Speaking properties: ’speak’

... 278A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

..... 279A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

.......... 280A.7 Mixing properties: ’play-during’

....... 281A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

.......... 284’pitch-range’, ’stress’, and ’richness’

.. 287A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

........... 288A.11 Audio rendering of tables

.... 289A.11.1 Speaking headers: the ’speak-header’ property

.......... 291A.12 Sample style sheet for HTML

.............. 292A.13 Emacspeak

............. 323Appendix B. Bibliography

............ 323B.1 Normative references

............ 325B.2 Informative references

.............. 295Appendix C. Changes

........... 297C.1 Additional property values

........... 297C.1.1 Section 4.3.5 Colors

....... 297C.1.2 Section 9.2.4 The ’display’ property

....... 297C.1.3 Section 12.2 The ’content’ property

..... 298C.1.4 Section 18.1 Cursors: the ’cursor’ property

... 298C.1.5 Section 16.6 Whitespace: the ’white-space’ property

............... 298C.2 Changes

.......... 298C.2.1 Section 3.2 Conformance

........ 298C.2.2 Section 6.1.2 Computed values

15 Sep 2003 14:5011

Cascading Style Sheets, level 2 revision 1

.... 298C.2.3 Section 6.4.3 Calculating a selector’s specificity

.298C.2.4 Section 6.4.4 Precedence of non-CSS presentational hints

....... 298C.2.5 Chapter 9 Visual formatting model

.299C.2.6 Section 10.3.7 Absolutely positioned, non-replaced elements

.299C.2.7 Section 10.6.4 Absolutely positioned, non-replaced elements

...... 299C.2.8 Section 11.1.2 Clipping: the ’clip’ property

....... 299C.2.9 Section 14.2.1 Background properties

...... 299C.2.10 17.4.1 Caption position and alignment

...... 299C.2.11 17.5.4 Horizontal alignment in a column

.......... 299C.2.12 Section 17.6 Borders
300C.2.13 Chapter 12 Generated content, automatic numbering, and lists

....... 300C.2.14 Section 12.2 The ’content’ property

......... 300C.2.15 Chapter 13 Paged media

........... 300C.2.16 Chapter 15 Fonts

............ 300C.2.17 Chapter 16 Text

........ 300C.2.18 Appendix A. Aural style sheets

.............. 300C.2.19 Other

................ 300C.3 Errors

........... 300C.3.1 Shorthand properties

.......... 301C.3.2 Section 4.1.1 (and G2)

......... 301C.3.3 4.1.3 Characters and case

....... 301C.3.4 Section 4.3 (Double sign problem)

.......... 301C.3.5 Section 4.3.2 Lengths

............. 301C.3.6 Section 4.3.6

..... 301C.3.7 5.10 Pseudo-elements and pseudo-classes

.... 302C.3.8 8.2 Example of margins, padding, and borders
C.3.9 Section 8.5.2 Border color: ’border-top-color’, ’border-right-color’,

... 302’border-bottom-color’, ’border-left-color’, and ’border-color’

........ 302C.3.10 Section 8.4 Padding properties

........... 302C.3.11 8.5.3 Border style
C.3.12 Section 8.5.4 Border shorthand properties: ’border-top’,

.... 302’border-bottom’, ’border-right’, ’border-left’, and ’border’
C.3.13 8.5.4 Border shorthand properties: ’border-top’, ’border-bottom’,

........ 303’border-right’, ’border-left’, and ’border’

............ 303C.3.14 Section 9.3.1

............ 303C.3.15 Section 9.3.2

............ 303C.3.16 Section 9.4.3
C.3.17 Section 9.7 Relationships between ’display’, ’position’, and

................ 303’float’
C.3.18 Section 10.3.2 Inline, replaced elements (and 10.3.4, 10.3.6,

............... 303and 10.3.8)

............ 304C.3.19 Section 10.3.3

.. 304C.3.20 Section 10.6.2 Inline, replaced elements ... (and 10.6.5)

............ 304C.3.21 Section 10.6.3

1215 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 7

............ 304C.3.22 Section 11.1.1

....... 304C.3.23 11.2 Visibility: the ’visibility’ property

............. 305C.3.24 12.6.2 Lists

............ 305C.3.25 Section 15.2.6

............ 305C.3.26 Section 15.5

... 305C.3.27 Section 16.6 Whitespace: the ’white-space’ property

....... 305C.3.28 Section 17.2 The CSS table model

........ 305C.3.29 17.2.1 Anonymous table objects

....... 305C.3.30 17.5 Visual layout of table contents

....... 306C.3.31 17.5 Visual layout of table contents

.... 306C.3.32 Section 17.5.1 Table layers and transparency

..... 306C.3.33 Section 17.6.1 The separated borders model

........ 306C.3.34 Appendix D.2 Lexical scanner

.............. 306C.4 Clarifications

........ 306C.4.1 2.2 A brief CSS2 tutorial for XML

............. 307C.4.2 Section 4.1.1

............. 307C.4.3 Section 5.5

.......... 307C.4.4 Section 5.9 ID selectors

..... 307C.4.5 Section 5.12.1 The :first-line pseudo-element

............. 307C.4.6 Section 6.2.1

............ 307C.4.7 6.4 The Cascade

.... 307C.4.8 Section 6.4.3 Calculating a selector’s specificity

....... 307C.4.9 Section 7.3 Recognized media types

............. 308C.4.10 Section 8.1

............ 308C.4.11 Section 8.3.1

............ 308C.4.12 Section 9.4.2

............ 308C.4.13 Section 9.4.3

............ 308C.4.14 Section 9.10

.. 309C.4.15 10.3.3 Block-level, non-replaced elements in normal flow

... 309C.4.16 Section 10.5 Content height: the ’height’ property

............ 309C.4.17 Section 10.8.1

............ 310C.4.18 Section 11.1

............ 310C.4.19 Section 11.1.1

............ 310C.4.20 Section 11.1.2

..... 310C.4.21 12.1 The :before and :after pseudo-elements

.310C.4.22 Section 12.4.2 Inserting quotes with the ’content’ property

............. 311C.4.23 Lists 12.6.2

.......... 311C.4.24 14.2 The background

........ 311C.4.25 14.2.1 Background properties

............ 311C.4.26 Section 16.1

...... 312C.4.27 16.2 Alignment: the ’text-align’ property

.... 312C.4.28 Section 17.5.1 Table layers and transparency

...... 312C.4.29 Section 17.5.2 Table width algorithms

15 Sep 2003 14:5013

Cascading Style Sheets, level 2 revision 1

....... 313C.4.30 17.6.1 The separated borders model

.. 313C.4.31 Borders around empty cells: the ’empty-cells’ property

..... 313C.4.32 Section 17.6.2 The collapsing borders model

............ 313C.4.33 Section 18.2

............. 313C.4.34 Section A.3

........ 313C.4.35 Appendix G.2 Lexical scanner

.......... 313C.4.36 Appendix E. References

........ 293Appendix D. Default style sheet for HTML 4.0

...... 267Appendix E. Elaborate description of Stacking Contexts

............... 267E.1 Definitions

.............. 267E.2 Painting order

................ 269E.3 Notes

............ 327Appendix F. Full property table

........... 317Appendix G. Grammar of CSS 2.1

............... 317G.1 Grammar

.............. 319G.2 Lexical scanner

..... 320G.3 Comparison of tokenization in CSS 2.1 and CSS1

............... 335Appendix I. Index

1415 Sep 2003 14:50

Cascading Style Sheets, level 2 revision 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 8

1 About the CSS 2.1 Specification
Contents

.............. 151.1 CSS 2.1 vs CSS 2

............ 161.2 Reading the specification

.......... 161.3 How the specification is organized

................ 171.4 Conventions

...... 171.4.1 Document language elements and attributes

........... 171.4.2 CSS property definitions

................ 17Value

................ 19Initial

............... 19Applies to

............... 19Inherited

............. 19Percentage values

.............. 19Media groups

............. 19Computed value

............ 191.4.3 Shorthand properties

............ 201.4.4 Notes and examples

.......... 201.4.5 Images and long descriptions

.............. 201.5 Acknowledgments

............... 211.6 Copyright Notice

1.1 CSS 2.1 vs CSS 2
The CSS community has gained significant experience with the CSS2 specification
since it became a recommendation in 1998. Errors in the CSS2 specification have
subsequently been corrected via the publication of various errata, but there has not
yet been an opportunity for the specification to be changed based on experience
gained.

While many of these issues will be addressed by the upcoming CSS3 specifica-
tions, the current state of affairs hinders the implementation and interoperability of
CSS2. The CSS 2.1 specification attempts to address this situation by:

Maintaining compatibility with those portions of CSS2 that are widely accepted
and implemented.
Incorporating all published CSS2 errata.
Where implementations overwhelmingly differ from the CSS2 specification,
modifying the specification to be in accordance with generally accepted practice.
Removing all CSS2 features which, by virtue of not having been implemented,
have been rejected by the CSS community.
Removing CSS2 features that will be obsoleted by CSS3, thus encouraging
adoption of the proposed CSS3 features in their place.

15 Sep 2003 14:5015

About the CSS 2.1 Specification

Adding a (very) small number of new property values, [p. 297] when implemen-
tation experience has shown that they are needed for implementing CSS2.

Thus, while it is not the case that a CSS2 stylesheet is necessarily
forwards-compatible with CSS 2.1, it is the case that a stylesheet restricting itself to
CSS 2.1 features is more likely to find a compliant user agent today and to preserve
forwards compatibility in the future. While breaking forward compatibility is not desir-
able, we believe the advantages to the revisions in CSS 2.1 are worthwhile.

1.2 Reading the specification
This specification has been written with two types of readers in mind: CSS authors
and CSS implementors. We hope the specification will provide authors with the tools
they need to write efficient, attractive, and accessible documents, without overexpos-
ing them to CSS’s implementation details. Implementors, however, should find all
they need to build conforming user agents [p. 34] . The specification begins with a
general presentation of CSS and becomes more and more technical and specific
towards the end. For quick access to information, a general table of contents,
specific tables of contents at the beginning of each section, and an index provide
easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind: elec-
tronic and printed. Although the two presentations will no doubt be similar, readers
will find some differences. For example, links will not work in the printed version
(obviously), and page numbers will not appear in the electronic version. In case of a
discrepancy, the electronic version is considered the authoritative version of the
document.

1.3 How the specification is organized
The specification is organized into the following sections:

Section 2: An introduction to CSS2.1
The introduction includes a brief tutorial on CSS2.1 and a discussion of design
principles behind CSS2.1.

Sections 3 - 20: CSS 2.1 reference manual.
The bulk of the reference manual consists of the CSS 2.1 language reference.
This reference defines what may go into a CSS 2.1 style sheet (syntax, proper-
ties, property values) and how user agents must interpret these style sheets in
order to claim conformance [p. 34] .

Appendixes:
Appendixes contain information about aural properties [p. 273] (non-normative),
a sample style sheet for HTML 4.0 [p. 293] , changes from CSS2 [p. 295] , the
grammar of CSS 2.1 [p. 317] , a list of normative and informative references
[p. 323] , and two indexes: one for properties [p. 327] and one general index
[p. 335] .

1615 Sep 2003 14:50

About the CSS 2.1 Specification

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 9

1.4 Conventions

1.4.1 Document language elements and attributes

CSS property, descriptor, and pseudo-class names are delimited by single
quotes.
CSS values are delimited by single quotes.
Document language element names are in uppercase letters.
Document language attribute names are in lowercase letters and delimited by
double quotes.

1.4.2 CSS property definitions
Each CSS property definition begins with a summary of key information that resem-
bles the following:

’property-name’

Value: legal values & syntax
Initial: initial value
Applies to: elements this property applies to
Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to
Computed value: how to compute the computed value

Value

This part specifies the set of valid values for the property whose name is ’prop-
erty-name’. Value types may be designated in several ways:

1. keyword values (e.g., auto, disc, etc.)
2. basic data types, which appear between "<" and ">" (e.g., <length>, <percent-

age>, etc.). In the electronic version of the document, each instance of a basic
data type links to its definition.

3. types that have the same range of values as a property bearing the same name
(e.g., <’border-width’> <’background-attachment’>, etc.). In this case, the type
name is the property name (complete with quotes) between "<" and ">" (e.g.,
<’border-width’>). Such a type does not include the value ’inherit’. In the elec-
tronic version of the document, each instance of this type of non-terminal links
to the corresponding property definition.

4. non-terminals that do not share the same name as a property. In this case, the
non-terminal name appears between "<" and ">", as in <border-width>. Notice
the distinction between <border-width> and <’border-width’>; the latter is
defined in terms of the former. The definition of a non-terminal is located near its
first appearance in the specification. In the electronic version of the document,

15 Sep 2003 14:5017

About the CSS 2.1 Specification

each instance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without
quotes (e.g., red). The slash (/) and the comma (,) must also appear literally.

Values may be arranged as follows:

Several juxtaposed words mean that all of them must occur, in the given order.
A bar (|) separates two or more alternatives: exactly one of them must occur.
A double bar (||) separates two or more options: one or more of them must
occur, in any order.
Brackets ([]) are for grouping.

Juxtaposition is stronger than the double bar, and the double bar is stronger than
the bar. Thus, the following lines are equivalent:

 a b | c || d e
 [a b] | [c || [d e]]

Every type, keyword, or bracketed group may be followed by one of the following
modifiers:

An asterisk (*) indicates that the preceding type, word, or group occurs zero or
more times.
A plus (+) indicates that the preceding type, word, or group occurs one or more
times.
A question mark (?) indicates that the preceding type, word, or group is optional.
A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word,
or group occurs at least A and at most B times.

The following examples illustrate different value types:

Value: N | NW | NE
Value: [<length> | thick | thin]{1,4}
Value: [<family-name> ,]* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>

Value types are specified in terms of tokens, as described in Appendix G.2
[p. 319] . As the grammar allows spaces between tokens in the components of the
expr production, spaces may appear between tokens in values.

Note: In many cases, spaces will in fact be required between tokens in order to
distinguish them from each other. For example, the value ’1em2em’ would be parsed
as a single DIMEN token with the number ’1’ and the identifier ’em2em’, which is an
invalid unit. In this case, a space would be required before the ’2’ to get this parsed
as the two lengths ’1em’ and ’2em’.

1815 Sep 2003 14:50

About the CSS 2.1 Specification

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 10

Initial

This part specifies the property’s initial value. If the property is inherited, this is the
value that is given to the root element of the document tree [p. 33] . Please consult
the section on the cascade [p. 79] for information about the interaction between style
sheet-specified, inherited, and initial values.

Applies to

This part lists the elements to which the property applies. All elements are consid-
ered to have all properties, but some properties have no rendering effect on some
types of elements. For example, ’border-spacing’ only affects table elements.

Inherited

This part indicates whether the value of the property is inherited from an ancestor
element. Please consult the section on the cascade [p. 79] for information about the
interaction between style sheet-specified, inherited, and initial values.

Percentage values

This part indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not accept
percentages as values.

Media groups

This part indicates the media groups [p. 89] to which the property applies. Informa-
tion about media groups is non-normative.

Computed value

This part describes the computed value for the property. See the section on
computed values [p. 80] for how this definition is used.

1.4.3 Shorthand properties
Some properties are shorthand properties, meaning that they allow authors to
specify the values of several properties with a single property.

For instance, the ’font’ property is a shorthand property for setting ’font-style’,
’font-variant’, ’font-weight’, ’font-size’, ’line-height’, and ’font-family’ all at once.

When values are omitted from a shorthand form, each "missing" property is
assigned its initial value (see the section on the cascade [p. 79]).

Example(s):

The multiple style rules of this example:

15 Sep 2003 14:5019

About the CSS 2.1 Specification

h1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal;
}

may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, ’font-variant’, and ’font-style’ take their initial values.

1.4.4 Notes and examples
All examples that illustrate illegal usage are clearly marked as "ILLEGAL
EXAMPLE".

All HTML examples conform to the HTML 4.0 strict DTD (defined in [HTML40])
unless otherwise indicated by a document type declaration.

All notes are informative only.

Examples and notes are marked within the source HTML for the specification and
CSS1 user agents will render them specially.

1.4.5 Images and long descriptions
Most images in the electronic version of this specification are accompanied by "long
descriptions" of what they represent. A link to the long description is denoted by a
"[D]" to the right of the image.

Images and long descriptions are informative only.

1.5 Acknowledgments
CSS 2.1 is based on CSS2. See the acknowledgments section of CSS2 [p. ??] for
the people that contributed to CSS2.

We would like to thank the following people who, through their input and feedback
on the www-style mailing list, have helped us with the creation of this specification:
Andrew Clover, Bernd Mielke, C. Bottelier, Christian Roth, Christoph Päper, Claus
Färber, Coises, Craig Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler,
George Lund, James Craig, Jan Eirik Olufsen, Jan Roland Eriksson, Joris Huizer,
Joshua Prowse, Kai Lahmann, Kevin Smith, Lachlan Cannon, Lars Knoll, Lars Knoll,
Lauri Raittila, Mark Gallagher, Michael Day, Peter Sheerin, Peter Sheerin, Rijk van
Geijtenbeek, Robin Berjon, Scott Montgomery, Shelby Moore, Stuart Ballard, Tom
Gilder, Vadim Plessky, and the Open eBook Publication Structure Working Group
Editors. We would also like to thank Glenn Adams and Susan Lesch, who helped
proofread this document.

2015 Sep 2003 14:50

About the CSS 2.1 Specification

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 11

In addition, we would like to extend special thanks to fantasai, Ada Chan, and
Boris Zbarsky, who have both contributed significant time to CSS2.1.

1.6 Copyright Notice
Copyright [p. ??] © 1997-2003 W3C [p. ??] ® (MIT [p. ??] European Research
Consortium for Informatics and Mathematics, ERCIM [p. ??] , Keio [p. ??]), All
Rights Reserved. W3C liability [p. ??] , trademark [p. ??] , document use [p. ??] and
software licensing [p. ??] rules apply.

Documents on the W3C [p. ??] site are provided by the copyright holders under
the following license. By obtaining, using and/or copying this document, or the W3C
document from which this statement is linked, you agree that you have read, under-
stood, and will comply with the following terms and conditions:

Public documents on the W3C site are provided by the copyright holders under the
following license. The software or Document Type Definitions (DTDs) associated
with W3C specifications are governed by the Software Notice [p. ??] . By using
and/or copying this document, or the W3C document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C
document from which this statement is linked, in any medium for any purpose and
without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a

notice of the form: "Copyright © [$date-of-document] World Wide Web Consor-
tium [p. ??] , (Massachusetts Institute of Technology [p. ??] , Institut National de
Recherche en Informatique et en Automatique [p. ??] , Keio University [p. ??]).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is
preferred, but a textual representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided.
We request that authorship attribution be provided in any software, documents, or
other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted
pursuant to this license. However, if additional requirements (documented in the
Copyright FAQ [p. ??]) are satisfied, the right to create modifications or derivatives
is sometimes granted by the W3C to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS

15 Sep 2003 14:5021

About the CSS 2.1 Specification

FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR
THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright
holders.

2215 Sep 2003 14:50

About the CSS 2.1 Specification

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 12

2 Introduction to CSS 2.1
Contents

.......... 232.1 A brief CSS 2.1 tutorial for HTML

........... 262.2 A brief CSS 2.1 tutorial for XML

........... 272.3 The CSS 2.1 processing model

.............. 282.3.1 The canvas

.......... 282.3.2 CSS 2.1 addressing model

............. 292.4 CSS design principles

2.1 A brief CSS 2.1 tutorial for HTML
In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little HTML (see [HTML40]) and some basic desktop
publishing terminology.

We begin with a small HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS
rules:

 h1 { color: red }

A CSS rule consists of two main parts: selector [p. 59] (’h1’) and declaration
(’color: red’). In HTML, element names are case-insensitive so ’h1’ works just as well
as ’H1’. The declaration has two parts: property (’color’) and value (’red’). While the
example above tries to influence only one of the properties needed for rendering an
HTML document, it qualifies as a style sheet on its own. Combined with other style
sheets (one fundamental feature of CSS is that style sheets are combined) it will
determine the final presentation of the document.

The HTML 4.0 specification defines how style sheet rules may be specified for
HTML documents: either within the HTML document, or via an external style sheet.
To put the style sheet into the document, use the STYLE element:

15 Sep 2003 14:5023

Introduction to CSS 2.1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 h1 { color: red }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets;
they may be changed without modifying the source HTML document, and they may
be shared among several documents. To link to an external style sheet, you can use
the LINK element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <LINK rel="stylesheet" href="bach.css" type="text/css">
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The LINK element specifies:

the type of link: to a "stylesheet".
the location of the style sheet via the "href" attribute.
the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup,
we continue to use the STYLE element in this tutorial. Let’s add more colors:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body { color: black; background: white }
 h1 { color: red; background: white }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

2415 Sep 2003 14:50

Introduction to CSS 2.1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 13

The style sheet now contains four rules: the first two set the color and background
of the BODY element (it’s a good idea to set the text color and background color
together), while the last two set the color and the background of the H1 element.
Since no color has been specified for the P element, it will inherit the color from its
parent element, namely BODY. The H1 element is also a child element of BODY but
the second rule overrides the inherited value. In CSS there are often such conflicts
between different values, and this specification describes how to resolve them.

CSS 2.1 has more than 90 properties, including ’color’. Let’s look at some of the
others:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body {
 font-family: "Gill Sans", sans-serif;
 font-size: 12pt;
 margin: 3em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block
enclosed by curly braces ({...}), and separated by semicolons, though the last decla-
ration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If
that font isn’t available, the user agent (often referred to as a "browser") will use the
’sans-serif’ font family which is one of five generic font families which all users
agents know. Child elements of BODY will inherit the value of the ’font-family’ prop-
erty.

The second declaration sets the font size of the BODY element to 12 points. The
"point" unit is commonly used in print-based typography to indicate font sizes and
other length values. It’s an example of an absolute unit which does not scale relative
to the environment.

The third declaration uses a relative unit which scales with regard to its surround-
ings. The "em" unit refers to the font size of the element. In this case the result is
that the margins around the BODY element are three times wider than the font size.

15 Sep 2003 14:5025

Introduction to CSS 2.1

2.2 A brief CSS 2.1 tutorial for XML
CSS can be used with any structured document format, for example with applica-
tions of the eXtensible Markup Language [XML10]. In fact, XML depends more on
style sheets than HTML, since authors can make up their own elements that user
agents don’t know how to display.

Here is a simple XML fragment:

<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which
elements are inline-level (i.e., do not cause line breaks) and which are block-level
(i.e., cause line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its
comma-separated list of selectors, declares all the other elements to be block-level.
Element names in XML are case-sensitive, so a selector written in lowercase (e.g.
’instrument’) is different from uppercase (e.g. ’INSTRUMENT’).

One way of linking a style sheet to an XML document is to use a processing
instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

A visual user agent could format the above example as:

2615 Sep 2003 14:50

Introduction to CSS 2.1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 14

Fredrick the Great meets Bach
Johann Nikolaus Forkel
One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Notice that the word "flute" remains within the paragraph since it is the content of
the inline element INSTRUMENT.

Still, the text isn’t formatted the way you would expect. For example, the headline
font size should be larger than then the rest of the text, and you may want to display
the author’s name in italic:

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }
AUTHOR { font-style: italic }
ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach
Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the presen-
tation of the document.

2.3 The CSS 2.1 processing model
This section presents one possible model of how user agents that support CSS
work. This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following
steps:

1. Parse the source document and create a document tree [p. 33] .
2. Identify the target media type [p. 87] .
3. Retrieve all style sheets associated with the document that are specified for the

target media type [p. 87] .
4. Annotate every element of the document tree by assigning a single value to

every property [p. 45] that is applicable to the target media type [p. 87] . Proper-

15 Sep 2003 14:5027

Introduction to CSS 2.1

ties are assigned values according to the mechanisms described in the section
on cascading and inheritance [p. 79] .

Part of the calculation of values depends on the formatting algorithm appropri-
ate for the target media type [p. 87] . For example, if the target medium is the
screen, user agents apply the visual formatting model [p. 107] .

5. From the annotated document tree, generate a formatting structure. Often, the
formatting structure closely resembles the document tree, but it may also differ
significantly, notably when authors make use of pseudo-elements and gener-
ated content. First, the formatting structure need not be "tree-shaped" at all --
the nature of the structure depends on the implementation. Second, the format-
ting structure may contain more or less information than the document tree. For
instance, if an element in the document tree has a value of ’none’ for the
’display’ property, that element will generate nothing in the formatting structure.
A list element, on the other hand, may generate more information in the format-
ting structure: the list element’s content and list style information (e.g., a bullet
image).

Note that the CSS user agent does not alter the document tree during this
phase. In particular, content generated due to style sheets is not fed back to the
document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results,
display them on the screen, render them as speech, etc.).

Step 1 lies outside the scope of this specification (see, for example, [DOM]).

Steps 2-5 are addressed by the bulk of this specification.

Step 6 lies outside the scope of this specification.

2.3.1 The canvas
For all media, the term canvas describes "the space where the formatting structure is
rendered." The canvas is infinite for each dimension of the space, but rendering
generally occurs within a finite region of the canvas, established by the user agent
according to the target medium. For instance, user agents rendering to a screen
generally impose a minimum width and choose an initial width based on the dimen-
sions of the viewport [p. 108] . User agents rendering to a page generally impose
width and height constraints. Aural user agents may impose limits in audio space,
but not in time.

2.3.2 CSS 2.1 addressing model
CSS 2.1 selectors [p. 59] and properties allow style sheets to refer to the following
parts of a document or user agent:

Elements in the document tree and certain relationships between them (see the
section on selectors [p. 59]).
Attributes of elements in the document tree, and values of those attributes (see

2815 Sep 2003 14:50

Introduction to CSS 2.1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 15

the section on attribute selectors [p. 64]).
Some parts of element content (see the :first-line [p. 75] and :first-letter [p. 75]
pseudo-elements).
Elements of the document tree when they are in a certain state (see the section
on pseudo-classes [p. 69]).
Some aspects of the canvas [p. 28] where the document will be rendered.
Some system information (see the section on user interface [p. 259]).

2.4 CSS design principles
CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

Forward and backward compatibility. CSS 2.1 user agents will be able to
understand CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1
style sheets and discard parts they don’t understand. Also, user agents with no
CSS support will be able to display style-enhanced documents. Of course, the
stylistic enhancements made possible by CSS will not be rendered, but all
content will be presented.

Complementary to structured documents. Style sheets complement struc-
tured documents (e.g., HTML and XML applications), providing stylistic informa-
tion for the marked-up text. It should be easy to change the style sheet with little
or no impact on the markup.

Vendor, platform, and device independence. Style sheets enable documents
to remain vendor, platform, and device independent. Style sheets themselves
are also vendor and platform independent, but CSS 2.1 allows you to target a
style sheet for a group of devices (e.g., printers).

Maintainability. By pointing to style sheets from documents, webmasters can
simplify site maintenance and retain consistent look and feel throughout the site.
For example, if the organization’s background color changes, only one file
needs to be changed.

Simplicity. CSS is a simple style language which is human readable and
writable. The CSS properties are kept independent of each other to the largest
extent possible and there is generally only one way to achieve a certain effect.

Network performance. CSS provides for compact encodings of how to present
content. Compared to images or audio files, which are often used by authors to
achieve certain rendering effects, style sheets most often decrease the content
size. Also, fewer network connections have to be opened which further
increases network performance.

Flexibility. CSS can be applied to content in several ways. The key feature is
the ability to cascade style information specified in the default (user agent) style
sheet, user style sheets, linked style sheets, the document head, and in
attributes for the elements forming the document body.

15 Sep 2003 14:5029

Introduction to CSS 2.1

Richness. Providing authors with a rich set of rendering effects increases the
richness of the Web as a medium of expression. Designers have been longing
for functionality commonly found in desktop publishing and slide-show applica-
tions. Some of the requested rendering effects conflict with device indepen-
dence, but CSS 2.1 goes a long way toward granting designers their requests.

Alternative language bindings. The set of CSS properties described in this
specification form a consistent formatting model for visual and aural presenta-
tions. This formatting model can be accessed through the CSS language, but
bindings to other languages are also possible. For example, a JavaScript
program may dynamically change the value of a certain element’s ’color’ prop-
erty.

Accessibility. Several CSS features will make the Web more accessible to
users with disabilities:

Properties to control font appearance allow authors to eliminate inaccessi-
ble bit-mapped text images.
Positioning properties allow authors to eliminate mark-up tricks (e.g., invisi-
ble images) to force layout.
The semantics of !important rules mean that users with particular
presentation requirements can override the author’s style sheets.
The ’inherit’ value for all properties improves cascading generality and
allows for easier and more consistent style tuning.
Improved media support, including media groups and the braille,
embossed, and tty media types, will allow users and authors to tailor pages
to those devices.

Note. For more information about designing accessible documents using CSS
and HTML, see [WAI-PAGEAUTH].

3015 Sep 2003 14:50

Introduction to CSS 2.1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 16

3 Conformance: Requirements and Recommen-
dations
Contents

................ 313.1 Definitions

............... 343.2 Conformance

............... 353.3 Error conditions

............ 363.4 The text/css content type

3.1 Definitions
In this section, we begin the formal specification of CSS 2.1, starting with the
contract between authors, users, and implementors.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (see [RFC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this speci-
fication does not depend on their realization. These recommendations contain the
expression "We recommend ...", "This specification recommends ...", or some similar
wording.

Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: author [p. 33] , user [p. 33] , and
user agent [p. 33] . The interaction of these sources is described in the section
on cascading and inheritance [p. 79] .

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style
sheet. All valid CSS1 style sheets are valid CSS 2.1 style sheets, but some
changes from CSS1 mean that a few CSS1 style sheets will have slightly differ-
ent semantics in CSS 2.1. Some features in CSS2 are not part of CSS 2.1, so
not all CSS2 style sheets are valid CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the grammar of
CSS 2.1 [p. 317] . Furthermore, it must contain only at-rules, property names,
and property values defined in this specification. An illegal (invalid) at-rule,
property name, or property value is one that is not valid.

15 Sep 2003 14:5031

Conformance: requirements and recommendations

Source document
The document to which one or more style sheets apply. This is encoded in
some language that represents the document as a tree of elements [p. 32] .
Each element consists of a name that identifies the type of element, optionally a
number of attributes [p. 32] , and a (possibly empty) content [p. 32] .

Document language
The encoding language of the source document (e.g., HTML, XHTML or SVG).
CSS is used to describe the presentation of document languages and CSS does
not change the underlying semantics of the document languages.

Element
(An SGML term, see [ISO8879].) The primary syntactic constructs of the docu-
ment language. Most CSS style sheet rules use the names of these elements
(such as P, TABLE, and OL in HTML) to specify how the elements should be
rendered.

Replaced element
An element for which the CSS formatter knows only the intrinsic dimensions. In
HTML, IMG and OBJECT elements can be replaced elements. For example, the
content of the IMG element is often replaced by the image that the "src" attribute
designates.

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the
surroundings. CSS does not define how the intrinsic dimensions are found. In
CSS 2.1 it is assumed that all replaced elements, and only replaced elements,
come with intrinsic dimensions.

Attribute
A value associated with an element, consisting of a name, and an associated
(textual) value.

Content
The content associated with an element in the source document. Some
elements have no content, in which case they are called empty. The content of
an element may include text, and it may include a number of sub-elements, in
which case the element is called the parent of those sub-elements.

Ignore
This term has three slightly different meanings this specification. First, a CSS
parser must follow certain rules when it discovers unknown or illegal syntax in a
style sheet. The parser must then ignore certain parts of the style sheets. The
exact rules for what parts must be ignored is given in these section: Declara-
tions and properties [p. ??] , Rules for handling parsing errors [p. 46] , Unsup-
ported Values [p. ??] , or may be explained in the text where the term "ignore"
appears. Second, a user agent may (and, in some cases must) disregard
certain properties or values in the style sheet even if the syntax is legal. For
example, table-column-group elements cannot have borders around them, so
the border properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the
relevant style sheets has been applied. The rendered content of a replaced

3215 Sep 2003 14:50

Conformance: requirements and recommendations

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 17

element [p. 32] comes from outside the source document. Rendered content
may also be alternate text for an element (e.g., the value of the XHTML "alt"
attribute), and may include items inserted implicitly or explicitly by the style
sheet, such as bullets, numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree
has exactly one parent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of
B, or (2) A is the child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a descen-
dant of A.

Sibling
An element A is called a sibling of an element B, if and only if B and A share the
same parent element. Element A is a preceding sibling if it comes before B in
the document tree. Element B is a following sibling if it comes after A in the
document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A
is an ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a
preceding element of A.

Author
An author is a person who writes documents and associated style sheets. An
authoring tool generates documents and associated style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise
use a document and its associated style sheet. The user may provide a
personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document
language and applies associated style sheets according to the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it to another format, etc.
An HTML user agent is one that supports the HTML 2.x, HTML 3.x, or HTML 4.x
specifications. A user agent that supports XHTML [XHTML], but not HTML (as
listed in the previous sentence) is not considered an HTML user agent for the
purpose of conformance with this specification.

Here is an example of a source document written in HTML:

15 Sep 2003 14:5033

Conformance: requirements and recommendations

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <TITLE>My home page</TITLE>
 <BODY>
 <H1>My home page</H1>
 <P>Welcome to my home page! Let me tell you about my favorite
 composers:

 Elvis Costello
 Johannes Brahms
 Georges Brassens

 </BODY>
</HTML>

This results in the following tree:

HTML

HEAD

TITLE

BODY

P UL

LI

H1

LILI

According to the definition of HTML 4.0, HEAD elements will be inferred during
parsing and become part of the document tree even if the "head" tags are not in the
document source. Similarly, the parser knows where the P and LI elements end,
even though there are no </p> and tags in the source.

Documents written in XHTML (and other XML-based languages) behave differ-
ently: there are no inferred elements and all elements must have end tags.

3.2 Conformance
This section defines conformance with the CSS 2.1 specification only. There may be
other levels of CSS in the future that may require a user agent to implement a differ-
ent set of features in order to conform.

In general, the following points must be observed by a user agent claiming confor-
mance to this specification:

1. It must support one or more of the CSS 2.1 media types [p. 87] .
2. For each source document, it must attempt to retrieve all associated style

sheets that are appropriate for the supported media types. If it cannot retrieve all
associated style sheets (for instance, because of network errors), it must display
the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it
must recognize all at-rules, blocks, declarations, and selectors (see the
grammar of CSS 2.1 [p. 317]). If a user agent encounters a property that

3415 Sep 2003 14:50

Conformance: requirements and recommendations

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 18

applies for a supported media type, the user agent must parse the value accord-
ing to the property definition. This means that the user agent must accept all
valid values and must ignore declarations with invalid values. User agents must
ignore rules that apply to unsupported media types [p. 87] .

4. For each element in a document tree [p. 33] , it must assign a value for every
applicable property according to the property’s definition and the rules of
cascading and inheritance [p. 79] .

5. If the source document comes with alternate style sheet sets (such as with the
"alternate" keyword in HTML 4.0 [HTML40]), the UA must allow the user to
select which style sheet set the UA should apply.

Not every user agent must observe every point, however:

An application that reads style sheets without rendering any content (e.g., a
CSS 2.1 validator) must respect points 1-3.
An authoring tool is only required to output valid style sheets [p. 31]
A user agent that renders a document with associated style sheets must respect
points 1-5 and render the document according to the media-specific require-
ments set forth in this specification. Values [p. 80] may be approximated when
required by the user agent.

The inability of a user agent to implement part of this specification due to the limi-
tations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that
run on devices without any means of writing or specifying files are exempted from
this requirement. Additionally, UAs may offer other means to specify user prefer-
ences, for example through a GUI.

CSS2.1 does not define which properties apply to form controls and frames, or
how CSS can be used to style them. User agents may apply CSS properties to these
elements. Authors are recommended to treat such support as experimental. A future
level of CSS may specify this further.

3.3 Error conditions
In general, this document does not specify error handling behavior for user agents
(e.g., how they behave when they cannot find a resource designated by a URI).

However, user agents must observe the rules for handling parsing errors [p. 46] .

Since user agents may vary in how they handle error conditions, authors and
users must not rely on specific error recovery behavior.

15 Sep 2003 14:5035

Conformance: requirements and recommendations

3.4 The text/css content type
CSS style sheets that exist in separate files are sent over the Internet as a sequence
of bytes accompanied by encoding information. The structure of the transmission,
termed a message entity, is defined by RFC 2045 and RFC 2068 (see [RFC2045]
and [RFC2068]). A message entity with a content type of "text/css" represents an
independent CSS document. The "text/css" content type has been registered by
RFC 2318 ([RFC2318]).

3615 Sep 2003 14:50

Conformance: requirements and recommendations

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 19

4 Syntax and basic data types
Contents

................. 374.1 Syntax

.............. 374.1.1 Tokenization

............... 414.1.2 Keywords

........... 41Vendor-specific extensions

........... 41Informative Historical Notes

............ 424.1.3 Characters and case

.............. 434.1.4 Statements

............... 434.1.5 At-rules

............... 444.1.6 Blocks

...... 444.1.7 Rule sets, declaration blocks, and selectors

.......... 454.1.8 Declarations and properties

.............. 464.1.9 Comments

........... 464.2 Rules for handling parsing errors

................. 484.3 Values

........... 484.3.1 Integers and real numbers

............... 484.3.2 Lengths

.............. 514.3.3 Percentages

............ 514.3.4 URL + URN = URI

............... 524.3.5 Counters

............... 534.3.6 Colors

............... 544.3.7 Strings

............ 554.3.8 Unsupported Values

........... 554.4 CSS document representation

.564.4.1 Referring to characters not represented in a character encoding

4.1 Syntax
This section describes a grammar (and forward-compatible parsing rules) common
to any version of CSS (including CSS 2.1). Future versions of CSS will adhere to this
core syntax, although they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative
grammar rules presented in Appendix G [p. 317] .

4.1.1 Tokenization
All levels of CSS — level 1, level 2, and any future levels — use the same core
syntax. This allows UAs to parse (though not completely understand) style sheets
written in levels of CSS that didn’t exist at the time the UAs were created. Designers
can use this feature to create style sheets that work with older user agents, while

15 Sep 2003 14:5037

Syntax and basic data types

also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of
tokens for CSS 2.1 is as follows. The definitions use Lex-style regular expressions.
Octal codes refer to ISO 10646 ([ISO10646]). As in Lex, in case of multiple matches,
the longest match determines the token.

3815 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 20

Token Definition

IDENT {ident}

ATKEYWORD @{ident}

STRING {string}

HASH #{name}

NUMBER {num}

PERCENTAGE {num}%

DIMENSION {num}{ident}

URI
url\({w}{string}{w}\)
|url\({w}([!#$%&*-~]|{nonascii}|{escape})*{w}\)

UNICODE-RANGE U\+[0-9A-F?]{1,6}(-[0-9A-F]{1,6})?

CDO <!--

CDC -->

; ;

{ \{

} \}

(\(

) \)

[\[

] \]

S [\t\r\n\f]+

COMMENT \/*[^*]**+([^/*][^*]**+)*\/

FUNCTION {ident}\(

INCLUDES ~=

DASHMATCH |=

DELIM
any other character not matched by the above rules, and
neither a single nor a double quote

The macros in curly braces ({}) above are defined as follows:

15 Sep 2003 14:5039

Syntax and basic data types

Macro Definition

ident [-]?{nmstart}{nmchar}*

name {nmchar}+

nmstart [_a-zA-Z]|{nonascii}|{escape}

nonascii [^\0-\177]

unicode \\[0-9a-f]{1,6}(\r\n|[\n\r\t\f])?

escape {unicode}|\\[-~\200-\4177777]

nmchar [_a-zA-Z0-9-]|{nonascii}|{escape}

num [0-9]+|[0-9]*\.[0-9]+

string {string1}|{string2}

string1 \"([\t !#$%&(-~]|\\{nl}|\’|{nonascii}|{escape})*\"

string2 \’([\t !#$%&(-~]|\\{nl}|\"|{nonascii}|{escape})*\’

nl \n|\r\n|\r|\f

w [\t\r\n\f]*

Below is the core syntax for CSS. The sections that follow describe how to use it.
Appendix G [p. 317] describes a more restrictive grammar that is closer to the CSS
level 2 language.

stylesheet : [CDO | CDC | S | statement]*;
statement : ruleset | at-rule;
at-rule : ATKEYWORD S* any* [block | ’;’ S*];
block : ’{’ S* [any | block | ATKEYWORD S* | ’;’ S*]* ’}’ S*;
ruleset : selector? ’{’ S* declaration? [’;’ S* declaration?]* ’}’ S*;
selector : any+;
declaration : DELIM? property S* ’:’ S* value;
property : IDENT;
value : [any | block | ATKEYWORD S*]+;
any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
 | DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
 | DASHMATCH | FUNCTION S* any* ’)’
 | ’(’ S* any* ’)’ | ’[’ S* any* ’]’] S*;

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere between other tokens.

The token S in the grammar above stands for whitespace. Only the characters
"space" (Unicode code 32), "tab" (9), "line feed" (10), "carriage return" (13), and
"form feed" (12) can occur in whitespace. Other space-like characters, such as
"em-space" (8195) and "ideographic space" (12288), are never part of whitespace.

4015 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 21

4.1.2 Keywords
Keywords have the form of identifiers. Keywords must not be placed between quotes
("..." or ’...’). Thus,

red

is a keyword, but

"red"

is not. (It is a string [p. 54] .) Other illegal examples:

Illegal example(s):

width: "auto";
border: "none";
background: "red";

Vendor-specific extensions

In CSS2.1, identifiers may begin with ’-’ (dash) or ’_’ (underscore). Keywords and
property names, beginning with -’ or ’_’ are reserved for vendor-specific extensions.
Such vendor-specific extensions should have one of the following formats:

’-’ + vendor identifier + ’-’ + meaningful name
’_’ + vendor identifier + ’-’ + meaningful name

Example(s):

For example, if XYZ organization added a property to describe the color of the
border on the East side of the display, they might call it -xyz-border-east-color.

Other known examples:

-moz-box-sizing
-moz-border-radius
-wap-accesskey

An initial dash or underscore is guaranteed never to be used in a property or
keyword by any current or future level of CSS. Thus typical CSS implementations
may not recognize such properties and may ignore them according to the rules for
handling parsing errors [p. 46] . However, because the initial dash or underscore is
part of the grammar, CSS2.1 implementers should always be able to use a
CSS-conforming parser, whether or not they support any vendor-specific extensions.

Informative Historical Notes

This section is informative.

At the time of writing, the following prefixes are known to exist:

15 Sep 2003 14:5041

Syntax and basic data types

prefix organization notes

mso- Microsoft Corporation
Created before the working group estab-
lished a naming convention for extensions.

-moz- The Mozilla Organization

-o- Opera Software

-atsc-
Advanced Television Stan-
dards Committee

-wap- The WAP Forum

Vendor/organization specific extensions should be avoided.

4.1.3 Characters and case
The following rules always hold:

All CSS style sheets are case-insensitive, except for parts that are not under the
control of CSS. For example, the case-sensitivity of values of the HTML
attributes "id" and "class", of font names, and of URIs lies outside the scope of
this specification. Note in particular that element names are case-insensitive in
HTML, but case-sensitive in XML.
In CSS 2.1, identifiers (including element names, classes, and IDs in selectors
[p. 59]) can contain only the characters [A-Za-z0-9] and ISO 10646 characters
161 and higher, plus the hyphen (-) and the underscore (_); they cannot start
with a hyphen or a digit. They can also contain escaped characters and any ISO
10646 character as a numeric code (see next item). For instance, the identifier
"B&W?" may be written as "B\&W\?" or "B\26 W\3F".

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE]
and [ISO10646]).

In CSS 2.1, a backslash (\) character indicates three types of character
escapes.

First, inside a string [p. 54] , a backslash followed by a newline is ignored (i.e.,
the string is deemed not to contain either the backslash or the newline).

Second, it cancels the meaning of special CSS characters. Any character
(except a hexadecimal digit) can be escaped with a backslash to remove its
special meaning. For example, "\"" is a string consisting of one double quote.
Style sheet preprocessors must not remove these backslashes from a style
sheet since that would change the style sheet’s meaning.

Third, backslash escapes allow authors to refer to characters they can’t easily
put in a document. In this case, the backslash is followed by at most six
hexadecimal digits (0..9A..F), which stand for the ISO 10646 ([ISO10646]) char-
acter with that number. If a character in the range [0-9a-zA-Z] follows the
hexadecimal number, the end of the number needs to be made clear. There are

4215 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 22

two ways to do that:

1. with a space (or other whitespace character): "\26 B" ("&B"). In this case,
user agents should treat a "CR/LF" pair (13/10) as a single whitespace
character.

2. by providing exactly 6 hexadecimal digits: "\000026B" ("&B")

In fact, these two methods may be combined. Only one whitespace character
is ignored after a hexadecimal escape. Note that this means that a "real" space
after the escape sequence must itself either be escaped or doubled.

Backslash escapes are always considered to be part of an identifier [p. 42] or a
string (i.e., "\7B" is not punctuation, even though "{" is, and "\32" is allowed at
the start of a class name, even though "2" is not).

4.1.4 Statements
A CSS style sheet, for any version of CSS, consists of a list of statements (see the
grammar above). There are two kinds of statements: at-rules and rule sets. There
may be whitespace [p. 40] around the statements.

In this specification, the expressions "immediately before" or "immediately after"
mean with no intervening whitespace or comments.

4.1.5 At-rules
At-rules start with an at-keyword, an ’@’ character followed immediately by an identi-
fier [p. 42] (for example, ’@import’, ’@page’).

An at-rule consists of everything up to and including the next semicolon (;) or the
next block, [p. 44] whichever comes first. A CSS user agent that encounters an
unrecognized at-rule must ignore [p. 46] the whole of the at-rule and continue
parsing after it.

CSS 2.1 user agents must ignore [p. 46] any ’@import’ [p. 81] rule that occurs
inside a block [p. 44] or that doesn’t precede all rule sets.

Illegal example(s):

Assume, for example, that a CSS 2.1 parser encounters this style sheet:

@import "subs.css";
h1 { color: blue }
@import "list.css";

The second ’@import’ is illegal according to CSS2.1. The CSS 2.1 parser ignores
[p. 46] the whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
h1 { color: blue }

15 Sep 2003 14:5043

Syntax and basic data types

Illegal example(s):

In the following example, the second ’@import’ rule is invalid, since it occurs inside
a ’@media’ block [p. 44] .

@import "subs.css";
@media print {
 @import "print-main.css";
 body { font-size: 10pt }
}
h1 {color: blue }

4.1.6 Blocks
A block starts with a left curly brace ({) and ends with the matching right curly brace
(}). In between there may be any characters, except that parentheses (()), brackets
([]) and braces ({ }) must always occur in matching pairs and may be nested. Single
(’) and double quotes (") must also occur in matching pairs, and characters between
them are parsed as a string. See Tokenization [p. 37] above for the definition of a
string.

Illegal example(s):

Here is an example of a block. Note that the right brace between the double
quotes does not match the opening brace of the block, and that the second single
quote is an escaped character [p. 42] , and thus doesn’t match the first single quote:

{ causta: "}" + ({7} * ’\’’) }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined
above.

4.1.7 Rule sets, declaration blocks, and selectors
A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration-block (also called a {}-block in the following text) starts with a left
curly brace ({) and ends with the matching right curly brace (}). In between there
must be a list of zero or more semicolon-separated (;) declarations.

The selector (see also the section on selectors [p. 59]) consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together with
a {}-block. When a user agent can’t parse the selector (i.e., it is not valid CSS 2.1), it
must ignore [p. 46] the {}-block as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it
is not known if the comma may acquire other meanings in future versions of CSS,
the whole statement should be ignored [p. 46] if there is an error anywhere in the
selector, even though the rest of the selector may look reasonable in CSS 2.1.

Illegal example(s):

4415 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 23

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1
user agent must ignore [p. 46] the whole second line, and not set the color of H3 to
red:

h1, h2 {color: green }
h3, h4 & h5 {color: red }
h6 {color: black }

Example(s):

Here is a more complex example. The first two pairs of curly braces are inside a
string, and do not mark the end of the selector. This is a valid CSS 2.1 statement.

p[example="public class foo\
{\
 private int x;\
\
 foo(int x) {\
 this.x = x;\
 }\
\
}"] { color: red }

4.1.8 Declarations and properties
A declaration is either empty or consists of a property, followed by a colon (:),
followed by a value. Around each of these there may be whitespace [p. 40] .

Because of the way selectors work, multiple declarations for the same selector
may be organized into semicolon (;) separated groups.

Example(s):

Thus, the following rules:

h1 { font-weight: bold }
h1 { font-size: 12px }
h1 { line-height: 14px }
h1 { font-family: Helvetica }
h1 { font-variant: normal }
h1 { font-style: normal }

are equivalent to:

h1 {
 font-weight: bold;
 font-size: 12px;
 line-height: 14px;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal
}

A property is an identifier [p. 42] . Any character may occur in the value. Parenthe-
ses ("()"), brackets ("[]"), braces ("{ }"), single quotes (’) and double quotes (") must
come in matching pairs, and semicolons not in strings must be escaped [p. 42] .

15 Sep 2003 14:5045

Syntax and basic data types

Parentheses, brackets, and braces may be nested. Inside the quotes, characters are
parsed as a string.

The syntax of values is specified separately for each property, but in any case,
values are built from identifiers, strings, numbers, lengths, percentages, URIs, and
colors.

A user agent must ignore [p. 46] a declaration with an invalid property name or an
invalid value. Every CSS 2.1 property has its own syntactic and semantic restrictions
on the values it accepts.

Illegal example(s):

For example, assume a CSS 2.1 parser encounters this style sheet:

h1 { color: red; font-style: 12pt } /* Invalid value: 12pt */
p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */
 font-variant: small-caps }
em em { font-style: normal }

The second declaration on the first line has an invalid value ’12pt’. The second
declaration on the second line contains an undefined property ’font-vendor’. The
CSS 2.1 parser will ignore [p. 46] these declarations, effectively reducing the style
sheet to:

h1 { color: red; }
p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments
Comments begin with the characters "/*" and end with the characters "*/". They may
occur anywhere between tokens, and their contents have no influence on the render-
ing. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places,
but they do not delimit CSS comments. They are permitted so that style rules
appearing in an HTML source document (in the STYLE element) may be hidden
from pre-HTML 3.2 user agents. See the HTML 4.0 specification ([HTML40]) for
more information.

4.2 Rules for handling parsing errors
In some cases, user agents must ignore part of an illegal style sheet. This specifica-
tion defines ignore to mean that the user agent parses the illegal part (in order to find
its beginning and end), but otherwise acts as if it had not been there.

To ensure that new properties and new values for existing properties can be
added in the future, user agents are required to obey the following rules when they
encounter the following scenarios:

4615 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 24

Unknown properties. User agents must ignore [p. 46] a declaration [p. 45] with
an unknown property. For example, if the style sheet is:

h1 { color: red; rotation: 70minutes }

the user agent will treat this as if the style sheet had been

h1 { color: red }

Illegal values. User agents must ignore a declaration with an illegal value. For
example:

img { float: left } /* correct CSS 2.1 */
img { float: left here } /* "here" is not a value of ’float’ */
img { background: "red" } /* keywords cannot be quoted */
img { border-width: 3 } /* a unit must be specified for length values */

A CSS 2.1 parser would honor the first rule and ignore [p. 46] the rest, as if the
style sheet had been:

img { float: left }
img { }
img { }
img { }

A user agent conforming to a future CSS specification may accept one or
more of the other rules as well.

Malformed declarations. User agents must handle unexpected tokens encoun-
tered while parsing a declaration by reading until the end of the declaration,
while observing the rules for matching pairs of (), [], {}, "", and ’’, and correctly
handling escapes. For example, a malformed declaration may be missing a
property, colon (:) or value. The following are all equivalent:

p { color:green }
p { color:green; color } /* malformed declaration missing ’:’, value */
p { color:red; color; color:green } /* same with expected recovery */
p { color:green; color: } /* malformed declaration missing value */
p { color:red; color:; color:green } /* same with expected recovery */
p { color:green; color{;color:maroon} } /* unexpected tokens { } */
p { color:red; color{;color:maroon}; color:green } /* same with recovery */

Invalid at-keywords. User agents must ignore [p. 46] an invalid at-keyword
together with everything following it, up to and including the next semicolon (;) or
block ({...}), whichever comes first. For example, consider the following:

@three-dee {
 @background-lighting {
 azimuth: 30deg;
 elevation: 190deg;
 }
 h1 { color: red }
}
h1 { color: blue }

15 Sep 2003 14:5047

Syntax and basic data types

The ’@three-dee’ at-rule is not part of CSS 2.1. Therefore, the whole at-rule
(up to, and including, the third right curly brace) is ignored. [p. 46] A CSS 2.1
user agent ignores [p. 46] it, effectively reducing the style sheet to:

h1 { color: blue }

4.3 Values

4.3.1 Integers and real numbers
Some value types may have integer values (denoted by <integer>) or real number
values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can
either be an <integer>, or it can be zero or more digits followed by a dot (.) followed
by one or more digits. Both integers and real numbers may be preceded by a "-" or
"+" to indicate the sign.

Note that many properties that allow an integer or real number as a value actually
restrict the value to some range, often to a non-negative value.

4.3.2 Lengths
Lengths refer to horizontal or vertical measurements.

The format of a length value (denoted by <length> in this specification) is a
<number> (with or without a decimal point) immediately followed by a unit identifier
(e.g., px, em, etc.). After a zero length, the unit identifier is optional.

Some properties allow negative length values, but this may complicate the format-
ting model and there may be implementation-specific limits. If a negative length
value cannot be supported, it should be converted to the nearest value that can be
supported.

If a negative length value is set on a property that does not allow negative length
values, the declaration is ignored.

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units will more easily scale from one medium to another (e.g., from a computer
display to a laser printer).

Relative units are:

em: the ’font-size’ of the relevant font
ex: the ’x-height’ of the relevant font
px: pixels, relative to the viewing device

Example(s):

4815 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 25

h1 { margin: 0.5em } /* em */
h1 { margin: 1ex } /* ex */
p { font-size: 12px } /* px */

The ’em’ unit is equal to the computed value of the ’font-size’ property of the
element on which it is used. The exception is when ’em’ occurs in the value of the
’font-size’ property itself, in which case it refers to the font size of the parent element.
It may be used for vertical or horizontal measurement. (This unit is also sometimes
called the quad-width in typographic texts.)

The ’ex’ unit is defined by the font’s ’x-height’. The x-height is so called because it
is often equal to the height of the lowercase "x". However, an ’ex’ is defined even for
fonts that don’t contain an "x".

Example(s):

The rule:

h1 { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size
of the "h1" elements. On the other hand:

h1 { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size
inherited by "h1" elements.

When specified for the root of the document tree [p. 33] (e.g., "HTML" in HTML),
’em’ and ’ex’ refer to the property’s initial value [p. 19] .

Pixel units are relative to the resolution of the viewing device, i.e., most often a
computer display. If the pixel density of the output device is very different from that of
a typical computer display, the user agent should rescale pixel values. It is recom-
mended that the reference pixel be the visual angle of one pixel on a device with a
pixel density of 96dpi and a distance from the reader of an arm’s length. For a
nominal arm’s length of 28 inches, the visual angle is therefore about 0.0213
degrees.

For reading at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).
When printed on a laser printer, meant for reading at a little less than arm’s length
(55 cm, 21 inches), 1px is about 0.20 mm. On a 300 dots-per-inch (dpi) printer, that
may be rounded up to 3 dots (0.25 mm); on a 600 dpi printer, it can be rounded to 5
dots.

The two images below illustrate the effect of viewing distance on the size of a pixel
and the effect of a device’s resolution. In the first image, a reading distance of 71 cm
(28 inch) results in a px of 0.26 mm, while a reading distance of 3.5 m (12 feet)
requires a px of 1.3 mm.

15 Sep 2003 14:5049

Syntax and basic data types

28 inch
71 cm

140 inch
3.5 m

0.28 mm
1.4 mm

viewer

In the second image, an area of 1px by 1px is covered by a single dot in a
low-resolution device (a computer screen), while the same area is covered by 16
dots in a higher resolution device (such as a 400 dpi laser printer).

laserprint

monitor screen

1px
1px

= 1 device pixel

Child elements do not inherit the relative values specified for their parent; they
(generally) inherit the computed values [p. 80] .

Example(s):

In the following rules, the computed ’text-indent’ value of "h1" elements will be
36px, not 45px, if "h1" is a child of the "body" element.

body {
 font-size: 12px;
 text-indent: 3em; /* i.e., 36px */
}
h1 { font-size: 15px }

5015 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 26

Absolute length units are only useful when the physical properties of the output
medium are known. The absolute units are:

in: inches — 1 inch is equal to 2.54 centimeters.
cm: centimeters
mm: millimeters
pt: points — the points used by CSS 2.1 are equal to 1/72th of an inch.
pc: picas — 1 pica is equal to 12 points.

Example(s):

h1 { margin: 0.5in } /* inches */
h2 { line-height: 3cm } /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt } /* points */
h4 { font-size: 1pc } /* picas */

In cases where the computed length cannot be supported, user agents must
approximate it in the actual value.

4.3.3 Percentages
The format of a percentage value (denoted by <percentage> in this specification) is
a <number> immediately followed by ’%’.

Percentage values are always relative to another value, for example a length.
Each property that allows percentages also defines the value to which the percent-
age refers. The value may be that of another property for the same element, a prop-
erty for an ancestor element, or a value of the formatting context (e.g., the width of a
containing block [p. 108]). When a percentage value is set for a property of the root
[p. 33] element and the percentage is defined as referring to the inherited value of
some property, the resultant value is the percentage times the initial value [p. 19] of
that property.

Example(s):

Since child elements (generally) inherit the computed values [p. 80] of their parent,
in the following example, the children of the P element will inherit a value of 12px for
’line-height’, not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of ’font-size’ */

4.3.4 URL + URN = URI
URLs (Uniform Resource Locators, see [RFC1738] and [RFC1808]) provide the
address of a resource on the Web. Another way of identifying resources is called
URN (Uniform Resource Name). Together they are called URIs (Uniform Resource
Identifiers, see [URI]). This specification uses the term URI.

15 Sep 2003 14:5051

Syntax and basic data types

URI values in this specification are denoted by <uri>. The functional notation used
to designate URIs in property values is "url()", as in:

Example(s):

body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is ’url(’ followed by optional whitespace [p. 40] followed
by an optional single quote (’) or double quote (") character followed by the URI
itself, followed by an optional single quote (’) or double quote (") character followed
by optional whitespace followed by ’)’. The two quote characters must be the same.

Example(s):

An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Parentheses, commas, whitespace characters, single quotes (’) and double
quotes (") appearing in a URI must be escaped with a backslash: ’\(’, ’\)’, ’\,’.

Depending on the type of URI, it might also be possible to write the above charac-
ters as URI-escapes (where "(" = %28, ")" = %29, etc.) as described in [URI].

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may use relative URIs. Relative URIs (as defined in
[RFC1808]) are resolved to full URIs using a base URI. RFC 1808, section 3, defines
the normative algorithm for this process. For CSS style sheets, the base URI is that
of the style sheet, not that of the source document.

Example(s):

For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:

http://www.example.org/style/basic.css

The background of the source document’s BODY will be tiled with whatever image
is described by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle URIs that designate unavailable or inap-
plicable resources.

4.3.5 Counters
Counters are denoted by identifiers (see the ’counter-increment’ and ’counter-reset’
properties). To refer to the value of a counter, the notation ’counter(<identifier>)’ or
’counter(<identifier>, <list-style-type>)’ is used. The default style is ’decimal’.

5215 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 27

To refer to a sequence of nested counters of the same name, the notation is
’counters(<identifier>, <string>)’ or ’counters(<identifier>, <string>, <list-style-type>)’.
See "Nested counters and scope" [p. 186] in the chapter on generated content
[p. 177] .

In CSS2, the values of counters can only be referred to from the ’content’ property.
Note that ’none’ is a possible <list-style-type>: ’counter(x, none)’ yields an empty
string.

Example(s):

Here is a style sheet that numbers paragraphs (P) for each chapter (H1). The
paragraphs are numbered with roman numerals, followed by a period and a space:

P {counter-increment: par-num}
H1 {counter-reset: par-num}
P:before {content: counter(par-num, upper-roman) ". "}

Counters that are not in the scope [p. 186] of any ’counter-reset’, are assumed to
have been reset to 0 by a ’counter-reset’ on the root element.

4.3.6 Colors
A <color> is either a keyword or a numerical RGB specification.

The list of keyword color names is: aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow. These 17
colors have the following values:

maroon #800000red #ff0000orange #ffA500yellow #ffff00olive #808000
purple #800080 fuchsia #ff00ff white #ffffff lime #00ff00 green #008000
navy #000080 blue #0000ff aqua #00ffff teal #008080
black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond
to the colors used by certain objects in the user’s environment. Please consult the
section on system colors [p. 260] for more information.

Example(s):

body {color: black; background: white }
h1 { color: maroon }
h2 { color: olive }

The RGB color model is used in numerical color specifications. These examples
all specify the same color:

Example(s):

em { color: #f00 } /* #rgb */
em { color: #ff0000 } /* #rrggbb */
em { color: rgb(255,0,0) }
em { color: rgb(100%, 0%, 0%) }

15 Sep 2003 14:5053

Syntax and basic data types

The format of an RGB value in hexadecimal notation is a ’#’ immediately followed
by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For
example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of
the display.

The format of an RGB value in the functional notation is ’rgb(’ followed by a
comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ’)’. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgb(255,255,255) = rgb(100%,100%,100%) =
#FFF. Whitespace [p. 40] characters are allowed around the numerical values.

All RGB colors are specified in the sRGB color space (see [SRGB]). User agents
may vary in the fidelity with which they represent these colors, but using sRGB
provides an unambiguous and objectively measurable definition of what the color
should be, which can be related to international standards (see [COLORIMETRY]).

Conforming user agents may limit their color-displaying efforts to performing a
gamma-correction on them. sRGB specifies a display gamma of 2.2 under specified
viewing conditions. User agents should adjust the colors given in CSS such that, in
combination with an output device’s "natural" display gamma, an effective display
gamma of 2.2 is produced. See the section on gamma correction [p. 212] for further
details. Note that only colors specified in CSS are affected; e.g., images are
expected to carry their own color information.

Values outside the device gamut should be clipped: the red, green, and blue
values must be changed to fall within the range supported by the device. For a
typical CRT monitor, whose device gamut is the same as sRGB, the four rules below
are equivalent:

Example(s):

em { color: rgb(255,0,0) } /* integer range 0 - 255 */
em { color: rgb(300,0,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(255,-10,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(110%, 0%, 0%) } /* clipped to rgb(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors
outside the 0..255 sRGB range will be representable (inside the device gamut), while
other colors inside the 0..255 sRGB range will be outside the device gamut and will
thus be clipped.

4.3.7 Strings
Strings can either be written with double quotes or with single quotes. Double quotes
cannot occur inside double quotes, unless escaped (as ’\"’ or as ’\22’). Analogously
for single quotes ("\’" or "\27").

5415 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 28

Example(s):

"this is a ’string’"
"this is a \"string\""
’this is a "string"’
’this is a \’string\’’

A string cannot directly contain a newline. To include a newline in a string, use the
escape "\A" (hexadecimal A is the line feed character in Unicode, but represents the
generic notion of "newline" in CSS). See the ’content’ property for an example.

It is possible to break strings over several lines, for esthetic or other reasons, but
in such a case the newline itself has to be escaped with a backslash (\). For
instance, the following two selectors are exactly the same:

Example(s):

a[title="a not s\
o very long title"] {/*...*/}
a[title="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values
If a UA does not support a particular value, it should ignore that value when parsing
stylesheets, as if that value was an illegal value [p. 47] . For example:

Example(s):

 h3 {
 display: inline;
 display: run-in;
 }

A UA that supports the ’run-in’ value for the ’display’ property will accept the first
display declaration and then "write over" that value with the second display declara-
tion. A UA that does not support the ’run-in’ value will process the first display decla-
ration and ignore the second display declaration.

4.4 CSS document representation
A CSS style sheet is a sequence of characters from the Universal Character Set
(see [ISO10646]). For transmission and storage, these characters must be encoded
by a character encoding that supports the set of characters available in US-ASCII
(e.g., ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets and
character encodings, please consult the HTML 4.0 specification ([HTML40], chapter
5), See also the XML 1.0 specification ([XML10], sections 2.2 and 4.3.3, and
Appendix F.

When a style sheet is embedded in another document, such as in the STYLE
element or "style" attribute of HTML, the style sheet shares the character encoding
of the whole document.

15 Sep 2003 14:5055

Syntax and basic data types

When a style sheet resides in a separate file, user agents must observe the follow-
ing priorities when determining a document’s character encoding (from highest prior-
ity to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field.
2. The @charset at-rule.
3. Mechanisms of the language of the referencing document (e.g., in HTML, the

"charset" attribute of the LINK element).

At most one @charset rule may appear in an external style sheet — it must not
appear in an embedded style sheet — and it must appear at the very start of the
document, not preceded by any characters. After "@charset", authors specify the
name of a character encoding. The name must be a charset name as described in
the IANA registry (See [IANA]. Also, see [CHARSETS] for a complete list of
charsets). For example:

Example(s):

@charset "ISO-8859-1";

This specification does not mandate which character encodings a user agent must
support.

Note that reliance on the @charset construct theoretically poses a problem since
there is no a priori information on how it is encoded. In practice, however, the encod-
ings in wide use on the Internet are either based on ASCII, UTF-16, UCS-4, or
(rarely) on EBCDIC. This means that in general, the initial byte values of a document
enable a user agent to detect the encoding family reliably, which provides enough
information to decode the @charset rule, which in turn determines the exact charac-
ter encoding.

4.4.1 Referring to characters not represented in a character
encoding
A style sheet may have to refer to characters that cannot be represented in the
current character encoding. These characters must be written as escaped [p. 42]
references to ISO 10646 characters. These escapes serve the same purpose as
numeric character references in HTML or XML documents (see [HTML40], chapters
5 and 25).

The character escape mechanism should be used when only a few characters
must be represented this way. If most of a document requires escaping, authors
should encode it with a more appropriate encoding (e.g., if the document contains a
lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these
escaped sequences into byte sequences of that encoding. Intermediate processors
must not, on the other hand, alter escape sequences that cancel the special
meaning of an ASCII character.

5615 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 29

Conforming user agents [p. 34] must correctly map to Unicode all characters in
any character encodings that they recognize (or they must behave as if they did).

For example, a document transmitted as ISO-8859-1 (Latin-1) cannot contain
Greek letters directly: "κουρος" (Greek: "kouros") has to be written as
"\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4.0, numeric character references are interpreted in "style"
attribute values but not in the content of the STYLE element. Because of this asym-
metry, we recommend that authors use the CSS character escape mechanism
rather than numeric character references for both the "style" attribute and the STYLE
element. For example, we recommend:

...

rather than:

...

15 Sep 2003 14:5057

Syntax and basic data types

5815 Sep 2003 14:50

Syntax and basic data types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 30

5 Selectors
Contents

.............. 595.1 Pattern matching

............... 615.2 Selector syntax

............... 615.2.1 Grouping

.............. 625.3 Universal selector

............... 625.4 Type selectors

............. 625.5 Descendant selectors

............... 635.6 Child selectors

............ 635.7 Adjacent sibling selectors

.............. 645.8 Attribute selectors

....... 645.8.1 Matching attributes and attribute values

......... 665.8.2 Default attribute values in DTDs

............. 665.8.3 Class selectors

................ 675.9 ID selectors

......... 695.10 Pseudo-elements and pseudo-classes

.............. 695.11 Pseudo-classes

........... 705.11.1 :first-child pseudo-class

....... 705.11.2 The link pseudo-classes: :link and :visited

... 715.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

........ 725.11.4 The language pseudo-class: :lang

.............. 735.12 Pseudo-elements

......... 735.12.1 The :first-line pseudo-element

......... 755.12.2 The :first-letter pseudo-element

....... 775.12.3 The :before and :after pseudo-elements

5.1 Pattern matching
In CSS, pattern matching rules determine which style rules apply to elements in the
document tree [p. 33] . These patterns, called selectors, may range from simple
element names to rich contextual patterns. If all conditions in the pattern are true for
a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends
on the document language. For example, in HTML, element names are case-insen-
sitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Pattern Meaning
Described in

section

15 Sep 2003 14:5059

Selectors

* Matches any element.
Universal selector
[p. 62]

E
Matches any E element (i.e., an element
of type E).

Type selectors
[p. 62]

E F
Matches any F element that is a descen-
dant of an E element.

Descendant selec-
tors [p. 62]

E > F
Matches any F element that is a child of
an element E.

Child selectors
[p. 63]

E:first-child
Matches element E when E is the first
child of its parent.

The :first-child
pseudo-class
[p. 70]

E:link
E:visited

Matches element E if E is the source
anchor of a hyperlink of which the target is
not yet visited (:link) or already visited
(:visited).

The link
pseudo-classes
[p. 70]

E:active
E:hover
E:focus

Matches E during certain user actions.
The dynamic
pseudo-classes
[p. 71]

E:lang(c)

Matches element of type E if it is in
(human) language c (the document
language specifies how language is deter-
mined).

The :lang()
pseudo-class
[p. 72]

E + F
Matches any F element immediately
preceded by an element E.

Adjacent selectors
[p. 63]

E[foo]
Matches any E element with the "foo"
attribute set (whatever the value).

Attribute selectors
[p. 64]

E[foo="warning"]
Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

Attribute selectors
[p. 64]

E[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

Attribute selectors
[p. 64]

E[lang|="en"]
Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

Attribute selectors
[p. 64]

6015 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 31

DIV.warning
Language specific. (In HTML, the same as
DIV[class~="warning"].)

Class selectors
[p. 66]

E#myid
Matches any E element with ID equal to
"myid". ID selectors [p. 67]

5.2 Selector syntax
A simple selector is either a type selector [p. 62] or universal selector [p. 62] followed
immediately by zero or more attribute selectors [p. 64] , ID selectors [p. 67] , or
pseudo-classes [p. 69] , in any order. The simple selector matches if all of its compo-
nents match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector" refers to a smaller part of a selector in CSS3 than
in CSS 2.1. See the CSS3 Selectors module [CSS3SEL].

A selector is a chain of one or more simple selectors separated by combinators.
Combinators are: whitespace, ">", and "+". Whitespace may appear between a
combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the
selector. A selector consisting of a single simple selector matches any element satis-
fying its requirements. Prepending a simple selector and combinator to a chain
imposes additional matching constraints, so the subjects of a selector are always a
subset of the elements matching the last simple selector.

One pseudo-element [p. 69] may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each subject.

5.2.1 Grouping
When several selectors share the same declarations, they may be grouped into a
comma-separated list.

Example(s):

In this example, we condense three rules with identical declarations into one.
Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple declarations
[p. 45] and shorthand properties [p. 19] .

15 Sep 2003 14:5061

Selectors

5.3 Universal selector
The universal selector, written "*", matches the name of any element type. It
matches any single element in the document tree. [p. 33]

If the universal selector is not the only component of a simple selector [p. 61] , the
"*" may be omitted. For example:

*[lang=fr] and [lang=fr] are equivalent.
*.warning and .warning are equivalent.
*#myid and #myid are equivalent.

5.4 Type selectors
A type selector matches the name of a document language element type. A type
selector matches every instance of the element type in the document tree.

Example(s):

The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors
At times, authors may want selectors to match an element that is the descendant of
another element in the document tree (e.g., "Match those EM elements that are
contained by an H1 element"). Descendant selectors express such a relationship in
a pattern. A descendant selector is made up of two or more selectors separated by
whitespace [p. 40] . A descendant selector of the form "A B" matches when an
element B is an arbitrary descendant of some ancestor [p. 33] element A.

Example(s):

For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the
text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1 em { color: blue }

6215 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 32

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

Example(s):

The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV element.
Note the whitespace on either side of the "*" is not part of the universal selector; the
whitespace is the descendant selector indicating that the DIV must be the ancestor
of some element, and that that element must be an ancestor of the P.

Example(s):

The selector in the following rule, which combines descendant and attribute selec-
tors [p. 64] , matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors
A child selector matches when an element is the child [p. 33] of some element. A
child selector is made up of two or more selectors separated by ">".

Example(s):

The following rule sets the style of all P elements that are children of BODY:

body > P { line-height: 1.3 }

Example(s):

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the
child of an OL element; the OL element must be a descendant of a DIV. Notice that
the optional whitespace around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on
the :first-child [p. 70] pseudo-class below.

5.7 Adjacent sibling selectors
Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same parent in
the document tree and E1 immediately precedes E2, ignoring non-element nodes
(such as text nodes and comments).

15 Sep 2003 14:5063

Selectors

In some contexts, adjacent elements generate formatting objects whose presenta-
tion is handled automatically (e.g., collapsing vertical margins between adjacent
boxes). The "+" selector allows authors to specify additional style to adjacent
elements.

Example(s):

Thus, the following rule states that when a P element immediately follows a MATH
element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that
immediately follows it:

h1 + h2 { margin-top: -5mm }

Example(s):

The following rule is similar to the one in the previous example, except that it adds
a class selector. Thus, special formatting only occurs when H1 has
class="opener":

h1.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors
CSS 2.1 allows authors to specify rules that match attributes defined in the source
document.

5.8.1 Matching attributes and attribute values
Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of the
attribute.

[att=val]
Match when the element’s "att" attribute value is exactly "val".

[att~=val]
Match when the element’s "att" attribute value is a space-separated list of
"words", one of which is exactly "val". If this selector is used, the words in the
value must not contain spaces (since they are separated by spaces).

[att|=val]
Match when the element’s "att" attribute value is a hyphen-separated list of
"words", beginning with "val". The match always starts at the beginning of the
attribute value. This is primarily intended to allow language subcode matches
(e.g., the "lang" attribute in HTML) as described in RFC 1766 ([RFC1766]).

6415 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 33

Attribute values must be identifiers or strings. The case-sensitivity of attribute
names and values in selectors depends on the document language.

Example(s):

For example, the following attribute selector matches all H1 elements that specify
the "title" attribute, whatever its value:

h1[title] { color: blue; }

Example(s):

In the following example, the selector matches all SPAN elements whose "class"
attribute has exactly the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element,
or even several times to the same attribute.

Example(s):

Here, the selector matches all SPAN elements whose "hello" attribute has exactly
the value "Cleveland" and whose "goodbye" attribute has exactly the value "Colum-
bus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }

Example(s):

The following selectors illustrate the differences between "=" and "~=". The first
selector will match, for example, the value "copyright copyleft copyeditor" for the "rel"
attribute. The second selector will only match when the "href" attribute has the value
"http://www.w3.org/".

a[rel~="copyright"]
a[href="http://www.w3.org/"]

Example(s):

The following rule hides all elements for which the value of the "lang" attribute is
"fr" (i.e., the language is French).

*[lang=fr] { display : none }

Example(s):

The following rule will match for values of the "lang" attribute that begin with "en",
including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }

Example(s):

15 Sep 2003 14:5065

Selectors

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

DIALOGUE[character=romeo]
 { voice-family: "Lawrence Olivier", charles, male }

DIALOGUE[character=juliet]
 { voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs
Matching takes place on attribute values in the document tree. Default attribute
values may be defined in a DTD or elsewhere, but cannot be selected by attribute
selectors. Style sheets should be designed so that they work even if the default
values are not included in the document tree.

Example(s):

For example, consider an element EXAMPLE with an attribute "notation" that has
a default value of "decimal". The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

then to catch the cases where this attribute is set by default, and not explicitly, the
following rule might be added:

EXAMPLE { /*... default property settings ...*/ }

Because this selector is less specific [p. 84] than an attribute selector, it will only
be used for the default case. Care has to be taken that all other attribute values that
don’t get the same style as the default are explicitly covered.

5.8.3 Class selectors
Working with HTML, authors may use the period (.) notation as an alternative to the
~= notation when representing the class attribute. Thus, for HTML, div.value
and div[class~=value] have the same meaning. The attribute value must imme-
diately follow the "period" (.). UAs may apply selectors using the period (.) notation
in XML documents if the UA has namespace specific knowledge that allows it to
determine which attribute is the "class" attribute for the respective namespace. One
such example of namespace specific knowledge is the prose in the specification for
a particular namespace (e.g. SVG 1.0 [SVG10] describes the SVG "class" attribute
[p. ??] and how a UA should interpret it, and similarly MathML 2.0 [MATH20]
describes the MathML "class" attribute [p. ??] .)

6615 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 34

Example(s):

For example, we can assign style information to all elements with
class~="pastoral" as follows:

.pastoral { color: green } / all elements with class~=pastoral */

or just

.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral":

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the
second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".", in any
order.

Example(s):

For example, the following rule matches any P element whose "class" attribute
has been assigned a list of space-separated values that includes "pastoral" and
"marine":

p.pastoral.marine { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue".

Note. CSS gives so much power to the "class" attribute, that authors could
conceivably design their own "document language" based on elements with almost
no associated presentation (such as DIV and SPAN in HTML) and assigning style
information through the "class" attribute. Authors should avoid this practice since the
structural elements of a document language often have recognized and accepted
meanings and author-defined classes may not.

5.9 ID selectors
Document languages may contain attributes that are declared to be of type ID. What
makes attributes of type ID special is that no two such attributes can have the same
value; whatever the document language, an ID attribute can be used to uniquely
identify its element. In HTML all ID attributes are named "id"; XML applications may
name ID attributes differently, but the same restriction applies.

15 Sep 2003 14:5067

Selectors

The ID attribute of a document language allows authors to assign an identifier to
one element instance in the document tree. CSS ID selectors match an element
instance based on its identifier. A CSS ID selector contains a "#" immediately
followed by the ID value.

Example(s):

The following ID selector matches the H1 element whose ID attribute has the
value "chapter1":

h1#chapter1 { text-align: center }

In the following example, the style rule matches the element that has the ID value
"z98y". The rule will thus match for the P element:

<HEAD>
 <TITLE>Match P</TITLE>
 <STYLE type="text/css">
 *#z98y { letter-spacing: 0.3em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that
has an ID value of "z98y". The rule will not match the P element in this example:

<HEAD>
 <TITLE>Match H1 only</TITLE>
 <STYLE type="text/css">
 H1#z98y { letter-spacing: 0.5em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

ID selectors have a higher specificity than attribute selectors. For example, in
HTML, the selector #p123 is more specific than [id=p123] in terms of the cascade
[p. 79] .

Note. In XML 1.0 [XML10], the information about which attribute contains an
element’s IDs is contained in a DTD. When parsing XML, UAs do not always read
the DTD, and thus may not know what the ID of an element is. If a style sheet
designer knows or suspects that this will be the case, he should use normal attribute
selectors instead: [name=p371] instead of #p371. However, the cascading order of
normal attribute selectors is different from ID selectors. It may be necessary to add
an "!important" priority to the declarations: [name=p371] {color: red !
important}. Of course, elements in XML 1.0 documents without a DTD do not
have IDs at all.

6815 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 35

5.10 Pseudo-elements and pseudo-classes
In CSS 2.1, style is normally attached to an element based on its position in the
document tree [p. 33] . This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the docu-
ment tree [p. 33] . For instance, in HTML 4.0 (see [HTML40]), no element refers to
the first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit
formatting based on information that lies outside the document tree.

Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do not
offer mechanisms to access the first letter or first line of an element’s content.
CSS pseudo-elements allow style sheet designers to refer to this otherwise
inaccessible information. Pseudo-elements may also provide style sheet design-
ers a way to assign style to content that does not exist in the source document
(e.g., the :before and :after [p. 177] pseudo-elements give access to generated
content).
Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced from the
document tree. Pseudo-classes may be dynamic, in the sense that an element
may acquire or lose a pseudo-class while a user interacts with the document.
The exceptions are ’:first-child’ [p. 70] , which can be deduced from the docu-
ment tree, and ’:lang()’ [p. 72] , which can be deduced from the document tree in
some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or
document tree.

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may
only appear after the subject [p. 61] of the selector.

Pseudo-element and pseudo-class names are case-insensitive.

Some pseudo-classes are mutually exclusive, while others can be applied simulta-
neously to the same element. In case of conflicting rules, the normal cascading order
[p. 83] determines the outcome.

Conforming HTML user agents [p. 34] may ignore [p. 46] all rules with :first-line or
:first-letter in the selector, or, alternatively, may only support a subset of the proper-
ties on these pseudo-elements.

5.11 Pseudo-classes

15 Sep 2003 14:5069

Selectors

5.11.1 :first-child pseudo-class
The :first-child pseudo-class matches an element that is the first child of some other
element.

Example(s):

In the following example, the selector matches any P element that is the first child
of a DIV element. The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }

This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">
 <P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
</DIV>

Example(s):

The following rule sets the font weight to ’bold’ for any EM element that is some
descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymous [p. 111] boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:

<P>abc default

is the first child of the P.

The following two selectors are equivalent:

* > a:first-child /* A is first child of any element */
a:first-child /* Same */

5.11.2 The link pseudo-classes: :link and :visited
User agents commonly display unvisited links differently from previously visited
ones. CSS provides the pseudo-classes ’:link’ and ’:visited’ to distinguish them:

The :link pseudo-class applies for links that have not yet been visited.
The :visited pseudo-class applies once the link has been visited by the user.

7015 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 36

Note. After a certain amount of time, user agents may choose to return a visited
link to the (unvisited) ’:link’ state.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source
anchors. For example, in HTML 4.0, the link pseudo-classes apply to A elements
with an "href" attribute. Thus, the following two CSS 2.1 declarations have similar
effect:

a:link { color: red }
:link { color: red }

Example(s):

If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for stylesheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the user’s
consent. UAs may therefore treat all links as unvisited links, or implement other
measures to preserve the user’s privacy while rendering visited and unvisited links
differently. See [P3P] for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and
:focus
Interactive user agents sometimes change the rendering in response to user actions.
CSS provides three pseudo-classes for common cases:

The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user agent
could apply this pseudo-class when the cursor (mouse pointer) hovers over a
box generated by the element. User agents not supporting interactive media
[p. 89] do not have to support this pseudo-class. Some conforming user agents
supporting interactive media [p. 89] may not be able to support this
pseudo-class (e.g., a pen device).
The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button and
releases it.
The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

15 Sep 2003 14:5071

Selectors

An element may match several pseudo-classes at the same time.

CSS doesn’t define which elements may be in the above states, or how the states
are entered and left. Scripting may change whether elements react to user events or
not, and different devices and UAs may have different ways of pointing to, or activat-
ing elements.

User agents are not required to reflow a currently displayed document due to
pseudo-class transitions. For instance, a style sheet may specify that the ’font-size’
of an :active link should be larger than that of an inactive link, but since this may
cause letters to change position when the reader selects the link, a UA may ignore
the corresponding style rule.

Example(s):

a:link { color: red } /* unvisited links */
a:visited { color: blue } /* visited links */
a:hover { color: yellow } /* user hovers */
a:active { color: lime } /* active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since
otherwise the cascading rules will hide the ’color’ property of the A:hover rule. Simi-
larly, because A:active is placed after A:hover, the active color (lime) will apply when
the user both activates and hovers over the A element.

Example(s):

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section
on dynamic focus outlines [p. 262] .

Note. In CSS1, the ’:active’ pseudo-class was mutually exclusive with ’:link’ and
’:visited’. That is no longer the case. An element can be both ’:visited’ and ’:active’
(or ’:link’ and ’:active’) and the normal cascading rules determine which properties
apply.

5.11.4 The language pseudo-class: :lang
If the document language specifies how the human language of an element is deter-
mined, it is possible to write selectors in CSS that match an element based on its
language. For example, in HTML [HTML40], the language is determined by a combi-
nation of the "lang" attribute, the META element, and possibly by information from
the protocol (such as HTTP headers). XML uses an attribute called xml:lang, and
there may be other document language-specific methods for determining the
language.

7215 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 37

The pseudo-class ’:lang(C)’ matches if the element is in language C. Here C is a
language code as specified in HTML 4.0 [HTML40] and RFC 1766 [RFC1766]. It is
matched the same way as for the ’|=’ operator [p. 64] .

Example(s):

The following rules set the quotation marks for an HTML document that is either in
French or German:

html:lang(fr) { quotes: ’« ’ ’ »’ }
html:lang(de) { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }
:lang(fr) > Q { quotes: ’« ’ ’ »’ }
:lang(de) > Q { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }

The second pair of rules actually set the ’quotes’ property on Q elements accord-
ing to the language of its parent. This is done because the choice of quote marks is
typically based on the language of the element around the quote, not the quote itself:
like this piece of French “à l’improviste” in the middle of an English text uses the
English quotation marks.

5.12 Pseudo-elements

5.12.1 The :first-line pseudo-element
The :first-line pseudo-element applies special styles to the contents of the first
formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to
uppercase". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that conforming user agents [p. 34] will
insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the
width of the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first
line will be identified by a fictional tag
sequence. The other lines will be treated as
ordinary lines in the paragraph.

15 Sep 2003 14:5073

Selectors

might be "rewritten" by user agents to include the fictional tag sequence for
:first-line. This fictional tag sequence helps to show how properties are inherited.

<P><P:first-line> This is a somewhat long HTML
paragraph that </P:first-line> will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the element.
Thus, if we mark up the previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the user agent could generate the appropriate start and end tags for SPAN when
inserting the fictional tag sequence for :first-line.

<P><P:first-line> This is a
somewhat long HTML
paragraph that will </P:first-line> be
broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a block-level element.

The "first formatted line" of an element may occur inside a block-level descendant
in the same flow (i.e., a block-level descendant that is not positioned and not a float).
E.g., the first line of the DIV in <DIV><P>This line...</P></DIV> is the first
line of the P (assuming that both P and DIV are block-level).

A UA should act as if the fictional start tag of the first-line pseudo-element is just
inside the smallest enclosing block-level element. (Since CSS1 and CSS2 were
silent on this case, authors should not rely on this behavior.) Here is an example.
The fictional tag sequence for

<DIV>
 <P>First paragraph</P>
 <P>Second paragraph</P>
</DIV>

is

<DIV>
 <P><DIV:first-line><P:first-line>First paragraph</P:first-line></DIV:first-line></P>
 <P><P:first-line>Second paragraph</P:first-line></P>
</DIV>

7415 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 38

The :first-line pseudo-element is similar to an inline-level element, but with certain
restrictions. Only the following properties apply to a :first-line pseudo-element: font
properties, [p. 213] color properties, [p. 205] background properties, [p. 206]
’word-spacing’, ’letter-spacing’, ’text-decoration’, ’vertical-align’, ’text-transform’,
’line-height’,.

5.12.2 The :first-letter pseudo-element
The :first-letter pseudo-element may be used for "initial caps" and "drop caps", which
are common typographical effects. This type of initial letter is similar to an inline-level
element if its ’float’ property is ’none’, otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: font properties,
[p. 213] ’text-decoration’, ’text-transform’, ’letter-spacing’, ’word-spacing’ (when
appropriate), ’line-height’, ’vertical-align’ (only if ’float’ is ’none’), margin properties,
[p. 95] padding properties, [p. 98] border properties, [p. 100] color properties, [p. 205]
background properties. [p. 206] To allow UAs to render a typographically correct
drop cap or initial cap, the UA may choose a line-height, width and height based on
the shape of the letter, unlike for normal elements. CSS3 is expected to have
specific properties that apply to first-letter.

This example shows a possible rendering of an initial cap. Note that the
’line-height’ that is inherited by the first-letter pseudo-element is 1.1, but the UA in
this example has computed the height of the first letter differently, so that it doesn’t
cause any unnecessary space between the first two lines. Also note that the fictional
start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p { line-height: 1.1 }
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }
...
<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

The following CSS 2.1 will make a drop cap initial letter span about two lines:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Drop cap initial letter</TITLE>
 <STYLE type="text/css">
 P { font-size: 12pt; line-height: 1.2 }

15 Sep 2003 14:5075

Selectors

 P:first-letter { font-size: 200%; font-style: italic;
 font-weight: bold; float: left }
 SPAN { text-transform: uppercase }
 </STYLE>
 </HEAD>
 <BODY>
 <P>The first few words of an article
 in The Economist.</P>
 </BODY>
</HTML>

This example might be formatted as follows:

T HE FIRST few
words of an

article in the
Economist

The fictional tag sequence is:

<P>

<P:first-letter>
T
</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial char-
acter), while the :first-line pseudo-element start tag is inserted right after the start tag
of the element to which it is attached.

In order to achieve traditional drop caps formatting, user agents may approximate
font sizes, for example to align baselines. Also, the glyph outline may be taken into
account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps),
"close" (Pe), and "other" (Po) punctuation classes), that precedes the first letter
should be included, as in:

"A bird in
the hand
is worth

two in the bush,"
says an old proverb.

The :first-letter pseudo-element can be used with all elements that contain text, or
that have a descendant in the same flow that contains text. A UA should act as if the
fictional start tag of the first-letter pseudo-element is just before the first text of the
element, even if that first text is in a descendant.

7615 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 39

Example(s):

Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:

<div>
<p><div:first-letter><p:first-letter>T</...></...>he first text.

Some languages may have specific rules about how to treat certain letter combi-
nations. In Dutch, for example, if the letter combination "ij" appears at the beginning
of a word, both letters should be considered within the :first-letter pseudo-element.

If the letters that would form the first-letter are not in the same element, such as
"’T" in <p>’T..., the UA may create a first-letter pseudo-element from one of
the elements, both elements, or simply not create a pseudo-element.

Example(s):

The following example illustrates how overlapping pseudo-elements may interact.
The first letter of each P element will be green with a font size of ’24pt’. The rest of
the first formatted line will be ’blue’ while the rest of the paragraph will be ’red’.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<P>
<P:first-line>
<P:first-letter>
S
</P:first-letter>ome text that
</P:first-line>
ends up on two lines
</P>

Note that the :first-letter element is inside the :first-line element. Properties set on
:first-line are inherited by :first-letter, but are overridden if the same property is set on
:first-letter.

5.12.3 The :before and :after pseudo-elements
The ’:before’ and ’:after’ pseudo-elements can be used to insert generated content
before or after an element’s content. They are explained in the section on generated
text. [p. 177]

15 Sep 2003 14:5077

Selectors

Example(s):

h1:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are combined with :before
and :after, they apply to the first letter or line of the element including the inserted
text.

Example(s):

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

7815 Sep 2003 14:50

Selectors

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 40

6 Assigning property values, Cascading, and
Inheritance
Contents

......... 796.1 Specified, computed, and actual values

............. 796.1.1 Specified values

............. 806.1.2 Computed values

.............. 806.1.3 Actual values

................ 806.2 Inheritance

............. 816.2.1 The ’inherit’ value

.............. 816.3 The @import rule

............... 826.4 The cascade

............. 836.4.1 Cascading order

............. 836.4.2 !important rules

......... 846.4.3 Calculating a selector’s specificity

...... 856.4.4 Precedence of non-CSS presentational hints

6.1 Specified, computed, and actual values
Once a user agent has parsed a document and constructed a document tree [p. 33] ,
it must assign, for every element in the tree, a value to every property that applies to
the target media type [p. 87] .

The final value of a property is the result of a three-step calculation: the value is
determined through specification (the "specified value"), then resolved into an abso-
lute value if necessary (the "computed value"), and finally transformed according to
the limitations of the local environment (the "actual value").

6.1.1 Specified values
User agents must first assign a specified value to a property based on the following
mechanisms (in order of precedence):

1. If the cascade [p. 82] results in a value, use it.
2. Otherwise, if the property is inherited [p. 80] and the element is not the root of

the document tree, use the computed value of the parent element.
3. Otherwise use the property’s initial value. The initial value of each property is

indicated in the property’s definition.

Since it has no parent, the root of the document tree [p. 33] cannot use values
from the parent element; in this case, the initial value is used if necessary.

15 Sep 2003 14:5079

Assigning property values, Cascading, and Inheritance

6.1.2 Computed values
Specified values may be absolute (i.e., they are not specified relative to another
value, as in ’red’ or ’2mm’) or relative (i.e., they are specified relative to another
value, as in ’auto’, ’2em’, and ’12%’). For absolute values, no computation is needed
to find the computed value.

Relative values, on the other hand, must be transformed into computed values:
percentages must be multiplied by a reference value (each property defines which
value that is), values with relative units (em, ex, px) must be made absolute by multi-
plying with the appropriate font or pixel size, ’auto’ values must be computed by the
formulas given with each property, certain keywords (’smaller’, ’bolder’, ’inherit’)
must be replaced according to their definitions.

When the specified value is not ’inherit’, the computed value of a property is deter-
mined as specified by the Computed Value line in the definition of the property. See
the section on inheritance [p. 80] for the definition of computed values when the
specified value is ’inherit’.

The computed value exists even when the property doesn’t apply, as defined by
the ’Applies To’ [add reference] line. However, some properties may define the
computed value of a property for an element to depend on whether the property
applies to that element.

6.1.3 Actual values
A computed value is in principle ready to be used, but a user agent may not be able
to make use of the value in a given environment. For example, a user agent may
only be able to render borders with integer pixel widths and may therefore have to
approximate the computed width. The actual value is the computed value after any
approximations have been applied.

6.2 Inheritance
Some values are inherited by the children of an element in the document tree [p. 33]
,as described above [p. 79] . Each property defines [p. 17] whether it is inherited or
not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

If no color has been assigned to the EM element, the emphasized "is" will inherit
the color of the parent element, so if H1 has the color blue, the EM element will like-
wise be in blue.

When inheritance occurs, elements inherit computed values. The computed value
from the parent element becomes both the specified value and the computed value
on the child.

8015 Sep 2003 14:50

Assigning property values, Cascading, and Inheritance

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 41

Example(s):

For example, given the following style sheet:

body { font-size: 10pt }
h1 { font-size: 120% }

and this document fragment:

<BODY>
 <H1>A large heading</H1>
</BODY>

the ’font-size’ property for the H1 element will have the computed value ’12pt’
(120% times 10pt, the parent’s value). Since the computed value of ’font-size’ is
inherited, the EM element will have the computed value ’12pt’ as well. If the user
agent does not have the 12pt font available, the actual value of ’font-size’ for both H1
and EM might be, for example, ’11pt’.

6.2.1 The ’inherit’ value
Each property may also have a specified value of ’inherit’, which means that, for a
given element, the property takes the same computed value as the property for the
element’s parent. The ’inherit’ value can be used to strengthen inherited values, and
it can also be used on properties that are not normally inherited.

Example(s):

In the example below, the ’color’ and ’background’ properties are set on the BODY
element. On all other elements, the ’color’ value will be inherited and the background
will be transparent. If these rules are part of the user’s style sheet, black text on a
white background will be enforced throughout the document.

body {
 color: black !important;
 background: white !important;
}

* {
 color: inherit !important;
 background: transparent !important;
}

6.3 The @import rule
The ’@import’ rule allows users to import style rules from other style sheets. Any
@import rules must precede all rule sets in a style sheet. The ’@import’ keyword
must be followed by the URI of the style sheet to include. A string is also allowed; it
will be interpreted as if it had url(...) around it.

Example(s):

15 Sep 2003 14:5081

Assigning property values, Cascading, and Inheritance

The following lines are equivalent in meaning and illustrate both ’@import’
syntaxes (one with "url()" and one with a bare string):

@import "mystyle.css";
@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported media types
[p. 87] , authors may specify media-dependent @import rules. These conditional
imports specify comma-separated media types after the URI.

Example(s):

The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;
@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying ’all’ for
the medium has the same effect.

6.4 The cascade
Style sheets may have three different origins: author, user, and user agent.

Author. The author specifies style sheets for a source document according to
the conventions of the document language. For instance, in HTML, style sheets
may be included in the document or linked externally.
User: The user may be able to specify style information for a particular docu-
ment. For example, the user may specify a file that contains a style sheet or the
user agent may provide an interface that generates a user style sheet (or
behaves as if it did).
User agent: Conforming user agents [p. 34] must apply a default style sheet (or
behave as if they did) prior to all other style sheets for a document. A user
agent’s default style sheet should present the elements of the document
language in ways that satisfy general presentation expectations for the docu-
ment language (e.g., for visual browsers, the EM element in HTML is presented
using an italic font). See A sample style sheet for HTML [p. 293] for a recom-
mended default style sheet for HTML documents.

Note that the default style sheet may change if system settings are modified
by the user (e.g., system colors). However, due to limitations in a user agent’s
internal implementation, it may be impossible to change the values in the default
style sheet.

Style sheets from these three origins will overlap in scope, and they interact
according to the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply,
the one with the greatest weight takes precedence.

8215 Sep 2003 14:50

Assigning property values, Cascading, and Inheritance

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 42

By default, rules in author style sheets have more weight than rules in user style
sheets. Precedence is reversed, however, for "!important" rules. All user and author
rules have more weight than rules in the UA’s default style sheet.

Rules specified in a given style sheet override rules of the same weight imported
from other style sheets. Imported style sheets can themselves import and override
other style sheets, recursively, and the same precedence rules apply.

6.4.1 Cascading order
To find the value for an element/property combination, user agents must apply the
following sorting order:

1. Find all declarations that apply to the element and property in question, for the
target media type [p. 87] . Declarations apply if the associated selector matches
[p. 59] the element in question.

2. Sort by weight (normal or important) and origin (author, user, or user agent). In
ascending order:

1. user agent style sheets
2. user normal style sheets
3. author normal style sheets
4. author important style sheets
5. user important style sheets

3. Sort by specificity [p. 84] of selector: more specific selectors will override more
general ones. Pseudo-elements and pseudo-classes are counted as normal
elements and classes, respectively.

4. Finally, sort by order specified: if two rules have the same weight, origin and
specificity, the latter specified wins. Rules in imported style sheets are consid-
ered to be before any rules in the style sheet itself.

Apart from the "!important" setting on individual declarations, this strategy gives
author’s style sheets higher weight than those of the reader. It is therefore important
that the user agent give the user the ability to turn off the influence of a certain style
sheet, e.g., through a pull-down menu.

6.4.2 !important rules
CSS attempts to create a balance of power between author and user style sheets.
By default, rules in an author’s style sheet override those in a user’s style sheet (see
cascade rule 3).

However, for balance, an "!important" declaration (the keywords "!" and "impor-
tant" follow the declaration) takes precedence over a normal declaration. Both author
and user style sheets may contain "!important" declarations, and user "!important"
rules override author "!important" rules. This CSS feature improves accessibility of
documents by giving users with special requirements (large fonts, color combina-
tions, etc.) control over presentation.

15 Sep 2003 14:5083

Assigning property values, Cascading, and Inheritance

Declaring a shorthand property (e.g., ’background’) to be "!important" is equivalent
to declaring all of its sub-properties to be "!important".

Example(s):

The first rule in the user’s style sheet in the following example contains an "!impor-
tant" declaration, which overrides the corresponding declaration in the author’s style
sheet. The second declaration will also win due to being marked "!important".
However, the third rule in the user’s style sheet is not "!important" and will therefore
lose to the second rule in the author’s style sheet (which happens to set style on a
shorthand property). Also, the third author rule will lose to the second author rule
since the second rule is "!important". This shows that "!important" declarations have
a function also within author style sheets.

/* From the user’s style sheet */
p { text-indent: 1em ! important }
p { font-style: italic ! important }
p { font-size: 18pt }

/* From the author’s style sheet */
p { text-indent: 1.5em !important }
p { font: 12pt sans-serif !important }
p { font-size: 24pt }

6.4.3 Calculating a selector’s specificity
A selector’s specificity is calculated as follows:

count 1 if the selector is a ’style’ attribute rather than a selector, 0 otherwise (=
a) (In HTML, values of an element’s "style" attribute are style sheet rules. These
rules have no selectors, so a=1, b=0, c=0, and d=0.)
count the number of ID attributes in the selector (= b)
count the number of other attributes and pseudo-classes in the selector (= c)
count the number of element names and pseudo-elements in the selector (= d)

Concatenating the four numbers a-b-c-d (in a number system with a large base)
gives the specificity.

Example(s):

Some examples:

 * {} /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */
 li {} /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
 li:first-line {} /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,2 */
 ul li {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
 ul ol+li {} /* a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */
 h1 + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
 ul ol li.red {} /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
 li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */
 #x34y {} /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
 style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

8415 Sep 2003 14:50

Assigning property values, Cascading, and Inheritance

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 43

<HEAD>
<STYLE type="text/css">
 #x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration
in the "style" attribute will override the one in the STYLE element because of cascad-
ing rule 3, since it has a higher specificity.

Note: The specificity is based only on the form of the selector. In particular, a
selector of the form "[id=p33]" is counted as an attribute selector (a=0, b=0, c=1,
d=0), even if the id attribute is defined as an "ID" in the source document’s DTD.

6.4.4 Precedence of non-CSS presentational hints
The UA may choose to honor presentational attributes in the source document. If so,
these attributes are translated to the corresponding CSS rules with specificity equal
to 0, and are treated as if they were inserted at the start of the author style sheet.
They may therefore be overridden by subsequent style sheet rules. In a transition
phase, this policy will make it easier for stylistic attributes to coexist with style
sheets.

For HTML, any attribute that is not in the following list should be considered
presentational: abbr, accept-charset, accept, accesskey, action, alt, archive, axis,
charset, checked, cite, class, classid, code, codebase, codetype, colspan, coords,
data, datetime, declare, defer, dir, disabled, enctype, for, headers, href, hreflang,
http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method,
multiple, name, nohref, object, onblur, onchange, onclick, ondblclick, onfocus,
onkeydown, onkeypress, onkeyup, onload, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload,
onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
shape, span, src, standby, start, style, summary, title, type, usemap, value, value-
type, version.

For XHTML and other languages written in XML, no attribute should be considered
presentational. The styling of elements and non-presentational attributes should be
handled in the user agent stylesheet.

Example(s):

The following user stylesheet would override the font weight of ’b’ elements in all
documents, and the color of ’font’ elements with color attributes in XML documents.
It would not affect the color of any ’font’ elements with color attributes in HTML docu-
ments:

b { font-weight: normal; }
font[color] { color: orange; }

15 Sep 2003 14:5085

Assigning property values, Cascading, and Inheritance

The following, however, would override the color of font elements in all docu-
ments:

font[color] { color: orange ! important; }

8615 Sep 2003 14:50

Assigning property values, Cascading, and Inheritance

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 44

7 Media types
Contents

............ 877.1 Introduction to media types

........ 877.2 Specifying media-dependent style sheets

............. 887.2.1 The @media rule

............. 887.3 Recognized media types

.............. 897.3.1 Media groups

7.1 Introduction to media types
One of the most important features of style sheets is that they specify how a docu-
ment is to be presented on different media: on the screen, on paper, with a speech
synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the
’page-break-before’ property only applies to paged media). On occasion, however,
style sheets for different media types may share a property, but require different
values for that property. For example, the ’font-size’ property is useful both for
screen and print media. The two media types are different enough to require differ-
ent values for the common property; a document will typically need a larger font on a
computer screen than on paper. Therefore, it is necessary to express that a style
sheet, or a section of a style sheet, applies to certain media types.

7.2 Specifying media-dependent style sheets
There are currently two ways to specify media dependencies for style sheets:

Specify the target medium from a style sheet with the @media or @import
at-rules.

Example(s):

@import url("fancyfonts.css") screen;
@media print {
 /* style sheet for print goes here */
}

Specify the target medium within the document language. For example, in
HTML 4.0 ([HTML40]), the "media" attribute on the LINK element specifies the
target media of an external style sheet:

15 Sep 2003 14:5087

Media types

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Link to a target medium</TITLE>
 <LINK REL="stylesheet" TYPE="text/css"
 MEDIA="print, handheld" HREF="foo.css">
 </HEAD>
 <BODY>
 <P>The body...
 </BODY>
</HTML>

The @import [p. 81] rule is defined in the chapter on the cascade [p. 79] .

7.2.1 The @media rule
An @media rule specifies the target media types [p. 88] (separated by commas) of a
set of rules (delimited by curly braces). The @media construct allows style sheet
rules for various media in the same style sheet:

 @media print {
 body { font-size: 10pt }
 }
 @media screen {
 body { font-size: 13px }
 }
 @media screen, print {
 body { line-height: 1.2 }
 }

7.3 Recognized media types
The names chosen for CSS media types reflect target devices for which the relevant
properties make sense. The names of media types are normative. In the following
list of CSS media types, the parenthetical descriptions are not normative. Likewise,
the "Media" field in the description of each property is informative.

all
Suitable for all devices.

braille
Intended for braille tactile feedback devices.

embossed
Intended for paged braille printers.

handheld
Intended for handheld devices (typically small screen, limited bandwidth).

print
Intended for paged material and for documents viewed on screen in print
preview mode. Please consult the section on paged media [p. 195] for informa-
tion about formatting issues that are specific to paged media.

8815 Sep 2003 14:50

Media types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 45

projection
Intended for projected presentations, for example projectors. Please consult the
section on paged media [p. 195] for information about formatting issues that are
specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called
’aural’ for this purpose. See the appendix on aural style sheets [p. 273] for
details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes, termi-
nals, or portable devices with limited display capabilities). Authors should not
use pixel units [p. 49] with the "tty" media type.

tv
Intended for television-type devices (low resolution, color, limited-scrollability
screens, sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only
support one media type when rendering a document. However, user agents may
have different modes which support different media types.

Note. Future versions of CSS may extend this list. Authors should not rely on
media type names that are not yet defined by a CSS specification.

7.3.1 Media groups
This section is informative, not normative.

Each CSS property definition specifies the media types for which the property
must be implemented by a conforming user agent [p. 34] . Since properties generally
apply to several media, the "Applies to media" section of each property definition
lists media groups rather than individual media types. Each property applies to all
media types in the media groups listed in its definition.

CSS 2.1 defines the following media groups:

continuous or paged.
visual, audio, speech, or tactile.
grid (for character grid devices), or bitmap.
interactive (for devices that allow user interaction), or static (for those that
don’t).
all (includes all media types)

The following table shows the relationships between media groups and media
types:

15 Sep 2003 14:5089

Media types

Relationship between media groups and media types

Media
Types

Media Groups

 continuous/paged visual/audio/speech/tactile grid/bitmap interactive/static

braille continuous tactile grid both

emboss paged tactile grid static

handheld both visual, audio, speech both both

print paged visual bitmap static

projection paged visual bitmap interactive

screen continuous visual, audio bitmap both

speech continuous speech N/A both

tty continuous visual grid both

tv both visual, audio bitmap both

9015 Sep 2003 14:50

Media types

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 46

8 Box model
Contents

............... 918.1 Box dimensions

........ 938.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’, ’margin-left’,

................. 95and ’margin’

............ 978.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............. 98’padding-left’, and ’padding’

.............. 1008.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

.... 100’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

.... 101’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

.... 102’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-bottom’,

......... 104’border-right’, ’border-left’, and ’border’

....... 1058.6 The box model for inline elements in bidi context

The CSS box model describes the rectangular boxes that are generated for
elements in the document tree [p. 33] and laid out according to the visual formatting
model [p. 107] .

8.1 Box dimensions
Each box has a content area (e.g., text, an image, etc.) and optional surrounding
padding, border, and margin areas; the size of each area is specified by properties
defined below. The following diagram shows how these areas relate and the termi-
nology used to refer to pieces of margin, border, and padding:

15 Sep 2003 14:5091

Box model

Margin edge

Border edge

Padding edge

Content edge

Content

Border

Margin (Transparent)

Padding

Right

TM

LM RM

BM

LB RB

TB

BB

TP

BP

RPLP

Top

Bottom

Left

The margin, border, and padding can be broken down into top, right, bottom, and
left segments (e.g., in the diagram, "LM" for left margin, "RP" for right padding, "TB"
for top border, etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is
called an "edge", so each box has four edges:

content edge or inner edge
The content edge surrounds the element’s rendered content [p. 32] .

padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the
padding edge is the same as the content edge.

border edge
The border edge surrounds the box’s border. If the border has 0 width, the
border edge is the same as the padding edge.

margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the
margin edge is the same as the border edge.

Each edge may be broken down into a top, right, bottom, and left edge.

The dimensions of the content area of a box — the content width and content
height — depend on several factors: whether the element generating the box has the
’width’ or ’height’ property set, whether the box contains text or other boxes, whether

9215 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 47

the box is a table, etc. Box widths and heights are discussed in the chapter on visual
formatting model details [p. 149] .

The box width is given by the sum of the left and right margins, border, and
padding, and the content width. The box height is given by the sum of the top and
bottom margins, border, and padding, and the content height.

The background style of the content, padding, and border areas of a box is speci-
fied by the ’background’ property of the generating element. Margin backgrounds are
always transparent.

8.2 Example of margins, padding, and borders
This example illustrates how margins, padding, and borders interact. The example
HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Examples of margins, padding, and borders</TITLE>
 <STYLE type="text/css">
 UL {
 background: yellow;
 margin: 12px 12px 12px 12px;
 padding: 3px 3px 3px 3px;
 /* No borders set */
 }
 LI {
 color: white; /* text color is white */
 background: blue; /* Content, padding will be blue */
 margin: 12px 12px 12px 12px;
 padding: 12px 0px 12px 12px; /* Note 0px padding right */
 list-style: none /* no glyphs before a list item */
 /* No borders set */
 }
 LI.withborder {
 border-style: dashed;
 border-width: medium; /* sets border width on all sides */
 border-color: lime;
 }
 </STYLE>
 </HEAD>
 <BODY>

 First element of list
 <LI class="withborder">Second element of list is longer
 to illustrate wrapping.

 </BODY>
</HTML>

results in a document tree [p. 33] with (among other relationships) a UL element
that has two LI children.

15 Sep 2003 14:5093

Box model

The first of the following diagrams illustrates what this example would produce.
The second illustrates the relationship between the margins, padding, and borders of
the UL elements and those of its children LI elements.

UL margins

Second element of list
is longer to illustrate
wrapping

LI padding

LI padding
First element of list

UL padding

LI margins

Box width of UL

Collapsed margin is
max(12px, 12px)=12px

Content width of UL

Second element of list
is longer to illustrate
wrapping

First element of list

Content width of LI

9415 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 48

Note that:

The content width [p. 92] for each LI box is calculated top-down; the containing
block [p. 108] for each LI box is established by the UL element.
The height of each LI box is given by its content height [p. 92] , plus top and
bottom padding, borders, and margins. Note that vertical margins between the
LI boxes collapse. [p. 97]
The right padding of the LI boxes has been set to zero width (the ’padding’ prop-
erty). The effect is apparent in the second illustration.
The margins of the LI boxes are transparent — margins are always transparent
— so the background color (yellow) of the UL padding and content areas shines
through them.
The second LI element specifies a dashed border (the ’border-style’ property).

8.3 Margin properties: ’margin-top’, ’margin-right’,
’margin-bottom’, ’margin-left’, and ’margin’
Margin properties specify the width of the margin area [p. 91] of a box. The ’margin’
shorthand property sets the margin for all four sides while the other margin proper-
ties only set their respective side. These properties apply to all elements, but vertical
margins will not have any effect on non-replaced inline elements. Conforming HTML
user agents [p. 34] may ignore the margin properties on the HTML element.

The properties defined in this section refer to the <margin-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 108] . Note that this is true for ’margin-top’ and
’margin-bottom’ as well. If the containing block’s width depends on this element,
then the resulting layout is undefined in CSS 2.1.

auto
See the section on computing widths and margins [p. 153] for behavior.

Negative values for margin properties are allowed, but there may be implementa-
tion-specific limits.

’margin-top’, ’margin-bottom’

15 Sep 2003 14:5095

Box model

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements but inline, non-replaced elements and internal

table elements [p. 237]
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

’margin-right’, ’margin-left’

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements but internal table elements [p. 237]
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.

Example(s):

h1 { margin-top: 2em }

’margin’

Value: <margin-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements but internal table elements [p. 237]
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’margin’ property is a shorthand property for setting ’margin-top’,
’margin-right’, ’margin-bottom’, and ’margin-left’ at the same place in the style sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom margins are set to the first value and the right and left margins are set to the
second. If there are three values, the top is set to the first value, the left and right are
set to the second, and the bottom is set to the third. If there are four values, they
apply to the top, right, bottom, and left, respectively.

Example(s):

body { margin: 2em } /* all margins set to 2em */
body { margin: 1em 2em } /* top & bottom = 1em, right & left = 2em */
body { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

9615 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 49

The last rule of the example above is equivalent to the example below:

body {
 margin-top: 1em;
 margin-right: 2em;
 margin-bottom: 3em;
 margin-left: 2em; /* copied from opposite side (right) */
}

8.3.1 Collapsing margins
In this specification, the expression collapsing margins means that adjoining margins
(no non-empty content, padding or border areas or clearance [p. 128] separate
them) of two or more boxes (which may be next to one another or nested) combine
to form a single margin.

In CSS 2.1, horizontal margins never collapse.

Vertical margins may collapse between certain boxes:

Two or more adjoining vertical margins of block [p. 109] boxes in the normal
flow [p. 117] collapse. The resulting margin width is the maximum of the adjoin-
ing margin widths. In the case of negative margins, the maximum of the abso-
lute values of the negative adjoining margins is deducted from the maximum of
the positive adjoining margins. If there are no positive margins, the absolute
maximum of the negative adjoining margins is deducted from zero. Note.
Adjoining boxes may be generated by elements that are not related as siblings
or ancestors.
Vertical margins between a floated [p. 121] box and any other box do not
collapse (not even between a float and its in-flow children).
Vertical margins of elements with ’overflow’ other than ’visible’ do not collapse
with their in-flow children.
Margins of absolutely [p. 129] positioned boxes do not collapse (not even with
their in-flow children).
If the top and bottom margins of a box are adjacent, then it is possible for
margins to collapse through it. In this case, the position of the element depends
on its relationship with the other elements whose margins are being collapsed.

If the element’s margins are collapsed with its parent’s top margin, the top
border edge of the box is defined to be the same as the parent’s.
Otherwise, either the element’s parent is not taking part in the margin
collapsing, or only the parent’s bottom margin is involved. The position of
the element’s top border edge is the same as it would have been if the
element had a non-zero top border.

Note that the positions of elements that have been collapsed through have no
effect on the positions of the other elements with whose margins they are being
collapsed; the top border edge position is only required for laying out descen-
dants of these elements.

15 Sep 2003 14:5097

Box model

The bottom margin of an in-flow block-level element is always adjoining to the top
margin of its next in-flow block-level sibling, unless that sibling has clearance.
[p. 128]

The top margin of an in-flow block-level element is adjoining to its first in-flow
block-level child’s top margin if the element has no top border, no top padding, and
the child has no clearance. [p. 128]

The bottom margin of an in-flow block-level element with a ’height’ of ’auto’ and
’min-height’ less than the element’s used height is adjoining to its last in-flow
block-level child’s bottom margin if the element has no bottom padding or border.

An element’s own margins are adjoining if the ’min-height’ property is zero, and it
has neither vertical borders nor vertical padding, and it has a ’height’ of either 0 or
’auto’, and it does not contain a line box, and all of its in-flow children’s margins (if
any) are adjoining.

Collapsing is based on the computed value of ’padding’, ’margin’, and ’border’.
The collapsed margin is calculated over the computed value of the various margins.

Please consult the examples of margin, padding, and borders [p. 93] for an illus-
tration of collapsed margins.

8.4 Padding properties: ’padding-top’, ’padding-right’,
’padding-bottom’, ’padding-left’, and ’padding’
The padding properties specify the width of the padding area [p. 91] of a box. The
’padding’ shorthand property sets the padding for all four sides while the other
padding properties only set their respective side.

The properties defined in this section refer to the <padding-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 108] , even for ’padding-top’ and ’padding-bottom’. If the
containing block’s width depends on this element, then the resulting layout is
undefined in CSS 2.1.

Unlike margin properties, values for padding values cannot be negative. Like
margin properties, percentage values for padding properties refer to the width of the
generated box’s containing block.

’padding-top’, ’padding-right’, ’padding-bottom’, ’padding-left’

9815 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 50

Value: <padding-width> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.

Example(s):

blockquote { padding-top: 0.3em }

’padding’

Value: <padding-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’padding’ property is a shorthand property for setting ’padding-top’,
’padding-right’, ’padding-bottom’, and ’padding-left’ at the same place in the style
sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom paddings are set to the first value and the right and left paddings are set to
the second. If there are three values, the top is set to the first value, the left and right
are set to the second, and the bottom is set to the third. If there are four values, they
apply to the top, right, bottom, and left, respectively.

The surface color or image of the padding area is specified via the ’background’
property:

Example(s):

h1 {
 background: white;
 padding: 1em 2em;
}

The example above specifies a ’1em’ vertical padding (’padding-top’ and
’padding-bottom’) and a ’2em’ horizontal padding (’padding-right’ and ’padding-left’).
The ’em’ unit is relative [p. 48] to the element’s font size: ’1em’ is equal to the size of
the font in use.

15 Sep 2003 14:5099

Box model

8.5 Border properties
The border properties specify the width, color, and style of the border area [p. 91] of
a box. These properties apply to all elements. Conforming HTML user agents [p. 34]
may ignore the border properties on the HTML element.

Note. Notably for HTML, user agents may render borders for certain elements
(e.g., buttons, menus, etc.) differently than for "ordinary" elements.

8.5.1 Border width: ’border-top-width’, ’border-right-width’,
’border-bottom-width’, ’border-left-width’, and ’border-width’
The border width properties specify the width of the border area [p. 91] . The proper-
ties defined in this section refer to the <border-width> value type, which may take
one of the following values:

thin
A thin border.

medium
A medium border.

thick
A thick border.

<length>
The border’s thickness has an explicit value. Explicit border widths cannot be
negative.

The interpretation of the first three values depends on the user agent. The follow-
ing relationships must hold, however:

’thin’ <=’medium’ <= ’thick’.

Furthermore, these widths must be constant throughout a document.

’border-top-width’, ’border-right-width’, ’border-bottom-width’,
’border-left-width’

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute length; ’0’ if the border style is ’none’ or ’hidden’

These properties set the width of the top, right, bottom, and left border of a box.

10015 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 51

’border-width’

Value: <border-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This property is a shorthand property for setting ’border-top-width’,
’border-right-width’, ’border-bottom-width’, and ’border-left-width’ at the same place
in the style sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom borders are set to the first value and the right and left are set to the second. If
there are three values, the top is set to the first value, the left and right are set to the
second, and the bottom is set to the third. If there are four values, they apply to the
top, right, bottom, and left, respectively.

Example(s):

In the examples below, the comments indicate the resulting widths of the top,
right, bottom, and left borders:

h1 { border-width: thin } /* thin thin thin thin */
h1 { border-width: thin thick } /* thin thick thin thick */
h1 { border-width: thin thick medium } /* thin thick medium thick */

8.5.2 Border color: ’border-top-color’, ’border-right-color’,
’border-bottom-color’, ’border-left-color’, and ’border-color’
The border color properties specify the color of a box’s border.

’border-top-color’, ’border-right-color’, ’border-bottom-color’,
’border-left-color’

Value: <color> | transparent | inherit
Initial: the value of the ’color’ property
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: when taken from the ’color’ property, the computed value of

’color’; otherwise, as specified

15 Sep 2003 14:50101

Box model

’border-color’

Value: [<color> | transparent]{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border-color’ property sets the color of the four borders. Values have the
following meanings:

<color>
Specifies a color value.

transparent
The border is transparent (though it may have width).

The ’border-color’ property can have from one to four values, and the values are
set on the different sides as for ’border-width’.

If an element’s border color is not specified with a border property, user agents
must use the value of the element’s ’color’ property as the computed value [p. 80] for
the border color.

Example(s):

In this example, the border will be a solid black line.

p {
 color: black;
 background: white;
 border: solid;
}

8.5.3 Border style: ’border-top-style’, ’border-right-style’,
’border-bottom-style’, ’border-left-style’, and ’border-style’
The border style properties specify the line style of a box’s border (solid, double,
dashed, etc.). The properties defined in this section refer to the <border-style>
value type, which make take one of the following values:

none
No border.

hidden
Same as ’none’, except in terms of border conflict resolution [p. 255] for table
elements [p. 235] .

dotted
The border is a series of dots.

10215 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 52

dashed
The border is a series of short line segments.

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’groove’: the border looks as though it were coming out of the
canvas.

inset
The border makes the box look as though it were embedded in the canvas.

outset
The opposite of ’inset’: the border makes the box look as though it were coming
out of the canvas.

All borders are drawn on top of the box’s background. The color of borders drawn
for values of ’groove’, ’ridge’, ’inset’, and ’outset’ depends on the element’s border
color properties [p. 101] , but UAs may choose their own algorithm to calculate the
actual colors used. For instance, if the ’border-color’ has the value ’silver’, then a UA
could use a gradient of colors from white to dark gray to indicate a sloping border.

’border-top-style’, ’border-right-style’, ’border-bottom-style’, ’border-left-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

’border-style’

Value: <border-style>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

15 Sep 2003 14:50103

Box model

The ’border-style’ property sets the style of the four borders. It can have from one
to four values, and the values are set on the different sides as for ’border-width’
above.

Example(s):

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be ’solid’ and the vertical borders
will be ’dotted’.

Since the initial value of the border styles is ’none’, no borders will be visible
unless the border style is set.

8.5.4 Border shorthand properties: ’border-top’,
’border-bottom’, ’border-right’, ’border-left’, and ’border’

’border-top’, ’border-right’, ’border-bottom’, ’border-left’

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This is a shorthand property for setting the width, style, and color of the top, right,
bottom, and left border of a box.

Example(s):

h1 { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1
element. Omitted values are set to their initial values [p. 19] . Since the following rule
does not specify a border color, the border will have the color specified by the ’color’
property:

H1 { border-bottom: thick solid }

’border’

10415 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 53

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border’ property is a shorthand property for setting the same width, color, and
style for all four borders of a box. Unlike the shorthand ’margin’ and ’padding’ proper-
ties, the ’border’ property cannot set different values on the four borders. To do so,
one or more of the other border properties must be used.

Example(s):

For example, the first rule below is equivalent to the set of four rules shown after it:

p { border: solid red }
p {
 border-top: solid red;
 border-right: solid red;
 border-bottom: solid red;
 border-left: solid red
}

Since, to some extent, the properties have overlapping functionality, the order in
which the rules are specified is important.

Example(s):

Consider this example:

blockquote {
 border: solid red;
 border-left: double;
 color: black;
}

In the above example, the color of the left border is black, while the other borders
are red. This is due to ’border-left’ setting the width, style, and color. Since the color
value is not given by the ’border-left’ property, it will be taken from the ’color’ prop-
erty. The fact that the ’color’ property is set after the ’border-left’ property is not rele-
vant.

8.6 The box model for inline elements in bidi context
For each line box, UAs must take the inline boxes generated for each element and
render the margins, borders and padding in visual order (not logical order).

15 Sep 2003 14:50105

Box model

When the element’s ’direction’ property is ’ltr’, the left-most generated box of the
first line box in which the element appears has a left margin, left border and left
padding, and the right-most generated box of the last line box in which the element
appears has a right padding, right border and right margin.

When the element’s ’direction’ property is ’rtl’, the right-most generated box of the
first line box in which the element appears has a right padding, right border and right
margin, and the left-most generated box of the last line box in which the element
appears has a left margin, left border and left padding.

10615 Sep 2003 14:50

Box model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 54

9 Visual formatting model
Contents

........ 1079.1 Introduction to the visual formatting model

.............. 1089.1.1 The viewport

............. 1089.1.2 Containing blocks

............ 1099.2 Controlling box generation

........ 1099.2.1 Block-level elements and block boxes

........... 109Anonymous block boxes

........ 1119.2.2 Inline-level elements and inline boxes

........... 111Anonymous inline boxes

.............. 1119.2.3 Run-in boxes

............ 1129.2.4 The ’display’ property

.............. 1149.3 Positioning schemes

..... 1149.3.1 Choosing a positioning scheme: ’position’ property

........ 1159.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

................ 1179.4 Normal flow

........... 1179.4.1 Block formatting context

........... 1189.4.2 Inline formatting context

............ 1209.4.3 Relative positioning

................. 1219.5 Floats

....... 1269.5.1 Positioning the float: the ’float’ property

..... 1289.5.2 Controlling flow next to floats: the ’clear’ property

.............. 1299.6 Absolute positioning

............. 1299.6.1 Fixed positioning

...... 1319.7 Relationships between ’display’, ’position’, and ’float’

.... 1329.8 Comparison of normal flow, floats, and absolute positioning

.............. 1339.8.1 Normal flow

............ 1349.8.2 Relative positioning

.............. 1359.8.3 Floating a box

............ 1379.8.4 Absolute positioning

............. 1419.9 Layered presentation

..... 1419.9.1 Specifying the stack level: the ’z-index’ property

.... 1449.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

9.1 Introduction to the visual formatting model
This chapter and the next describe the visual formatting model: how user agents
process the document tree [p. 33] for visual media [p. 87] .

15 Sep 2003 14:50107

Visual formatting model

In the visual formatting model, each element in the document tree generates zero
or more boxes according to the box model [p. 91] . The layout of these boxes is
governed by:

box dimensions [p. 91] and type [p. 109] .
positioning scheme [p. 114] (normal flow, float, and absolute positioning).
relationships between elements in the document tree. [p. 33]
external information (e.g., viewport size, intrinsic [p. 32] dimensions of images,
etc.).

The properties defined in this chapter and the next apply to both continuous media
[p. 89] and paged media [p. 89] . However, the meanings of the margin properties
[p. 95] vary when applied to paged media (see the page model [p. 195] for details).

The visual formatting model does not specify all aspects of formatting (e.g., it does
not specify a letter-spacing algorithm). Conforming user agents [p. 34] may behave
differently for those formatting issues not covered by this specification.

9.1.1 The viewport
User agents for continuous media [p. 89] generally offer users a viewport (a window
or other viewing area on the screen) through which users consult a document. User
agents may change the document’s layout when the viewport is resized (see the
initial containing block [p. 149]).

When the viewport is smaller than the area of the canvas on which the document
is rendered, the user agent should offer a scrolling mechanism. There is at most one
viewport per canvas [p. 28] , but user agents may render to more than one canvas
(i.e., provide different views of the same document).

9.1.2 Containing blocks
In CSS 2.1, many box positions and sizes are calculated with respect to the edges of
a rectangular box called a containing block. In general, generated boxes act as
containing blocks for descendant boxes; we say that a box "establishes" the contain-
ing block for its descendants. The phrase "a box’s containing block" means "the
containing block in which the box lives," not the one it generates.

Each box is given a position with respect to its containing block, but it is not
confined by this containing block; it may overflow [p. 169] .

User agents may treat float as ’none’ and/or position as ’static’ on the root
element.

The details [p. 149] of how a containing block’s dimensions are calculated are
described in the next chapter [p. 149] .

10815 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 55

9.2 Controlling box generation
The following sections describe the types of boxes that may be generated in
CSS 2.1. A box’s type affects, in part, its behavior in the visual formatting model. The
’display’ property, described below, specifies a box’s type.

9.2.1 Block-level elements and block boxes
Block-level elements are those elements of the source document that are formatted
visually as blocks (e.g., paragraphs). Several values of the ’display’ property make
an element block-level: ’block’, ’list-item’, and ’run-in’ (part of the time; see run-in
boxes [p. 111]), and ’table’.

Block-level elements generate a principal block box that contains either only block
boxes or only inline boxes [p. 111] . The principal block box establishes the contain-
ing block [p. 108] for descendant boxes and generated content and is also the box
involved in any positioning scheme. Principal block boxes participate in a block
formatting context [p. 117] .

Some block-level elements generate additional boxes outside of the principal box:
’list-item’ elements. These additional boxes are placed with respect to the principal
box.

Anonymous block boxes

In a document like this:

<DIV>
 Some text
 <P>More text
</DIV>

(and assuming the DIV and the P both have ’display: block’), the DIV appears to
have both inline content and block content. To make it easier to define the format-
ting, we assume that there is an anonymous block box around "Some text".

15 Sep 2003 14:50109

Visual formatting model

Some text

More text

DIV box
anonymous box

P box

Diagram showing the three boxes, of which one is anonymous, for the example
above.

In other words: if a block box (such as that generated for the DIV above) has
another block box inside it (such as the P above), then we force it to have only block
boxes inside it, by wrapping any inline boxes in an anonymous block box.

When an inline box contains a block box, the inline box (and its inline ancestors
within the same line box) are broken around the block. The line boxes before the
break and after the break are enclosed in anonymous boxes, and the block box
becomes a sibling of those anonymous boxes.

Example(s):

This model would apply in the following example if the following rules:

body { display: inline }
p { display: block }

were used with this HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HEAD>
<TITLE>Anonymous text interrupted by a block</TITLE>
</HEAD>
<BODY>
This is anonymous text before the P.
<P>This is the content of P.</P>
This is anonymous text after the P.
</BODY>

The BODY element contains a chunk (C1) of anonymous text followed by a
block-level element followed by another chunk (C2) of anonymous text. The resulting
boxes would be an anonymous block box for BODY, containing an anonymous block
box around C1, the P block box, and another anonymous block box around C2.

11015 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 56

The properties of anonymous boxes are inherited from the enclosing non-anony-
mous box (in the example: the one for DIV). Non-inherited properties have their
initial value. For example, the font of the anonymous box is inherited from the DIV,
but the margins will be 0.

Properties set on elements that are turned into anonymous block boxes still apply
to the content of the element. For example, if a border had been set on the BODY
element in the above example, the border would be drawn around C1 and C2.

9.2.2 Inline-level elements and inline boxes
Inline-level elements are those elements of the source document that do not form
new blocks of content; the content is distributed in lines (e.g., emphasized pieces of
text within a paragraph, inline images, etc.). Several values of the ’display’ property
make an element inline: ’inline’, ’inline-table’, and ’run-in’ (part of the time; see run-in
boxes [p. 111]). Inline-level elements generate inline boxes.

Anonymous inline boxes

In a document with HTML markup like this:

<p>Some emphasized text</p>

The <p> generates a block box, with several inline boxes inside it. The box for
"emphasized" is an inline box generated by an inline element (), but the other
boxes ("Some" and "text") are inline boxes generated by a block-level element
(<p>). The latter are called anonymous inline boxes, because they don’t have an
associated inline-level element.

Such anonymous inline boxes inherit inheritable properties from their block parent
box. Non-inherited properties have their initial value. In the example, the color of the
anonymous inline boxes is inherited from the P, but the background is transparent.

Whitespace content that would subsequently be collapsed away according to the
’white-space’ property does not generate any anonymous inline boxes.

If it is clear from the context which type of anonymous box is meant, both anony-
mous inline boxes and anonymous block boxes are simply called anonymous boxes
in this specification.

There are more types of anonymous boxes that arise when formatting tables
[p. 238] .

9.2.3 Run-in boxes
A run-in box behaves as follows:

1. If the run-in box contains a block [p. 109] box, the run-in box becomes a block
box.

2. If a block [p. 109] box (that does not float and is not absolutely positioned
[p. 129]) follows the run-in box, the run-in box becomes the first inline box of the

15 Sep 2003 14:50111

Visual formatting model

block box.
3. Otherwise, the run-in box becomes a block box.

A ’run-in’ box is useful for run-in headers, as in this example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>A run-in box example</TITLE>
 <STYLE type="text/css">
 H3 { display: run-in }
 </STYLE>
 </HEAD>
 <BODY>
 <H3>A run-in heading.</H3>
 <P>And a paragraph of text that
 follows it.
 </BODY>
</HTML>

This example might be formatted as:

A run-in heading. And a
 paragraph of text that
 follows it.

Despite appearing visually part of the following block box, a run-in element still
inherits properties from its parent in the source tree.

Please consult the section on generated content [p. ??] for information about how
run-in boxes interact with generated content.

9.2.4 The ’display’ property

’display’

Value: inline | block | list-item | run-in | inline-block | table |
inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit

Initial: inline
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: see text

The values of this property have the following meanings:

11215 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 57

block
This value causes an element to generate a block box.

inline-block
This value causes an element to generate a block box, which itself is flowed as
a single inline box, similar to a replaced element. The inside of an inline-block is
formatted as a block box, and the element itself is formatted as a replaced
element on the line.

inline
This value causes an element to generate one or more inline boxes.

list-item
This value causes an element (e.g., LI in HTML) to generate a principal block
box and a list-item inline box. For information about lists and examples of list
formatting, please consult the section on lists [p. 188] .

none
This value causes an element to generate no boxes in the formatting structure
[p. 28] (i.e., the element has no effect on layout). Descendant elements do not
generate any boxes either; this behavior cannot be overridden by setting the
’display’ property on the descendants.

Please note that a display of ’none’ does not create an invisible box; it creates
no box at all. CSS includes mechanisms that enable an element to generate
boxes in the formatting structure that affect formatting but are not visible them-
selves. Please consult the section on visibility [p. 174] for details.

run-in
This value creates either block or inline boxes, depending on context. Properties
apply to run-in boxes based on their final status (inline-level or block-level).

table, inline-table, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell, and table-caption

These values cause an element to behave like a table element (subject to
restrictions described in the chapter on tables [p. 235]).

The computed value is the same as the specified value, except for positioned and
floating elements (see Relationships between ’display’, ’position’, and ’float’ [p. 131])
and for the root element. For the root element, the computed value is as follows:
’inline-table’ and ’table’ become ’table’, ’none’ stays ’none’, everything else becomes
’block’.

Note that although the initial value [p. 19] of ’display’ is ’inline’, rules in the user
agent’s default style sheet [p. 82] may override [p. 79] this value. See the sample
style sheet [p. 293] for HTML 4.0 in the appendix.

Example(s):

Here are some examples of the ’display’ property:

p { display: block }
em { display: inline }
li { display: list-item }
img { display: none } /* Don’t display images */

15 Sep 2003 14:50113

Visual formatting model

9.3 Positioning schemes
In CSS 2.1, a box may be laid out according to three positioning schemes:

1. Normal flow [p. 117] . In CSS 2.1, normal flow includes block formatting [p. 117]
of block [p. 109] boxes, inline formatting [p. 118] of inline [p. 111] boxes, relative
positioning [p. 120] of block or inline boxes, and positioning of run-in [p. 111]
boxes.

2. Floats [p. 121] . In the float model, a box is first laid out according to the normal
flow, then taken out of the flow and shifted to the left or right as far as possible.
Content may flow along the side of a float.

3. Absolute positioning [p. 129] . In the absolute positioning model, a box is
removed from the normal flow entirely (it has no impact on later siblings) and
assigned a position with respect to a containing block.

Note. CSS 2.1’s positioning schemes help authors make their documents more
accessible by allowing them to avoid mark-up tricks (e.g., invisible images) used for
layout effects.

9.3.1 Choosing a positioning scheme: ’position’ property
The ’position’ and ’float’ properties determine which of the CSS 2.1 positioning algo-
rithms is used to calculate the position of a box.

’position’

Value: static | relative | absolute | fixed | inherit
Initial: static
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The values of this property have the following meanings:

static
The box is a normal box, laid out according to the normal flow [p. 117] . The
’top’, ’right’, ’bottom’, and ’left’ properties do not apply.

relative
The box’s position is calculated according to the normal flow [p. 117] (this is
called the position in normal flow). Then the box is offset relative [p. 120] to its
normal position. When a box B is relatively positioned, the position of the follow-
ing box is calculated as though B were not offset.

absolute
The box’s position (and possibly size) is specified with the ’top’, ’right’, ’bottom’,
and ’left’ properties. These properties specify offsets with respect to the box’s

11415 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 58

containing block [p. 108] . Absolutely positioned boxes are taken out of the
normal flow. This means they have no impact on the layout of later siblings.
Also, though absolutely positioned [p. 129] boxes have margins, they do not
collapse [p. 97] with any other margins.

fixed
The box’s position is calculated according to the ’absolute’ model, but in addi-
tion, the box is fixed [p. 129] with respect to some reference. As with the ’abso-
lute’ model, the box’s margins do not collapse with any other margins. In the
case of handheld, projection, screen, tty, and tv media types, the box is fixed
with respect to the viewport [p. 108] and doesn’t move when scrolled. In the
case of the print media type, the box is fixed with respect to the page, even if
that page is seen through a viewport [p. 108] (in the case of a print-preview, for
example). For other media types, the presentation is undefined. Authors may
wish to specify ’fixed’ in a media-dependent way. For instance, an author may
want a box to remain at the top of the viewport [p. 108] on the screen, but not at
the top of each printed page. The two specifications may be separated by using
an @media rule [p. 88] , as in:

Example(s):

@media screen {
 h1#first { position: fixed }
}
@media print {
 h1#first { position: static }
}

9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
An element is said to be positioned if its ’position’ property has a value other than
’static’. Positioned elements generate positioned boxes, laid out according to four
properties:

’top’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 120]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a percent-
age, the specified value; otherwise, ’auto’.

15 Sep 2003 14:50115

Visual formatting model

This property specifies how far an absolutely positioned [p. 129] box’s top margin
edge is offset below the top edge of the box’s containing block [p. 108] . For rela-
tively positioned boxes, the offset is with respect to the top edges of the box itself
(i.e., the box is given a position in the normal flow, then offset from that position
according to these properties). Note: For absolutely positioned elements whose
containing block is based on a block-level element, this property is an offset from the
padding edge of that element.

’right’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 120]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a percent-
age, the specified value; otherwise, ’auto’.

Like ’top’, but specifies how far a box’s right margin edge is offset to the left of the
right edge of the box’s containing block [p. 108] . For relatively positioned boxes, the
offset is with respect to the right edge of the box itself. Note: For absolutely posi-
tioned elements whose containing block is based on a block-level element, this prop-
erty is an offset from the padding edge of that element.

’bottom’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 120]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a percent-
age, the specified value; otherwise, ’auto’.

Like ’top’, but specifies how far a box’s bottom margin edge is offset above the
bottom of the box’s containing block [p. 108] . For relatively positioned boxes, the
offset is with respect to the bottom edge of the box itself. Note: For absolutely posi-
tioned elements whose containing block is based on a block-level element, this prop-
erty is an offset from the padding edge of that element.

11615 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 59

’left’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 120]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a percent-
age, the specified value; otherwise, ’auto’.

Like ’top’, but specifies how far a box’s left margin edge is offset to the right of the
left edge of the box’s containing block [p. 108] . For relatively positioned boxes, the
offset is with respect to the left edge of the box itself. Note: For absolutely positioned
elements whose containing block is based on a block-level element, this property is
an offset from the padding edge of that element.

The values for the four properties have the following meanings:

<length>
The offset is a fixed distance from the reference edge. Negative values are
allowed.

<percentage>
The offset is a percentage of the containing block’s box width (for ’left’ or ’right’)
or height (for ’top’ and ’bottom’). For ’top’ and ’bottom’, if the height of the
containing block is not specified explicitly (i.e., it depends on content height), the
percentage value is interpreted like ’auto’. Negative values are allowed.

auto
The effect of this value depends on which of related properties have the value
’auto’ as well. See the sections on the width [p. 154] and height [p. 161] of abso-
lutely positioned [p. 129] , non-replaced elements for details.

9.4 Normal flow
Boxes in the normal flow belong to a formatting context, which may be block or
inline, but not both simultaneously. Block [p. 109] boxes participate in a block format-
ting [p. 117] context. Inline boxes [p. 111] participate in an inline formatting [p. 118]
context.

9.4.1 Block formatting context
Floats, absolutely positioned elements, inline-blocks, table-cells, and elements with
’overflow’ other than ’visible’ establish new block formatting contexts.

15 Sep 2003 14:50117

Visual formatting model

In a block formatting context, boxes are laid out one after the other, vertically,
beginning at the top of a containing block. The vertical distance between two sibling
boxes is determined by the ’margin’ properties. Vertical margins between adjacent
block boxes in a block formatting context collapse [p. 97] .

In a block formatting context, each box’s left outer edge touches the left edge of
the containing block (for right-to-left formatting, right edges touch). This is true even
in the presence of floats (although a box’s line boxes may shrink due to the floats).

For information about page breaks in paged media, please consult the section on
allowed page breaks [p. 201] .

9.4.2 Inline formatting context
In an inline formatting context, boxes are laid out horizontally, one after the other,
beginning at the top of a containing block. Horizontal margins, borders, and padding
are respected between these boxes. The boxes may be aligned vertically in different
ways: their bottoms or tops may be aligned, or the baselines of text within them may
be aligned. The rectangular area that contains the boxes that form a line is called a
line box.

The width of a line box is determined by a containing block [p. 108] and the pres-
ence of floats. The height of a line box is determined by the rules given in the section
on line height calculations [p. 164] .

A line box is always tall enough for all of the boxes it contains. However, it may be
taller than the tallest box it contains (if, for example, boxes are aligned so that base-
lines line up). When the height of a box B is less than the height of the line box
containing it, the vertical alignment of B within the line box is determined by the
’vertical-align’ property. When several inline boxes cannot fit horizontally within a
single line box, they are distributed among two or more vertically-stacked line boxes.
Thus, a paragraph is a vertical stack of line boxes. Line boxes are stacked with no
vertical separation and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block
and the right edge touches the right edge of its containing block. However, floating
boxes may come between the containing block edge and the line box edge. Thus,
although line boxes in the same inline formatting context generally have the same
width (that of the containing block), they may vary in width if available horizontal
space is reduced due to floats [p. 121] . Line boxes in the same inline formatting
context generally vary in height (e.g., one line might contain a tall image while the
others contain only text).

When the total width of the inline boxes on a line is less than the width of the line
box containing them, their horizontal distribution within the line box is determined by
the ’text-align’ property. If that property has the value ’justify’, the user agent may
stretch the inline boxes as well.

11815 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 60

When an inline box exceeds the width of a line box, it is split into several boxes
and these boxes are distributed across several line boxes. If an inline box cannot be
split (e.g. if the inline box contains a single character, or language specific word
breaking rules disallow a break within the inline box, or if the inline box is affected by
a white-space value of nowrap or pre), then the inline box overflows the line box.

When an inline box is split, margins, borders, and padding have no visual effect
where the split occurs (or at any split, when there are several).

Inline boxes may also be split into several boxes within the same line box due to
bidirectional text processing [p. 144] .

Here is an example of inline box construction. The following paragraph (created by
the HTML block-level element P) contains anonymous text interspersed with the
elements EM and STRONG:

<P>Several emphasized words appear
in this sentence, dear.</P>

The P element generates a block box that contains five inline boxes, three of
which are anonymous:

Anonymous: "Several"
EM: "emphasized words"
Anonymous: "appear"
STRONG: "in this"
Anonymous: "sentence, dear."

To format the paragraph, the user agent flows the five boxes into line boxes. In
this example, the box generated for the P element establishes the containing block
for the line boxes. If the containing block is sufficiently wide, all the inline boxes will
fit into a single line box:

 Several emphasized words appear in this sentence, dear.

If not, the inline boxes will be split up and distributed across several line boxes.
The previous paragraph might be split as follows:

Several emphasized words appear
in this sentence, dear.

or like this:

Several emphasized
words appear in this
sentence, dear.

In the previous example, the EM box was split into two EM boxes (call them
"split1" and "split2"). Margins, borders, padding, or text decorations have no visible
effect after split1 or before split2.

15 Sep 2003 14:50119

Visual formatting model

Consider the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Example of inline flow on several lines</TITLE>
 <STYLE type="text/css">
 EM {
 padding: 2px;
 margin: 1em;
 border-width: medium;
 border-style: dashed;
 line-height: 2.4em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>Several emphasized words appear here.</P>
 </BODY>
</HTML>

Depending on the width of the P, the boxes may be distributed as follows:

Several emphasized

words appear here.

Width of paragraph

Line height 2.4em

The margin is inserted before "emphasized" and after "words".
The padding is inserted before, above, and below "emphasized" and after,
above, and below "words". A dashed border is rendered on three sides in each
case.

9.4.3 Relative positioning
Once a box has been laid out according to the normal flow [p. 117] or floated, it may
be shifted relative to this position. This is called relative positioning. Offsetting a box
(B1) in this way has no effect on the box (B2) that follows: B2 is given a position as if
B1 were not offset and B2 is not re-positioned after B1’s offset is applied. This
implies that relative positioning may cause boxes to overlap.

A relatively positioned box keeps its normal flow size, including line breaks and the
space originally reserved for it. The section on containing blocks [p. 108] explains
when a relatively positioned box establishes a new containing block.

For relatively positioned elements, ’left’ and ’right’ move the box(es) horizontally,
without changing their size. ’left’ moves the boxes to the right, and ’right’ moves
them to the left. Since boxes are not split or stretched as a result of ’left’ or ’right’, the
computed values are always: left = -right.

12015 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 61

If both ’left’ and ’right’ are ’auto’ (their initial values), the computed values are ’0’
(i.e., the boxes stay in their original position).

If ’left’ is ’auto’, its computed value is minus the value of ’right’ (i.e., the boxes
move to the left by the value of ’right’).

If ’right’ is specified as ’auto’, its computed value is minus the value of ’left’.

If neither ’left’ nor ’right’ is ’auto’, the position is over-constrained, and one of them
has to be ignored. If the ’direction’ property is ’ltr’, the value of ’left’ wins and ’right’
becomes -’left’. If ’direction’ is ’rtl’, ’right’ wins and ’left’ is ignored.

Example(s):

Example. The following three rules are equivalent:

div.a8 { position: relative; direction: ltr; left: -1em; right: auto }
div.a8 { position: relative; direction: ltr; left: auto; right: 1em }
div.a8 { position: relative; direction: ltr; left: -1em; right: 5em }

The ’top’ and ’bottom’ properties move relatively positioned element(s) up or down
without changing their size. ’top’ moves the boxes down, and ’bottom’ moves them
up. Since boxes are not split or stretched as a result of ’top’ or ’bottom’, the
computed values are always: top = -bottom. If both are ’auto’, their computed values
are both ’0’. If one of them is ’auto’, it becomes the negative of the other. If neither is
’auto’, ’bottom’ is ignored (i.e., the computed value of ’bottom’ will be minus the value
of ’top’).

Dynamic movement of relatively positioned boxes can produce animation effects
in scripting environments (see also the ’visibility’ property). Relative positioning may
also be used as a general form of superscripting and subscripting except that line
height is not automatically adjusted to take the positioning into consideration. See
the description of line height calculations [p. 164] for more information.

Examples of relative positioning are provided in the section comparing normal
flow, floats, and absolute positioning [p. 132] .

9.5 Floats
A float is a box that is shifted to the left or right on the current line. The most interest-
ing characteristic of a float (or "floated" or "floating" box) is that content may flow
along its side (or be prohibited from doing so by the ’clear’ property). Content flows
down the right side of a left-floated box and down the left side of a right-floated box.
The following is an introduction to float positioning and content flow; the exact rules
[p. 127] governing float behavior are given in the description of the ’float’ property.

A floated box is shifted to the left or right until its outer edge touches the contain-
ing block edge or the outer edge of another float. The top of the floated box is
aligned with the top of the current line box (or bottom of the preceding block box if no
line box exists).

15 Sep 2003 14:50121

Visual formatting model

If there isn’t enough horizontal room for the float, it is shifted downward until either
it fits or there are no more floats present.

Since a float is not in the flow, non-positioned block boxes created before and
after the float box flow vertically as if the float didn’t exist. However, line boxes
created next to the float are shortened to make room for the floated box. If a short-
ened line box is too small to contain any further content, then it is shifted downward
until either it fits or there are no more floats present. Any content in the current line
before a floated box is reflowed in the first available line on the other side of the float.
In other words, if inline boxes are placed on the line before a left float is encountered
that fits in the remaining line box space, the left float is placed on that line, aligned
with the top of the line box, and then the inline boxes already on the line are moved
accordingly to the right of the float (the right being the other side of the left float) and
vice versa for rtl and right floats.

The margin box of an element in the normal flow that establishes a new block
formatting context (such as a table, or element with ’overflow’ other than ’visible’)
must not overlap any floats in the same block formatting context as the element
itself. If necessary, implementations should clear the said element by placing it
below any preceding floats, but may place it adjacent to such floats if there is suffi-
cient space.

Example(s):

Example. In the following document fragment, the containing block is too short to
contain the content, so the content gets moved to below the floats where it is aligned
in the line box according to the text-align property.

p { width: 10em; border: solid aqua; }
span { float: left; width: 5em; height: 5em; border: solid blue; }

...

<p>

 Supercalifragilisticexpialidocious
</p>

This fragment might look like this:

12215 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 62

Several floats may be adjacent, and this model also applies to adjacent floats in
the same line.

Example(s):

The following rule floats all IMG boxes with class="icon" to the left (and sets
the left margin to ’0’):

img.icon {
 float: left;
 margin-left: 0;
}

Consider the following HTML source and style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Float example</TITLE>
 <STYLE type="text/css">
 IMG { float: left }
 BODY, P, IMG { margin: 2em }
 </STYLE>
 </HEAD>
 <BODY>
 <P>
 Some sample text that has no other...
 </BODY>
</HTML>

The IMG box is floated to the left. The content that follows is formatted to the right
of the float, starting on the same line as the float. The line boxes to the right of the
float are shortened due to the float’s presence, but resume their "normal" width (that
of the containing block established by the P element) after the float. This document
might be formatted as:

15 Sep 2003 14:50123

Visual formatting model

IMG

Some sample text
that has no other
purpose than to
show how floating
elements are moved
to the side of the
parent element
while honoring
margins, borders,
and padding. Note

how adjacent vertical margins are collapsed
between non−floating block−level elements.

IMG margins

P margins

max (BODY margin, P margin)B
O
D
Y

m
a
r
g
i
n

Formatting would have been exactly the same if the document had been:

<BODY>
 <P>Some sample text

 that has no other...
</BODY>

because the content to the left of the float is displaced by the float and reflowed
down its right side.

As stated in section 8.3.1 [p. 97] , the margins of floating boxes never collapse
[p. 97] with margins of adjacent boxes. Thus, in the previous example, vertical
margins do not collapse [p. 97] between the P box and the floated IMG box.

The contents of floats are stacked as if floats generated new stacking contexts,
except that any elements that actually create new stacking contexts take part in the
float’s parent’s stacking context. A float can overlap other boxes in the normal flow
(e.g., when a normal flow box next to a float has negative margins). When this
happens, floats are rendered in front of non-positioned in-flow blocks, but behind
in-flow inlines.

Example(s):

Here is another illustration, showing what happens when a float overlaps borders
of elements in the normal flow.

12415 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 63

Some sample text in the first paragraph. It has a floating

image that was right about here (X) in the

source. However, the image is so large that

it extends below the text of this paragraph.

The second paragraph is therefore also

affected. Any inline boxes in it are "pushed

aside," as they are forbidden from coming

inside the area delimited by the floating image’s margins.

Note that the paragraph boxes are still rectangular, but

their borders and backgrounds are "clipped" or interrupted

by the floating image.

paragraph marginimage margin

paragraph border

paragraph padding

A floating image obscures borders of block boxes it overlaps.

The following example illustrates the use of the ’clear’ property to prevent content
from flowing next to a float.

Example(s):

Assuming a rule such as this:

p { clear: left }

formatting might look like this:

15 Sep 2003 14:50125

Visual formatting model

Some sample text in the first paragraph. It has a floating

image that was right about here (X) in the

source. However, the image is so large that

it extends below the text of this paragraph.

paragraph marginimage margin

paragraph border

paragraph padding

This paragraph has its ’clear’ propery set to ’left,’ so

that it will be forced to be below any left−floating images.

This is done by increasing its top margin.

Both paragraphs have set ’clear: left’, which causes the second paragraph to be
"pushed down" to a position below the float — its top margin expands to accomplish
this (see the ’clear’ property).

9.5.1 Positioning the float: the ’float’ property

’float’

Value: left | right | none | inherit
Initial: none
Applies to: all, but see 9.7 [p. 131]
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies whether a box should float to the left, right, or not at all. It
may be set for elements that generate boxes that are not absolutely positioned
[p. 129] . The values of this property have the following meanings:

left
The element generates a block [p. 109] box that is floated to the left. Content
flows on the right side of the box, starting at the top (subject to the ’clear’ prop-
erty).

12615 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 64

right
Same as ’left’, but content flows on the left side of the box, starting at the top.

none
The box is not floated.

Here are the precise rules that govern the behavior of floats:

1. The left outer edge [p. 92] of a left-floating box may not be to the left of the left
edge of its containing block [p. 108] . An analogous rule holds for right-floating
elements.

2. If the current box is left-floating, and there are any left-floating boxes generated
by elements earlier in the source document, then for each such earlier box,
either the left outer edge [p. 92] of the current box must be to the right of the
right outer edge [p. 92] of the earlier box, or its top must be lower than the
bottom of the earlier box. Analogous rules hold for right-floating boxes.

3. The right outer edge [p. 92] of a left-floating box may not be to the right of the
left outer edge [p. 92] of any right-floating box that is to the right of it. Analogous
rules hold for right-floating elements.

4. A floating box’s outer top [p. 92] may not be higher than the top of its containing
block [p. 108] .

5. The outer top [p. 92] of a floating box may not be higher than the outer top of
any block [p. 109] or floated [p. 121] box generated by an element earlier in the
source document.

6. The outer top [p. 92] of an element’s floating box may not be higher than the top
of any line-box [p. 118] containing a box generated by an element earlier in the
source document.

7. A left-floating box that has another left-floating box to its left may not have its
right outer edge to the right of its containing block’s right edge. (Loosely: a left
float may not stick out at the right edge, unless it is already as far to the left as
possible.) An analogous rule holds for right-floating elements.

8. A floating box must be placed as high as possible.
9. A left-floating box must be put as far to the left as possible, a right-floating box

as far to the right as possible. A higher position is preferred over one that is
further to the left/right.

When the rules above do not result in an exact vertical position, as may be the
case when the float occurs between two collapsing margins, the float is positioned
as if it had an otherwise empty anonymous block parent [p. 109] taking part in the
flow. The position of such a parent is defined by the rules [p. 97] in the section on
margin collapsing.

References to other elements in these rules refer only to other elements in the
same block formatting context [p. 117] as the float..

15 Sep 2003 14:50127

Visual formatting model

9.5.2 Controlling flow next to floats: the ’clear’ property

’clear’

Value: none | left | right | both | inherit
Initial: none
Applies to: block-level elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property indicates which sides of an element’s box(es) may not be adjacent
to an earlier floating box. The ’clear’ property does not consider floats inside the
element itself or in other block formatting contexts.

For run-in boxes [p. 111] , this property applies to the final block box to which the
run-in box belongs.

The clearance dimension is introduced as a dimension above the margin-top of an
element that is used to push the element vertically (typically downward).

Values have the following meanings when applied to non-floating block boxes:

left
The clearance of the generated box is set to the amount necessary to place the
top border edge is below the bottom outer edge of any left-floating boxes that
resulted from elements earlier in the source document.

right
The clearance of the generated box is set to the amount necessary to place the
top border edge is below the bottom outer edge of any right-floating boxes that
resulted from elements earlier in the source document.

both
The clearance of the generated box is set to the amount necessary to place the
top border edge is below the bottom outer edge of any right-floating and
left-floating boxes that resulted from elements earlier in the source document.

none
No constraint on the box’s position with respect to floats.

Computing the clearance of an element on which ’clear’ is set is done by first
determining the hypothetical position of the element’s top border edge within its
parent block. This position is determined after the top margin of the element has
been collapsed with previous adjacent margins (including the top margin of the
parent block).

If the element’s top border edge has not passed the relevant floats, then its clear-
ance is set to the amount necessary to place the border edge of the block even with
the bottom outer edge of the lowest float that must be cleared.

12815 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 65

When the property is set on floating elements, it results in a modification of the
rules [p. 127] for positioning the float. An extra constraint (#10) is added:

The top outer edge [p. 92] of the float must be below the bottom outer edge of
all earlier left-floating boxes (in the case of ’clear: left’), or all earlier right-floating
boxes (in the case of ’clear: right’), or both (’clear: both’).

Note. This property applied to all elements in CSS1 [p. ??] . Implementations may
therefore have supported this property on all elements. In CSS2 and CSS 2.1 the
’clear’ property only applies to block-level elements. Therefore authors should only
use this property on block-level elements. If an implementation does support clear
on inline elements, rather than setting a clearance as explained above, the imple-
mentation should force a break and effectively insert one or more empty line boxes
(or shifting the new line box downward as described in section 9.5 [p. 121]) to move
the top of the cleared inline’s line box to below the respective floating box(es).

Example:

span { clear: left }

9.6 Absolute positioning
In the absolute positioning model, a box is explicitly offset with respect to its contain-
ing block. It is removed from the normal flow entirely (it has no impact on later
siblings). An absolutely positioned box establishes a new containing block for normal
flow children and absolutely (but not fixed) positioned descendants. However, the
contents of an absolutely positioned element do not flow around any other boxes.
They may obscure the contents of another box (or be obscured themselves),
depending on the stack levels [p. 142] of the overlapping boxes.

References in this specification to an absolutely positioned element (or its box)
imply that the element’s ’position’ property has the value ’absolute’ or ’fixed’.

9.6.1 Fixed positioning
Fixed positioning is a subcategory of absolute positioning. The only difference is that
for a fixed positioned box, the containing block is established by the viewport [p. 108]
. For continuous media [p. 89] , fixed boxes do not move when the document is
scrolled. In this respect, they are similar to fixed background images [p. 206] . For
paged media [p. 195] , boxes with fixed positions are repeated on every page. This
is useful for placing, for instance, a signature at the bottom of each page.

Authors may use fixed positioning to create frame-like presentations. Consider the
following frame layout:

15 Sep 2003 14:50129

Visual formatting model

100%

15%

100px

10em

header

main

s
i
d
e
b
a
r

footer

"the rest"

This might be achieved with the following HTML document and style rules:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>A frame document with CSS 2.1</TITLE>
 <STYLE type="text/css">
 BODY { height: 8.5in } /* Required for percentage heights below */
 #header {
 position: fixed;
 width: 100%;
 height: 15%;
 top: 0;
 right: 0;
 bottom: auto;
 left: 0;
 }
 #sidebar {
 position: fixed;
 width: 10em;
 height: auto;
 top: 15%;
 right: auto;
 bottom: 100px;
 left: 0;
 }
 #main {
 position: fixed;
 width: auto;
 height: auto;
 top: 15%;

13015 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 66

 right: 0;
 bottom: 100px;
 left: 10em;
 }
 #footer {
 position: fixed;
 width: 100%;
 height: 100px;
 top: auto;
 right: 0;
 bottom: 0;
 left: 0;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <DIV id="header"> ... </DIV>
 <DIV id="sidebar"> ... </DIV>
 <DIV id="main"> ... </DIV>
 <DIV id="footer"> ... </DIV>
 </BODY>
</HTML>

9.7 Relationships between ’display’, ’position’, and
’float’
The three properties that affect box generation and layout — ’display’, ’position’, and
’float’ — interact as follows:

1. If ’display’ has the value ’none’, then ’position’ and ’float’ do not apply. In this
case, the element generates no box.

2. Otherwise, if ’position’ has the value ’absolute’ or ’fixed’, the box is absolutely
positioned, the computed value of ’float’ is ’none’, and display is set according to
this table:

Specified value
Computed

value

inline-table table

inline, run-in, table-row-group, table-column,
table-column-group, table-header-group, table-footer-group,
table-row, table-cell, table-caption, inline-block

block

others
same as
specified

The position of the box will be determined by the ’top’, ’right’, ’bottom’ and
’left’ properties and the box’s containing block.

15 Sep 2003 14:50131

Visual formatting model

3. Otherwise, if ’float’ has a value other than ’none’, the box is floated and ’display’
is set according to this table:

Specified value
Computed

value

inline-table table

inline, run-in, table-row-group, table-column,
table-column-group, table-header-group, table-footer-group,
table-row, table-cell, table-caption, inline-block

block

others
same as
specified

4. Otherwise, the remaining ’display’ property values apply as specified.

9.8 Comparison of normal flow, floats, and absolute
positioning
To illustrate the differences between normal flow, relative positioning, floats, and
absolute positioning, we provide a series of examples based on the following HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 End of outer contents.
 End of body contents.
 </P>
 </BODY>
</HTML>

In this document, we assume the following rules:

body { display: block; font-size:12px; line-height: 200%;
 width: 400px; height: 400px }
p { display: block }
span { display: inline }

The final positions of boxes generated by the outer and inner elements vary in
each example. In each illustration, the numbers to the left of the illustration indicate
the normal flow [p. 117] position of the double-spaced (for clarity) lines.

13215 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 67

Note. The diagrams in this section are illustrative and not to scale. They are meant
to highlight the differences between the various positioning schemes in CSS 2.1, and
are not intended to be reference renderings of the examples given.

9.8.1 Normal flow
Consider the following CSS declarations for outer and inner that don’t alter the
normal flow [p. 117] of boxes:

#outer { color: red }
#inner { color: blue }

The P element contains all inline content: anonymous inline text [p. 111] and two
SPAN elements. Therefore, all of the content will be laid out in an inline formatting
context, within a containing block established by the P element, producing some-
thing like:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents. Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

15 Sep 2003 14:50133

Visual formatting model

9.8.2 Relative positioning
To see the effect of relative positioning [p. 120] , we specify:

#outer { position: relative; top: -12px; color: red }
#inner { position: relative; top: 12px; color: blue }

Text flows normally up to the outer element. The outer text is then flowed into its
normal flow position and dimensions at the end of line 1. Then, the inline boxes
containing the text (distributed over three lines) are shifted as a unit by ’-12px’
(upwards).

The contents of inner, as a child of outer, would normally flow immediately after
the words "of outer contents" (on line 1.5). However, the inner contents are them-
selves offset relative to the outer contents by ’12px’ (downwards), back to their origi-
nal position on line 2.

Note that the content following outer is not affected by the relative positioning of
outer.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents.
Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

= −12px

= +12px

Note also that had the offset of outer been ’-24px’, the text of outer and the body
text would have overlapped.

13415 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 68

9.8.3 Floating a box
Now consider the effect of floating [p. 121] the inner element’s text to the right by
means of the following rules:

#outer { color: red }
#inner { float: right; width: 130px; color: blue }

Text flows normally up to the inner box, which is pulled out of the flow and floated
to the right margin (its ’width’ has been assigned explicitly). Line boxes to the left of
the float are shortened, and the document’s remaining text flows into them.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

of outer contents.

of outer contents. End

End

of body contents.

Inner

contents.

width= 130 px

To show the effect of the ’clear’ property, we add a sibling element to the example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes II</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 Sibling contents.
 End of outer contents.

15 Sep 2003 14:50135

Visual formatting model

 End of body contents.
 </P>
 </BODY>
</HTML>

The following rules:

#inner { float: right; width: 130px; color: blue }
#sibling { color: red }

cause the inner box to float to the right as before and the document’s remaining
text to flow into the vacated space:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

Inner

contents.

width= 130 px

of outer contents.

of outer contents. End

of body contents.

Sibling contents. End

However, if the ’clear’ property on the sibling element is set to ’right’ (i.e., the
generated sibling box will not accept a position next to floating boxes to its right), the
sibling content begins to flow below the float:

#inner { float: right; width: 130px; color: blue }
#sibling { clear: right; color: red }

13615 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 69

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

Inner

contents.

width= 130 px

of outer contents.

contents. End of body contents.

Sibling contents. End of outer

9.8.4 Absolute positioning
Finally, we consider the effect of absolute positioning [p. 129] . Consider the follow-
ing CSS declarations for outer and inner:

#outer {
 position: absolute;
 top: 200px; left: 200px;
 width: 200px;
 color: red;
}
#inner { color: blue }

which cause the top of the outer box to be positioned with respect to its containing
block. The containing block for a positioned box is established by the nearest posi-
tioned ancestor (or, if none exists, the initial containing block [p. 149] , as in our
example). The top side of the outer box is ’200px’ below the top of the containing
block and the left side is ’200px’ from the left side. The child box of outer is flowed
normally with respect to its parent.

15 Sep 2003 14:50137

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

24 px

Beginning of body contents. End of

body contents.

(200, 200)

Start of outer

contents. Inner

contents. End of

outer contents.

The following example shows an absolutely positioned box that is a child of a rela-
tively positioned box. Although the parent outer box is not actually offset, setting its
’position’ property to ’relative’ means that its box may serve as the containing block
for positioned descendants. Since the outer box is an inline box that is split across
several lines, the first inline box’s top and left edges (depicted by thick dashed lines
in the illustration below) serve as references for ’top’ and ’left’ offsets.

#outer {
 position: relative;
 color: red
}
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

This results in something like the following:

13815 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 70

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

@

(@+200, @−100)

Inner

Contents.

= 130 px

If we do not position the outer box:

#outer { color: red }
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

the containing block for inner becomes the initial containing block [p. 149] (in our
example). The following illustration shows where the inner box would end up in this
case.

15 Sep 2003 14:50139

Visual formatting model

1

2

3

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

nts.

Inner

Conte

(−130, 200)

Relative and absolute positioning may be used to implement change bars, as
shown in the following example. The following fragment:

<P style="position: relative; margin-right: 10px; left: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
--
word.</P>

might result in something like:

14015 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 71

Document Window

I used two red hyphens to serve

as a change bar. They will "float"

to the left of the line containing

THIS word.−−

First, the paragraph (whose containing block sides are shown in the illustration) is
flowed normally. Then it is offset ’10px’ from the left edge of the containing block
(thus, a right margin of ’10px’ has been reserved in anticipation of the offset). The
two hyphens acting as change bars are taken out of the flow and positioned at the
current line (due to ’top: auto’), ’-1em’ from the left edge of its containing block
(established by the P in its final position). The result is that the change bars seem to
"float" to the left of the current line.

9.9 Layered presentation

9.9.1 Specifying the stack level: the ’z-index’ property

’z-index’

Value: auto | <integer> | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

For a positioned box, the ’z-index’ property specifies:

1. The stack level of the box in the current stacking context.
2. Whether the box establishes a local stacking context.

15 Sep 2003 14:50141

Visual formatting model

Values have the following meanings:

<integer>
This integer is the stack level of the generated box in the current stacking
context. The box also establishes a local stacking context in which its stack level
is ’0’.

auto
The stack level of the generated box in the current stacking context is the same
as its parent’s box. The box does not establish a new local stacking context.

In this section, the expression "in front of" means closer to the user as the user
faces the screen.

In CSS 2.1, each box has a position in three dimensions. In addition to their hori-
zontal and vertical positions, boxes lie along a "z-axis" and are formatted one on top
of the other. Z-axis positions are particularly relevant when boxes overlap visually.
This section discusses how boxes may be positioned along the z-axis.

The order in which the rendering tree is painted onto the canvas is described in
terms of stacking contexts. Stacking contexts can contain further stacking contexts.
A stacking context is atomic from the point of view of its parent stacking context;
boxes in other stacking contexts may not come between any of its boxes.

Each box belongs to one stacking context. Each box in a given stacking context
has an integer stack level, which is its position on the z-axis relative to other boxes in
the same stacking context. Boxes with greater stack levels are always formatted in
front of boxes with lower stack levels. Boxes may have negative stack levels. Boxes
with the same stack level in a stacking context are stacked bottom-to-top according
to document tree order.

The root element forms the root stacking context. Other stacking contexts are
generated by any positioned element (including relatively positioned elements)
having a computed value of ’z-index’ other than ’auto’. Stacking contexts are not
necessarily related to containing blocks. In future levels of CSS, other properties
may introduce stacking contexts, for example ’opacity [p. ??] ’.

Each stacking context consists of the following stacking levels (from back to front):

1. the background and borders of the element forming the stacking context.
2. the stacking contexts of descendants with negative stack levels.
3. a stacking level containing in-flow non-inline-level descendants.
4. a stacking level for floats and their contents.
5. a stacking level for in-flow inline-level descendants.
6. a stacking level for positioned descendants with ’z-index: auto’, and any descen-

dant stacking contexts with ’z-index: 0’.
7. the stacking contexts of descendants with positive stack levels.

14215 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 72

The contents of inline blocks and inline tables are stacked as if they generated
new stacking contexts, except that any elements that actually create new stacking
contexts take part in the parent stacking context. They are then painted atomically in
the inline stacking level.

In the following example, the stack levels of the boxes (named with their "id"
attributes) are: "text2"=0, "image"=1, "text3"=2, and "text1"=3. The "text2" stack level
is inherited from the root box. The others are specified with the ’z-index’ property.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Z-order positioning</TITLE>
 <STYLE type="text/css">
 .pile {
 position: absolute;
 left: 2in;
 top: 2in;
 width: 3in;
 height: 3in;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>
 <IMG id="image" class="pile"
 src="butterfly.png" alt="A butterfly image"
 style="z-index: 1">

 <DIV id="text1" class="pile"
 style="z-index: 3">
 This text will overlay the butterfly image.
 </DIV>

 <DIV id="text2">
 This text will be beneath everything.
 </DIV>

 <DIV id="text3" class="pile"
 style="z-index: 2">
 This text will underlay text1, but overlay the butterfly image
 </DIV>
 </BODY>
</HTML>

This example demonstrates the notion of transparency. The default behavior of a
box is to allow boxes behind it to be visible through transparent areas in its content.
In the example, each box transparently overlays the boxes below it. This behavior
can be overridden by using one of the existing background properties [p. 206] .

15 Sep 2003 14:50143

Visual formatting model

9.10 Text direction: the ’direction’ and ’unicode-bidi’
properties
Conforming [p. 34] user agents that do not support bidirectional text may ignore the
’direction’ and ’unicode-bidi’ properties described in this section.

The characters in certain scripts are written from right to left. In some documents,
in particular those written with the Arabic or Hebrew script, and in some
mixed-language contexts, text in a single (visually displayed) block may appear with
mixed directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], section 3.11) defines a complex algorithm for
determining the proper directionality of text. The algorithm consists of an implicit part
based on character properties, as well as explicit controls for embeddings and over-
rides. CSS 2.1 relies on this algorithm to achieve proper bidirectional rendering. The
’direction’ and ’unicode-bidi’ properties allow authors to specify how the elements
and attributes of a document language map to this algorithm.

If a document contains right-to-left characters, and if the user agent displays these
characters in right-to-left order, the user agent must apply the bidirectional algorithm.
(UAs that render right-to-left characters simply because a font on the system
contains them but do not support the concept of right-to-left text direction are exempt
from this requirement.) This seemingly one-sided requirement reflects the fact that,
although not every Hebrew or Arabic document contains mixed-directionality text,
such documents are much more likely to contain left-to-right text (e.g., numbers, text
from other languages) than are documents written in left-to-right languages.

Because the directionality of a text depends on the structure and semantics of the
document language, these properties should in most cases be used only by design-
ers of document type descriptions (DTDs), or authors of special documents. If a
default style sheet specifies these properties, authors and users should not specify
rules to override them.

The HTML 4.0 specification ([HTML40], section 8.2) defines bidirectionality behav-
ior for HTML elements. The style sheet rules that would achieve the bidi behavior
specified in [HTML40] are given in the sample style sheet [p. 294] . The HTML 4.0
specification also contains more information on bidirectionality issues.

’direction’

Value: ltr | rtl | inherit
Initial: ltr
Applies to: all elements, but see prose
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

14415 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 73

This property specifies the base writing direction of blocks and the direction of
embeddings and overrides (see ’unicode-bidi’) for the Unicode bidirectional algo-
rithm. In addition, it specifies the direction of table [p. 235] column layout, the direc-
tion of horizontal overflow [p. 169] , and the position of an incomplete last line in a
block in case of ’text-align: justify’.

Values for this property have the following meanings:

ltr
Left-to-right direction.

rtl
Right-to-left direction.

For the ’direction’ property to have any effect on inline-level elements, the
’unicode-bidi’ property’s value must be ’embed’ or ’override’.

Note. The ’direction’ property, when specified for table column elements, is not
inherited by cells in the column since columns are not the ancestors of the cells in
the document tree. Thus, CSS cannot easily capture the "dir" attribute inheritance
rules described in [HTML40], section 11.3.2.1.

’unicode-bidi’

Value: normal | embed | bidi-override | inherit
Initial: normal
Applies to: all elements, but see prose
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

Values for this property have the following meanings:

normal
The element does not open an additional level of embedding with respect to the
bidirectional algorithm. For inline-level elements, implicit reordering works
across element boundaries.

embed
If the element is inline-level, this value opens an additional level of embedding
with respect to the bidirectional algorithm. The direction of this embedding level
is given by the ’direction’ property. Inside the element, reordering is done implic-
itly. This corresponds to adding a LRE (U+202A; for ’direction: ltr’) or RLE
(U+202B; for ’direction: rtl’) at the start of the element and a PDF (U+202C) at
the end of the element.

bidi-override
For inline-level elements this creates an override. For block-level elements this
creates an override for inline-level descendents not within another block. This
means that inside the element, reordering is strictly in sequence according to

15 Sep 2003 14:50145

Visual formatting model

the ’direction’ property; the implicit part of the bidirectional algorithm is ignored.
This corresponds to adding a LRO (U+202D; for ’direction: ltr’) or RLO (U+202E;
for ’direction: rtl’) at the start of the element and a PDF (U+202C) at the end of
the element.

The final order of characters in each block-level element is the same as if the bidi
control codes had been added as described above, markup had been stripped, and
the resulting character sequence had been passed to an implementation of the
Unicode bidirectional algorithm for plain text that produced the same line-breaks as
the styled text. In this process, non-textual entities such as images are treated as
neutral characters, unless their ’unicode-bidi’ property has a value other than
’normal’, in which case they are treated as strong characters in the ’direction’ speci-
fied for the element.

Please note that in order to be able to flow inline boxes in a uniform direction
(either entirely left-to-right or entirely right-to-left), more inline boxes (including
anonymous inline boxes) may have to be created, and some inline boxes may have
to be split up and reordered before flowing.

Because the Unicode algorithm has a limit of 61 levels of embedding, care should
be taken not to use ’unicode-bidi’ with a value other than ’normal’ unless appropriate.
In particular, a value of ’inherit’ should be used with extreme caution. However, for
elements that are, in general, intended to be displayed as blocks, a setting of
’unicode-bidi: embed’ is preferred to keep the element together in case display is
changed to inline (see example below).

The following example shows an XML document with bidirectional text. It illus-
trates an important design principle: DTD designers should take bidi into account
both in the language proper (elements and attributes) and in any accompanying style
sheets. The style sheets should be designed so that bidi rules are separate from
other style rules. The bidi rules should not be overridden by other style sheets so
that the document language’s or DTD’s bidi behavior is preserved.

Example(s):

In this example, lowercase letters stand for inherently left-to-right characters and
uppercase letters represent inherently right-to-left characters:

<HEBREW>
 <PAR>HEBREW1 HEBREW2 english3 HEBREW4 HEBREW5</PAR>
 <PAR>HEBREW6 <EMPH>HEBREW7</EMPH> HEBREW8</PAR>
</HEBREW>
<ENGLISH>
 <PAR>english9 english10 english11 HEBREW12 HEBREW13</PAR>
 <PAR>english14 english15 english16</PAR>
 <PAR>english17 <HE-QUO>HEBREW18 english19 HEBREW20</HE-QUO></PAR>
</ENGLISH>

Since this is XML, the style sheet is responsible for setting the writing direction.
This is the style sheet:

14615 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 74

/* Rules for bidi */
HEBREW, HE-QUO {direction: rtl; unicode-bidi: embed}
ENGLISH {direction: ltr; unicode-bidi: embed}

/* Rules for presentation */
HEBREW, ENGLISH, PAR {display: block}
EMPH {font-weight: bold}

The HEBREW element is a block with a right-to-left base direction, the ENGLISH
element is a block with a left-to-right base direction. The PARs are blocks that inherit
the base direction from their parents. Thus, the first two PARs are read starting at
the top right, the final three are read starting at the top left. Please note that
HEBREW and ENGLISH are chosen as element names for explicitness only; in
general, element names should convey structure without reference to language.

The EMPH element is inline-level, and since its value for ’unicode-bidi’ is ’normal’
(the initial value), it has no effect on the ordering of the text. The HE-QUO element,
on the other hand, creates an embedding.

The formatting of this text might look like this if the line length is long:

 5WERBEH 4WERBEH english3 2WERBEH 1WERBEH

 8WERBEH 7WERBEH 6WERBEH

english9 english10 english11 13WERBEH 12WERBEH

english14 english15 english16

english17 20WERBEH english19 18WERBEH

Note that the HE-QUO embedding causes HEBREW18 to be to the right of
english19.

If lines have to be broken, it might be more like this:

 2WERBEH 1WERBEH
 -EH 4WERBEH english3
 5WERB

 -EH 7WERBEH 6WERBEH
 8WERB

english9 english10 en-
glish11 12WERBEH
13WERBEH

english14 english15
english16

english17 18WERBEH
20WERBEH english19

15 Sep 2003 14:50147

Visual formatting model

Because HEBREW18 must be read before english19, it is on the line above
english19. Just breaking the long line from the earlier formatting would not have
worked. Note also that the first syllable from english19 might have fit on the previous
line, but hyphenation of left-to-right words in a right-to-left context, and vice versa, is
usually suppressed to avoid having to display a hyphen in the middle of a line.

14815 Sep 2003 14:50

Visual formatting model

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 75

10 Visual formatting model details
Contents

........... 14910.1 Definition of "containing block"

.......... 15210.2 Content width: the ’width’ property

........... 15310.3 Calculating widths and margins

......... 15310.3.1 Inline, non-replaced elements

........... 15310.3.2 Inline, replaced elements

..... 15310.3.3 Block-level, non-replaced elements in normal flow

...... 15410.3.4 Block-level, replaced elements in normal flow

......... 15410.3.5 Floating, non-replaced elements

.......... 15410.3.6 Floating, replaced elements

...... 15410.3.7 Absolutely positioned, non-replaced elements

....... 15610.3.8 Absolutely positioned, replaced elements

.... 15610.3.9 ’Inline-block’, non-replaced elements in normal flow

..... 15610.3.10 ’Inline-block’, replaced elements in normal flow

.... 15610.4 Minimum and maximum widths: ’min-width’ and ’max-width’

.......... 15810.5 Content height: the ’height’ property

.......... 15910.6 Calculating heights and margins

......... 16010.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in normal
flow, ’inline-block’ replaced elements in normal flow and floating replaced

................ 160elements
16010.6.3 Block-level and ’inline-block’, non-replaced elements in normal flow

...... 16110.6.4 Absolutely positioned, non-replaced elements

....... 16210.6.5 Absolutely positioned, replaced elements

......... 16210.6.6 Floating, non-replaced elements

... 16310.7 Minimum and maximum heights: ’min-height’ and ’max-height’

.16410.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

........... 16410.8.1 Leading and half-leading

10.1 Definition of "containing block"
The position and size of an element’s box(es) are sometimes calculated relative to a
certain rectangle, called the containing block of the element. The containing block of
an element is defined as follows:

1. The containing block in which the root element [p. 33] lives is chosen by the
user agent. (It could be related to the viewport [p. 108] .) This containing block is
called the initial containing block.

2. For other elements, if the element’s position is ’relative’ or ’static’, the containing
block is formed by the content edge of the nearest block-level [p. 109] , table

15 Sep 2003 14:50149

Visual formatting model details

cell or inline-block ancestor box.
3. If the element has ’position: fixed’, the containing block is established by the

viewport [p. 108] .
4. If the element has ’position: absolute’, the containing block is established by the

nearest ancestor with a ’position’ of ’absolute’, ’relative’ or ’fixed’, in the following
way:

1. In the case that the ancestor is block-level [p. 109] , the containing block is
formed by the padding edge [p. 92] of the ancestor.

2. In the case that the ancestor is inline-level, the containing block depends on
the ’direction’ property of the ancestor:

1. If the ’direction’ is ’ltr’, the top and left of the containing block are the
top and left content edges of the first box generated by the ancestor,
and the bottom and right are the bottom and right content edges of the
last box of the ancestor.

2. If the ’direction’ is ’rtl’, the top and right are the top and right edges of
the first box generated by the ancestor, and the bottom and left are the
bottom and left content edges of the last box of the ancestor.

If there is no such ancestor, the containing block is the initial containing block.

In paged media, an absolutely positioned element is positioned relative to its
containing block ignoring any page breaks (as if the document were continuous).
The element may subsequently be broken over several pages.

Note that a block-level element that is split over several pages may have a differ-
ent width on each page and that there may be device-specific limits.

Example(s):

With no positioning, the containing blocks (C.B.) in the following document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <TITLE>Illustration of containing blocks</TITLE>
 </HEAD>
 <BODY id="body">
 <DIV id="div1">
 <P id="p1">This is text in the first paragraph...</P>
 <P id="p2">This is text <EM id="em1"> in the
 <STRONG id="strong1">second paragraph.</P>
 </DIV>
 </BODY>
</HTML>

are established as follows:

15015 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 76

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 body

p1 div1

p2 div1

em1 p2

strong1 p2

If we position "div1":

 #div1 { position: absolute; left: 50px; top: 50px }

its containing block is no longer "body"; it becomes the initial containing block
(since there are no other positioned ancestor boxes).

If we position "em1" as well:

 #div1 { position: absolute; left: 50px; top: 50px }
 #em1 { position: absolute; left: 100px; top: 100px }

the table of containing blocks becomes:

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 initial C.B.

p1 div1

p2 div1

em1 div1

strong1 em1

By positioning "em1", its containing block becomes the nearest positioned ances-
tor box (i.e., that generated by "div1").

15 Sep 2003 14:50151

Visual formatting model details

10.2 Content width: the ’width’ property
’width’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length; ’auto’ if

the property does not apply

This property specifies the content width [p. 92] of boxes generated by block-level
and replaced [p. 32] elements.

This property does not apply to non-replaced inline-level [p. 111] elements. The
content width of a non-replaced inline element’s boxes is that of the rendered
content within them (before any relative offset of children). Recall that inline boxes
flow into line boxes [p. 118] . The width of line boxes is given by the their containing
block [p. 108] , but may be shorted by the presence of floats [p. 121] .

The width of a replaced element’s box is intrinsic [p. 32] and may be scaled by the
user agent if the value of this property is different than ’auto’.

Values have the following meanings:

<length>
Specifies the width of the content area using a length unit.

<percentage>
Specifies a percentage width. The percentage is calculated with respect to the
width of the generated box’s containing block [p. 108] . If the containing block’s
width depends on this element’s width, then the resulting layout is undefined in
CSS 2.1. Note: For absolutely positioned elements whose containing block is
based on a block-level element, the percentage is calculated with respect to the
width of the padding box of that element. This is a change from CSS1, where
the percentage width was always calculated with respect to the content box of
the parent element.

auto
The width depends on the values of other properties. See the sections below.

Negative values for ’width’ are illegal.

Example(s):

For example, the following rule fixes the content width of paragraphs at 100 pixels:

15215 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 77

p { width: 100px }

10.3 Calculating widths and margins
The values of an element’s ’width’, ’margin-left’, ’margin-right’, ’left’ and ’right’ proper-
ties as used for layout depend on the type of box generated and on each other. (The
value used for layout is sometimes referred to as the used value.) In principle, the
values used are the same as the computed values, with ’auto’ replaced by some
suitable value, and percentages calculated based on the containing block, but there
are exceptions. The following situations need to be distinguished:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the values of ’left’ and ’right’ used for layout are deter-
mined by the rules in section 9.4.3. [p. 120]

10.3.1 Inline, non-replaced elements
The ’width’ property does not apply. A computed value of ’auto’ for ’left’, ’right’,
’margin-left’ or ’margin-right’ becomes a used value of ’0’.

10.3.2 Inline, replaced elements
A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value of
’0’. If ’width’ has a computed value of ’auto’ and ’height’ also has a computed value
of ’auto’, the element’s intrinsic [p. 32] width is the used value of ’width’. If ’width’ has
a computed value of ’auto’ and ’height’ has some other computed value, then the
used value of ’width’ is:

 (intrinsic width) * ((used height) / (intrinsic height))

10.3.3 Block-level, non-replaced elements in normal flow
The following constraints must hold between the used values of the other properties:

’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ + ’padding-right’ +
’border-right-width’ + ’margin-right’ = width of containing block [p. 149]

15 Sep 2003 14:50153

Visual formatting model details

If all of the above have a computed value other than ’auto’, the values are said to
be "over-constrained" and one of the used values will have to be different from its
computed value. If the ’direction’ property has the value ’ltr’, the specified value of
’margin-right’ is ignored and the value is calculated so as to make the equality true. If
the value of ’direction’ is ’rtl’, this happens to ’margin-left’ instead.

If there is exactly one value specified as ’auto’, its used value follows from the
equality.

If ’width’ is set to ’auto’, any other ’auto’ values become ’0’ and ’width’ follows from
the resulting equality.

If both ’margin-left’ and ’margin-right’ are ’auto’, their used values are equal. This
horizontally centers the element with respect to the edges of the containing block.

10.3.4 Block-level, replaced elements in normal flow
The used value of ’width’ is determined as for inline replaced elements [p. 153] . If
one of the margins is ’auto’, its used value is given by the constraints [p. 153] above.
Furthermore, if both margins are ’auto’, their used values are equal.

10.3.5 Floating, non-replaced elements
If ’margin-left’, or ’margin-right’ are computed as ’auto’, their used value is ’0’.

If ’width’ is computed as ’auto’, the used value is the "shrink-to-fit" width.

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, find the available
width: in this case, this is the width of the containing block minus ’margin-left’ and
’margin-right’.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

10.3.6 Floating, replaced elements
If ’margin-left’ or ’margin-right’ are computed as ’auto’, their used value is ’0’. The
used value of ’width’ is determined as for inline replaced elements [p. 153] .

10.3.7 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely:

15415 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 78

The static position for ’left’ is the distance from the left edge of the containing
block to the left margin edge of a hypothetical box that would have been the first
box of the element if its ’position’ property had been ’static’. The value is nega-
tive if the hypothetical box is to the left of the containing block.
The static position for ’right’ is the distance from the right edge of the containing
block to the right margin edge of the same hypothetical box as above. The value
is positive if the hypothetical box is to the left of the containing block’s edge.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport.

The constraint that determines the used values for these elements is:

’left’ + ’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + ’margin-right’ + ’right’ = width of contain-
ing block

If all three of ’left’, ’width’, and ’right’ are ’auto’: First set any ’auto’ values for
’margin-left’ and ’margin-right’ to 0. Then, if ’direction’ is ’ltr’ set ’left’ to the static
position [p. 154] and apply rule number three below; otherwise, set ’right’ to the static
position [p. 154] and apply rule number one below.

If none of the three is ’auto’: If both ’margin-left’ and ’margin-right’ are ’auto’, solve
the equation under the extra constraint that the two margins get equal values. If one
of ’margin-left’ or ’margin-right’ is ’auto’, solve the equation for that value. If the
values are over-constrained, ignore the value for ’left’ (in case ’direction’ is ’rtl’) or
’right’ (in case ’direction’ is ’ltr’) and solve for that value.

Otherwise, set ’auto’ values for ’margin-left’ and ’margin-right’ to 0, and pick the
one of the following six rules that applies.

1. ’left’ and ’width’ are ’auto’ and ’right’ is not ’auto’, then the width is shrink-to-fit.
Then solve for ’left’

2. ’left’ and ’right’ are ’auto’ and ’width’ is not ’auto’, then if ’direction’ is ’ltr’ set ’left’
to the static position [p. 154] , otherwise set ’right’ to the static position [p. 154] .
Then solve for ’left’ (if ’direction is ’rtl’) or ’right’ (if ’direction’ is ’ltr’).

3. ’width’ and ’right’ are ’auto’ and ’left’ is not ’auto’, then the width is shrink-to-fit .
Then solve for ’right’

4. ’left’ is ’auto’, ’width’ and ’right’ are not ’auto’, then solve for ’left’
5. ’width’ is ’auto’, ’left’ and ’right’ are not ’auto’, then solve for ’width’
6. ’right’ is ’auto’, ’left’ and ’width’ are not ’auto’, then solve for ’right’

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible

15 Sep 2003 14:50155

Visual formatting model details

line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, calculate the avail-
able width: this is found by solving for ’width’ after setting ’left’ (in case 1) or ’right’ (in
case 3) to 0.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

10.3.8 Absolutely positioned, replaced elements
This situation is similar to the previous one, except that the element has an intrinsic
[p. 32] width. The sequence of substitutions is now:

1. The used value of ’width’ is determined as for inline replaced elements [p. 153] .
2. If ’left’ has the value ’auto’ while ’direction’ is ’ltr’, replace ’auto’ with the static

position [p. 154] .
3. If ’right’ has the value ’auto’ while ’direction’ is ’rtl’, replace ’auto’ with the static

position [p. 154] .
4. If ’left’ or ’right’ are ’auto’, replace any ’auto’ on ’margin-left’ or ’margin-right’ with

’0’.
5. If at this point both ’margin-left’ and ’margin-right’ are still ’auto’, solve the equa-

tion under the extra constraint that the two margins must get equal values.
6. If at this point there is only one ’auto’ left, solve the equation for that value.
7. If at this point the values are over-constrained, ignore the value for either ’left’

(in case ’direction’ is ’rtl’) or ’right’ (in case ’direction’ is ’ltr’) and solve for that
value.

10.3.9 ’Inline-block’, non-replaced elements in normal flow
If ’width’ is ’auto’, the used value is the shrink-to-fit [p. 154] width as for floating
elements.

A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value
of ’0’.

10.3.10 ’Inline-block’, replaced elements in normal flow
Exactly as inline replaced elements. [p. 153]

10.4 Minimum and maximum widths: ’min-width’ and
’max-width’
’min-width’

15615 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 79

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements except non-replaced inline elements and table

elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

’max-width’

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements except non-replaced inline elements and table

elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

These two properties allow authors to constrain box widths to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum used width.

<percentage>
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the width of the generated box’s containing block [p. 108] .

none
(Only on ’max-width’) No limit on the width of the box.

Negative values for ’min-width’ and ’max-width’ are illegal.

The following algorithm describes how the two properties influence the used value
[p. 80] of the ’width’ property:

1. The tentative used width is calculated (without ’min-width’ and ’max-width’)
following the rules under "Calculating widths and margins" [p. 153] above.

2. If the tentative used width is greater than ’max-width’, the rules above [p. 153]
are applied again, but this time using the computed value of ’max-width’ as the
computed value for ’width’.

3. If the resulting width is smaller than ’min-width’, the rules above [p. 153] are
applied again, but this time using the value of ’min-width’ as the computed value
for ’width’.

15 Sep 2003 14:50157

Visual formatting model details

However, for replaced elements with both ’width’ and ’height’ specified as ’auto’,
the algorithm is as follows:

1. Select from the following list of width-height pairs (a, b) the first one that satis-
fies the two constraints min-width ≤ a ≤ max(min-width, max-width) and
min-height ≤ b ≤ max(min-height, max-height). The resulting pair gives the used
width and height for the element. In this list, Wi and Hi stand for the intrinsic
width and height, respectively.

1. (Wi, Hi)
2. (max(Wi, min-width), max(Wi, min-width)*Hi/Wi)
3. (max(Hi, min-height)*Wi/Hi, max(Hi, min-height))
4. (min(Wi, max-width), min(Wi, max-width)*Hi/Wi)
5. (min(Hi, max-height)*Wi/Hi, min(Hi, max-height))
6. (max(Wi, min-width), min(Hi, max-height))
7. (min(Wi, max-width), max(Hi, min-height))
8. (max(Wi, min-width), max(Hi, min-height))
9. (min(Wi, max-width), min(Hi, max-height))

2. Then apply the rules under "Calculating widths and margins" [p. 153] above, as
if ’width’ were computed as this value.

10.5 Content height: the ’height’ property
’height’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length; ’auto’ if

the property does not apply

This property specifies the content height [p. 92] of boxes generated by
block-level, inline-block and replaced [p. 32] elements.

This property does not apply to non-replaced inline-level [p. 111] elements. See
the section on computing heights and margins for non-replaced inline elements
[p. 160] for the rules used instead.

Values have the following meanings:

<length>
Specifies the height of the content area using a length value.

15815 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 80

<percentage>
Specifies a percentage height. The percentage is calculated with respect to the
height of the generated box’s containing block [p. 108] . If the height of the
containing block is not specified explicitly (i.e., it depends on content height),
and this element is not absolutely positioned, the value is interpreted like ’auto’.
A percentage height on the root element [p. 33] is relative to the viewport
[p. 108] .

auto
The height depends on the values of other properties. See the prose below.

Note that the height of the containing block of an absolutely positioned element is
independent of the size of the element itself, and thus a percentage height on such
an element can always be resolved. However, it may be that the height is not known
until elements that come later in the document have been processed.

Negative values for ’height’ are illegal.

Example(s):

For example, the following rule sets the content height of paragraphs to 100
pixels:

p { height: 100px }

Paragraphs of which the height of the contents exceeds 100 pixels will overflow
[p. 169] according to the ’overflow’ property.

10.6 Calculating heights and margins
For calculating the values of ’top’, ’margin-top’, ’height’, ’margin-bottom’, and ’bottom’
a distinction must be made between various kinds of boxes:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the used values of ’top’ and ’bottom’ are determined by
the rules in section 9.4.3.

15 Sep 2003 14:50159

Visual formatting model details

10.6.1 Inline, non-replaced elements
The ’height’ property doesn’t apply. The height of the content area should be based
on the font, but this specification does not specify how. A UA may, e.g., use the
em-box or the maximum ascender and descender of the font. (The latter would
ensure that glyphs with parts above or below the em-box still fall within the content
area, but leads to differently sized boxes for different fonts; the formed would ensure
authors can control background styling relative to the ’line-height’, but leads to
glyphs painting outside their content area.)

Note: level 3 of CSS will probably include a property to select which measure of
the font is used for the content height.

The vertical padding, border and margin of an inline, non-replaced box start at the
top and bottom of the content area, not the ’line-height’. But only the ’line-height’ is
used to calculate the height of the line box.

If more than one font is used (this could happen when glyphs are found in different
fonts), the height of the content area is not defined by this specification. However,
we suggest that the height is chosen such that the content area is just high enough
for either (1) the em-boxes, or (2) the maximum ascenders and descenders, of all
the fonts in the element. Note that this may be larger than any of the font sizes
involved, depending on the baseline alignment of the fonts.

10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in
normal flow and floating replaced elements
If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ has a
computed value of ’auto’ and ’width’ also has a computed value of ’auto’, the
element’s intrinsic height is the used value of ’height’. If ’height’ has a computed
value of ’auto’ and ’width’ has some other computed value, then the used value of
’height’ is:

 (intrinsic height) * ((used width) / (intrinsic width))

10.6.3 Block-level and ’inline-block’, non-replaced elements in
normal flow
If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is ’auto’,
the height depends on whether the element has any block-level children and
whether it has padding or borders:

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top border-edge
of the topmost block-level child box that doesn’t have margins collapsed through it
[p. 97] and the bottom border-edge of the bottommost block-level child box that

16015 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 81

doesn’t have margins collapsed through it. However, if the element has a non-zero
top padding and/or top border, then the content starts at the top margin edge of the
topmost child. (The first case expresses the fact that the top and bottom margins of
the element collapse [p. 97] with those of the topmost and bottommost children,
while in the second case the presence of the padding/border prevents the top
margins from collapsing [p. 97] .) Similarly, if the element has a non-zero bottom
padding and/or bottom border, then the content ends at the bottom margin edge of
the bottommost child.

Only children in the normal flow are taken into account (i.e., floating boxes and
absolutely positioned boxes are ignored, and relatively positioned boxes are consid-
ered without their offset). Note that the child box may be an anonymous block box.
[p. 109]

10.6.4 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely, the static position for ’top’ is the distance from the top edge of
the containing block to the top margin edge of a hypothetical box that would have
been the first box of the element if its ’position’ property had been ’static’. The value
is negative if the hypothetical box is above the containing block.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport.

For absolutely positioned elements, the used values of the vertical dimensions
must satisfy this constraint:

’top’ + ’margin-top’ + ’border-top-width’ + ’padding-top’ + ’height’ +
’padding-bottom’ + ’border-bottom-width’ + ’margin-bottom’ + ’bottom’ = height
of containing block

If all three of ’top’, ’height’, and ’bottom’ are auto, set ’top’ to the static position and
apply rule number three below.

If none of the three are ’auto’: If both ’margin-top’ and ’margin-bottom’ are ’auto’,
solve the equation under the extra constraint that the two margins get equal values.
If one of ’margin-top’ or ’margin-bottom’ is ’auto’, solve the equation for that value. If
the values are over-constrained, ignore the value for ’bottom’ and solve for that
value.

Otherwise, pick the one of the following six rules that applies.

1. ’top’ and ’height’ are ’auto’ and ’bottom’ is not ’auto’, then the height is based on
the content, set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0, and solve
for ’top’

2. ’top’ and ’bottom’ are ’auto’ and ’height’ is not ’auto’, then set ’top’ to the static

15 Sep 2003 14:50161

Visual formatting model details

position, set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0, and solve for
’bottom’

3. ’height’ and ’bottom’ are ’auto’ and ’top’ is not ’auto’, then the height is based on
the content, set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0, and solve
for ’bottom’

4. ’top’ is ’auto’, ’height’ and ’bottom’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0, and solve for ’top’

5. ’height’ is ’auto’, ’top’ and ’bottom’ are not ’auto’, then ’auto’ values for
’margin-top’ and ’margin-bottom’ are set to 0 and solve for ’height’

6. ’bottom’ is ’auto’, ’top’ and ’height’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0 and solve for ’bottom’

10.6.5 Absolutely positioned, replaced elements
This situation is similar to the previous one, except that the element has an intrinsic
[p. 32] height. The sequence of substitutions is now:

1. The used value of ’height’ is determined as for inline replaced elements [p. 160]
.

2. If ’top’ has the value ’auto’, replace it with the element’s static position.
3. If ’bottom’ is ’auto’, replace any ’auto’ on ’margin-top’ or ’margin-bottom’ with ’0’.
4. If at this point both ’margin-top’ and ’margin-bottom’ are still ’auto’, solve the

equation under the extra constraint that the two margins must get equal values.
5. If at this point there is only one ’auto’ left, solve the equation for that value.
6. If at this point the values are over-constrained, ignore the value for ’bottom’ and

solve for that value.

10.6.6 Floating, non-replaced elements
If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is ’auto’,
the height depends on the element’s descendants:

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
margin-edge of the topmost block-level child box and the bottom margin-edge of the
bottommost block-level child box. (Note that the margins of the float and its children
do not collapse together.)

Absolutely positioned children are ignored, and relatively positioned boxes are
considered without their offset. Note that the child box may be an anonymous block
box. [p. 109]

In addition, if the element has any floating descendants whose top margin edge is
above the top established above or whose bottom margin edge is below the bottom,
then the height is increased to include those edges. Only floats that are children of
the element itself or of descendants in the normal flow are taken into account, i.e.,
floats inside absolutely positioned descendants are not.

16215 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 82

10.7 Minimum and maximum heights: ’min-height’ and
’max-height’
It is sometimes useful to constrain the height of elements to a certain range. Two
properties offer this functionality:

’min-height’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements except non-replaced inline elements and table

elements
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length

’max-height’

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements except non-replaced inline elements and table

elements
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

These two properties allow authors to constrain box heights to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum computed height.

<percentage>
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the height of the generated box’s containing block [p. 108] .
If the height of the containing block is not specified explicitly (i.e., it depends on
content height), the percentage value is treated as ’0’ (for ’min-height’) or ’none’
(for ’max-height’).

none
(Only on ’max-height’) No limit on the height of the box.

Negative values for ’min-height’ and ’max-height’ are illegal.

15 Sep 2003 14:50163

Visual formatting model details

The following algorithm describes how the two properties influence the computed
value [p. 80] of the ’height’ property:

1. The tentative used height is calculated (without ’min-height’ and ’max-height’)
following the rules under "Calculating heights and margins" [p. 159] above.

2. If this tentative height is greater than ’max-height’, the rules above [p. 159] are
applied again, but this time using the value of ’max-height’ as the computed
value for ’height’.

3. If the resulting height is smaller than ’min-height’, the rules above [p. 159] are
applied again, but this time using the value of ’min-height’ as the computed
value for ’height’.

However, for replaced elements with both ’width’ and ’height’ computed as ’auto’,
use the algorithm under Minimum and maximum widths [p. 156] above to find the
used width and height. Then apply the rules under "Computing heights and margins"
[p. 159] above, using the resulting width and height as if they were the computed
values.

10.8 Line height calculations: the ’line-height’ and
’vertical-align’ properties
As described in the section on inline formatting contexts [p. 118] , user agents flow
inline boxes into a vertical stack of line boxes [p. 118] . The height of a line box is
determined as follows:

1. The height of each inline box in the line box is calculated (see "Calculating
heights and margins" [p. 159] and the ’line-height’ property).

2. The inline boxes are aligned vertically according to their ’vertical-align’ property.
3. The line box height is the distance between the uppermost box top and the

lowermost box bottom.

Empty inline elements generate empty inline boxes, but these boxes still have
margins, padding, borders and a line height, and thus influence these calculations
just like elements with content.

10.8.1 Leading and half-leading
Since the value of ’line-height’ may be different from the height of the content area
there may be space above and below rendered glyphs. The difference between the
content height and the used value of ’line-height’ is called the leading. Half the
leading is called the half-leading.

User agents center glyphs vertically in an inline box, adding half-leading on the top
and bottom. For example, if a piece of text is ’12px’ high and the ’line-height’ value is
’14px’, 2pxs of extra space should be added: 1px above and 1px below the letters.
(This applies to empty boxes as well, as if the empty box contained an infinitesimally
narrow letter.)

16415 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 83

When the ’line-height’ value is less than the content height, the final inline box
height will be less than the font size and the rendered glyphs will "bleed" outside the
box. If such a box touches the edge of a line box, the rendered glyphs will also
"bleed" into the adjacent line box.

Although margins, borders, and padding of non-replaced elements do not enter
into the line box calculation, they are still rendered around inline boxes. This means
that if the height specified by ’line-height’ is less than the content height of contained
boxes, backgrounds and colors of padding and borders may "bleed" into adjacent
line boxes. User agents should render the boxes in document order. This will cause
the borders on subsequent lines to paint over the borders and text of previous lines.

’line-height’

Value: normal | <number> | <length> | <percentage> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: refer to the font size of the element itself
Media: visual
Computed value: for <length> and <percentage> the absolute value; otherwise

as specified

If the property is set on a block-level [p. 109] element whose content is composed
of inline-level [p. 111] elements, it specifies the minimal height of line boxes within
the element. The minimum height consist of a minimum height above the block’s
baseline and a minimum depth below it, exactly as if each line box starts with a
zero-width inline box with the block’s font and line height properties (what TEX calls
a "strut").

If the property is set on an inline-level [p. 111] element, it specifies the height that
is used in the calculation of the line box height (except for inline replaced [p. 32]
elements, where the height of the box is given by the ’height’ property).

Values for this property have the following meanings:

normal
Tells user agents to set the used value to a "reasonable" value based on the
font of the element. The value has the same meaning as <number>. We recom-
mend a used value for ’normal’ between 1.0 to 1.2. The computed value [p. 80]
is ’normal’.

<length>
The specified length is used in the calculation of the line box height. Negative
values are illegal.

<number>
The used value of the property is this number multiplied by the element’s font
size. Negative values are illegal. The computed value [p. 80] is the same as the
specified value.

15 Sep 2003 14:50165

Visual formatting model details

<percentage>
The computed value [p. 80] of the property is this percentage multiplied by the
element’s computed font size. Negative values are illegal.

Example(s):

The three rules in the example below have the same resultant line height:

div { line-height: 1.2; font-size: 10pt } /* number */
div { line-height: 1.2em; font-size: 10pt } /* length */
div { line-height: 120%; font-size: 10pt } /* percentage */

When an element contains text that is rendered in more than one font, user agents
may determine the ’line-height’ value according to the largest font size.

Generally, when there is only one value of ’line-height’ for all inline boxes in a
paragraph (and no tall images), the above will ensure that baselines of successive
lines are exactly ’line-height’ apart. This is important when columns of text in differ-
ent fonts have to be aligned, for example in a table.

’vertical-align’

Value: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length> | inherit

Initial: baseline
Applies to: inline-level and ’table-cell’ elements
Inherited: no
Percentages: refer to the ’line-height’ of the element itself
Media: visual
Computed value: for <percentage> and <length> the absolute length, otherwise

as specified

This property affects the vertical positioning inside a line box of the boxes gener-
ated by an inline-level element. The following values only have meaning with respect
to a parent inline-level element, or to the strut [p. 165] of a parent block-level
element.

Note. Values of this property have slightly different meanings in the context of
tables. Please consult the section on table height algorithms [p. 249] for details.

baseline
Align the baseline of the box with the baseline of the parent box. If the box
doesn’t have a baseline, align the bottom margin edge with the parent’s base-
line.

middle
Align the vertical midpoint of the box with the baseline of the parent box plus
half the x-height of the parent.

sub
Lower the baseline of the box to the proper position for subscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

16615 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 84

super
Raise the baseline of the box to the proper position for superscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

text-top
Align the top of the box with the top of the parent element’s font.

text-bottom
Align the bottom of the box with the bottom of the parent element’s font.

<percentage>
Raise (positive value) or lower (negative value) the box by this distance (a
percentage of the ’line-height’ value). The value ’0%’ means the same as ’base-
line’.

<length>
Raise (positive value) or lower (negative value) the box by this distance. The
value ’0cm’ means the same as ’baseline’.

top
Align the top of the box with the top of the line box.

bottom
Align the bottom of the box with the bottom of the line box.

The baseline of an ’inline-table’ is the baseline of the first row of the table.

A UA should use the baseline of the last line box in the normal flow in the element
as the baseline of an ’inline-block’, or the element’s bottom margin edge, if there is
none.

15 Sep 2003 14:50167

Visual formatting model details

16815 Sep 2003 14:50

Visual formatting model details

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 85

11 Visual effects
Contents

............. 16911.1 Overflow and clipping

......... 16911.1.1 Overflow: the ’overflow’ property

.......... 17211.1.2 Clipping: the ’clip’ property

........... 17411.2 Visibility: the ’visibility’ property

11.1 Overflow and clipping
Generally, the content of a block box is confined to the content edges of the box. In
certain cases, a box may overflow, meaning its content lies partly or entirely outside
of the box, e.g.:

A line cannot be broken, causing the line box to be wider than the block box.
A block-level box is too wide for the containing block. This may happen when an
element’s ’width’ property has a value that causes the generated block box to
spill over sides of the containing block.
An element’s height exceeds an explicit height assigned to the containing block
(i.e., the containing block’s height is determined by the ’height’ property, not by
content height).
A descendent box is positioned absolutely [p. 129] , partly outside the box. Such
boxes are not clipped by the overflow property on their ancestors.
A descendent box has negative margins [p. 95] , causing it to be positioned
partly outside the box.
The ’text-indent’ property causes an inline box to hang off either the left or right
edge of the block box.

Whenever overflow occurs, the ’overflow’ property specifies whether a box is
clipped to its content box, and if so, whether a scrolling mechanism is provided to
access any clipped out content.

11.1.1 Overflow: the ’overflow’ property

’overflow’

Value: visible | hidden | scroll | auto | inherit
Initial: visible
Applies to: block-level and replaced elements, table cells, inline blocks
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

15 Sep 2003 14:50169

Visual effects

This property specifies whether content of a block-level element is clipped when it
overflows the element’s box. It affects the clipping of all of the element’s content
except any descendant elements (and their respective content and descendants)
whose containing block is the viewport or an ancestor of the element. Values have
the following meanings:

visible
This value indicates that content is not clipped, i.e., it may be rendered outside
the block box.

hidden
This value indicates that the content is clipped and that no scrolling user inter-
face should be provided to view the content outside the clipping region; users
will not have access to clipped content.

scroll
This value indicates that the content is clipped and that if the user agent uses a
scrolling mechanism that is visible on the screen (such as a scroll bar or a
panner), that mechanism should be displayed for a box whether or not any of its
content is clipped. This avoids any problem with scrollbars appearing and disap-
pearing in a dynamic environment. When this value is specified and the target
medium is ’print’, overflowing content may be printed.

auto
The behavior of the ’auto’ value is user agent-dependent, but should cause a
scrolling mechanism to be provided for overflowing boxes.

Even if ’overflow’ is set to ’visible’, content may be clipped to a UA’s document
window by the native operating environment.

HTML UAs may apply the overflow property from the BODY or HTML elements to
the viewport.

In the case of a scrollbar being placed on an edge of the element’s box, it should
be inserted between the inner border edge and the outer padding edge.

Example(s):

Consider the following example of a block quotation (<blockquote>) that is too
big for its containing block (established by a <div>). Here is the source document:

<div>
<blockquote>
<p>I didn’t like the play, but then I saw
it under adverse conditions - the curtain was up.</p>
<cite>- Groucho Marx</cite>
</blockquote>
</div>

Here is the style sheet controlling the sizes and style of the generated boxes:

div { width : 100px; height: 100px;
 border: thin solid red;
 }

17015 Sep 2003 14:50

Visual effects

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 86

blockquote { width : 125px; height : 100px;
 margin-top: 50px; margin-left: 50px;
 border: thin dashed black
 }

cite { display: block;
 text-align : right;
 border: none
 }

The initial value of ’overflow’ is ’visible’, so the <blockquote> would be formatted
without clipping, something like this:

DIV

BLOCKQUOTE

I didn’t like the play,
but then I saw it
under adverse
conditions − the
curtain was up.
 − Groucho Marx

Setting ’overflow’ to ’hidden’ for the <div>, on the other hand, causes the
<blockquote> to be clipped by the containing block:

I didn’t li
but then
under ad
condition

A value of ’scroll’ would tell UAs that support a visible scrolling mechanism to
display one so that users could access the clipped content.

Finally, consider this case where an absolutely positioned element is mixed with
an overflow parent.

Stylesheet:

 container { position: relative; border: solid; }
 scroller { overflow: scroll; height: 5em; margin: 5em; }
 satellite { position: absolute; top: 0; }
 body { height: 10em; }

15 Sep 2003 14:50171

Visual effects

Document fragment:

 <container>
 <scroller>
 <satellite/>
 <body/>
 </scroller>
 </container>

In this example, the "scroller" element will not scroll the "satellite" element,
because the latter’s containing block is outside the element whose overflow is being
clipped and scrolled.

11.1.2 Clipping: the ’clip’ property
A clipping region defines what portion of an element’s border box is visible. By
default, the clipping region has the same size and shape as the element’s border
box. However, the clipping region may be modified by the ’clip’ property.

’clip’

Value: <shape> | auto | inherit
Initial: auto
Applies to: absolutely positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: For rectangle values, a rectangle consisting of four computed

lengths; otherwise, as specified

The ’clip’ property applies only to absolutely positioned elements. Values have the
following meanings:

auto
The element does not clip.

<shape>
In CSS 2.1, the only valid <shape> value is: rect(<top>, <right>, <bottom>,
<left>) where <top> and <bottom> specify offsets from the top border edge of
the box, and <right>, and <left> specify offsets from the left border edge of the
box in left-to-right text and from the right border edge of the box in right-to-left
text. Authors should separate offset values with commas. User agents must
support separation with commas, but may also support separation without
commas, because a previous version of this specification was ambiguous in this
respect.

<top>, <right>, <bottom>, and <left> may either have a <length> value or
’auto’. Negative lengths are permitted. The value ’auto’ means that a given edge
of the clipping region will be the same as the edge of the element’s generated
border box (i.e., ’auto’ means the same as ’0’ for <top> and <left> (in left-to-right

17215 Sep 2003 14:50

Visual effects

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 87

text, <right> in right-to-left text), the same as the computed value of the height
plus the sum of vertical padding and border widths for <bottom>, and the same
as the computed value of the width plus the sum of the horizontal padding and
border widths for <right> (in left-to-right text, <left> in right-to-left text), such that
four ’auto’ values result in the clipping region being the same as the element’s
border box).

When coordinates are rounded to pixel coordinates, care should be taken that
no pixels remain visible when <left> and <right> have the same value (or <top>
and <bottom> have the same value), and conversely that no pixels within the
element’s border box remain hidden when these values are ’auto’.

An element’s clipping region clips out any aspect of the element (e.g. content, chil-
dren, background, borders, text decoration, outline and visible scrolling mechanism
— if any) that is outside the clipping region.

The element’s ancestors may also clip portions of their content (e.g. via their own
’clip’ property and/or if their ’overflow’ property is not ’visible’); what is rendered is the
cumulative intersection.

If the clipping region exceeds the bounds of the UA’s document window, content
may be clipped to that window by the native operating environment.

Example(s):

The following two rules:

p { clip: rect(5px, 40px, 45px, 5px); }
p { clip: rect(5px, 55px, 45px, 5px); }

will create the rectangular clipping regions delimited by the dashed lines in the
following illustrations:

15 Sep 2003 14:50173

Visual effects

(0, 0) (50, 0)

(0, 55)

clip region

(0, 0) (50, 0)

(0, 55)

clip region

P’s block box

P’s block box

Note. In CSS 2.1, all clipping regions are rectangular. We anticipate future exten-
sions to permit non-rectangular clipping. Future versions may also reintroduce a
syntax for offsetting shapes from each edge instead of offsetting from a point.

11.2 Visibility: the ’visibility’ property
’visibility’

17415 Sep 2003 14:50

Visual effects

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 88

Value: visible | hidden | collapse | inherit
Initial: visible
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’visibility’ property specifies whether the boxes generated by an element are
rendered. Invisible boxes still affect layout (set the ’display’ property to ’none’ to
suppress box generation altogether). Values have the following meanings:

visible
The generated box is visible.

hidden
The generated box is invisible (fully transparent, nothing is drawn), but still
affects layout. Furthermore, descendents of the element will be visible if they
have ’visibility: visible’.

collapse
Please consult the section on dynamic row and column effects [p. 251] in tables.
If used on elements other than rows, row groups, columns, or column groups,
’collapse’ has the same meaning as ’hidden’.

This property may be used in conjunction with scripts to create dynamic effects.

In the following example, pressing either form button invokes a user-defined script
function that causes the corresponding box to become visible and the other to be
hidden. Since these boxes have the same size and position, the effect is that one
replaces the other. (The script code is in a hypothetical script language. It may or
may not have any effect in a CSS-capable UA.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<HTML>
<HEAD><TITLE>Dynamic visibility example</TITLE>
<META
 http-equiv="Content-Script-Type"
 content="application/x-hypothetical-scripting-language">
<STYLE type="text/css">
<!--
 #container1 { position: absolute;
 top: 2in; left: 2in; width: 2in }
 #container2 { position: absolute;
 top: 2in; left: 2in; width: 2in;
 visibility: hidden; }
-->
</STYLE>
</HEAD>
<BODY>
<P>Choose a suspect:</P>
<DIV id="container1">

15 Sep 2003 14:50175

Visual effects

 <IMG alt="Al Capone"
 width="100" height="100"
 src="suspect1.png">
 <P>Name: Al Capone</P>
 <P>Residence: Chicago</P>
</DIV>

<DIV id="container2">
 <IMG alt="Lucky Luciano"
 width="100" height="100"
 src="suspect2.png">
 <P>Name: Lucky Luciano</P>
 <P>Residence: New York</P>
</DIV>

<FORM method="post"
 action="http://www.suspect.org/process-bums">
 <P>
 <INPUT name="Capone" type="button"
 value="Capone"
 onclick=’show("container1");hide("container2")’>
 <INPUT name="Luciano" type="button"
 value="Luciano"
 onclick=’show("container2");hide("container1")’>
</FORM>
</BODY>
</HTML>

17615 Sep 2003 14:50

Visual effects

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 89

12 Generated content, automatic numbering,
and lists

Contents

......... 17712.1 The :before and :after pseudo-elements

............. 17912.2 The ’content’ property

.............. 18012.3 Quotation marks

...... 18112.3.1 Specifying quotes with the ’quotes’ property

...... 18312.3.2 Inserting quotes with the ’content’ property

.......... 18412.4 Automatic counters and numbering

.......... 18612.4.1 Nested counters and scope

............. 18712.4.2 Counter styles

....... 18712.4.3 Counters in elements with ’display: none’

................. 18712.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’, and

.............. 188’list-style’ properties

In some cases, authors may want user agents to render content that does not
come from the document tree [p. 33] . One familiar example of this is a numbered
list; the author does not want to list the numbers explicitly, he or she wants the user
agent to generate them automatically. Similarly, authors may want the user agent to
insert the word "Figure" before the caption of a figure, or "Chapter 7" before the
seventh chapter title. For audio or braille in particular, user agents should be able to
insert these strings.

In CSS 2.1, content may be generated by two mechanisms:

The ’content’ property, in conjunction with the :before and :after
pseudo-elements.
Elements with a value of ’list-item’ for the ’display’ property.

12.1 The :before and :after pseudo-elements
Authors specify the style and location of generated content with the :before and
:after pseudo-elements. As their names indicate, the :before and :after
pseudo-elements specify the location of content before and after an element’s docu-
ment tree [p. 33] content. The ’content’ property, in conjunction with these
pseudo-elements, specifies what is inserted.

Example(s):

For example, the following rule inserts the string "Note: " before the content of
every P element whose "class" attribute has the value "note":

15 Sep 2003 14:50177

Generated content, automatic numbering, and lists

p.note:before { content: "Note: " }

The formatting objects (e.g., boxes) generated by an element include generated
content. So, for example, changing the above style sheet to:

p.note:before { content: "Note: " }
p.note { border: solid green }

would cause a solid green border to be rendered around the entire paragraph,
including the initial string.

The :before and :after pseudo-elements inherit [p. 80] any inheritable properties
from the element in the document tree to which they are attached.

Example(s):

For example, the following rules insert an open quote mark before every Q
element. The color of the quote mark will be red, but the font will be the same as the
font of the rest of the Q element:

q:before {
 content: open-quote;
 color: red
}

In a :before or :after pseudo-element declaration, non-inherited properties take
their initial values [p. 19] .

Example(s):

So, for example, because the initial value of the ’display’ property is ’inline’, the
quote in the previous example is inserted as an inline box (i.e., on the same line as
the element’s initial text content). The next example explicitly sets the ’display’ prop-
erty to ’block’, so that the inserted text becomes a block:

body:after {
 content: "The End";
 display: block;
 margin-top: 2em;
 text-align: center;
}

The :before and :after pseudo-elements elements interact with other boxes, such
as run-in boxes, as if they were real elements inserted just inside their associated
element.

Example(s):

For example, the following document fragment and stylesheet:

<h2> Header </h2> h2 { display: run-in; }
<p> Text </p> p:before { display: block; content: ’Some’; }

...would render in exactly the same way as the following document fragment and
stylesheet:

17815 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 90

<h2> Header </h2> h2 { display: run-in; }
<p>Some Text </p> span { display: block }

Similarly, the following document fragment and stylesheet:

<h2> Header </h2> h2 { display: run-in; }
 h2:after { display: block; content: ’Thing’; }
<p> Text </p>

...would render in exactly the same way as the following document fragment and
stylesheet:

<h2> Header Thing</h2> h2 { display: block; }
 span { display: block; }
<p> Text </p>

12.2 The ’content’ property
’content’

Value: normal | [<string> | <counter> | attr(<identifier>) | open-quote
| close-quote | no-open-quote | no-close-quote]+ | inherit

Initial: normal
Applies to: :before and :after pseudo-elements
Inherited: no
Percentages: N/A
Media: all
Computed value: for URI values, the absolute URI; for attr() values, the result-

ing string; otherwise as specified

This property is used with the :before and :after pseudo-elements to generate
content in a document. Values have the following meanings:

normal
The pseudo-element is not generated.

<string>
Text content (see the section on strings [p. 54]).

<uri>
The value is a URI that designates an external resource. If a user agent cannot
support the resource because of the media types [p. 87] it supports, it must
ignore the resource.

<counter>
Counters [p. 52] may be specified with two different functions: ’counter()’ or
’counters()’. The former has two forms: ’counter(name)’ or ’counter(name,
style)’. The generated text is the value of the named counter at this point in the
formatting structure; it is formatted in the indicated style [p. 187] (’decimal’ by
default). The latter function also has two forms: ’counters(name, string)’ or
’counters(name, string, style)’. The generated text is the value of all counters
with the given name at this point in the formatting structure, separated by the

15 Sep 2003 14:50179

Generated content, automatic numbering, and lists

specified string. The counters are rendered in the indicated style [p. 187]
(’decimal’ by default). See the section on automatic counters and numbering
[p. 184] for more information.

open-quote and close-quote
These values are replaced by the appropriate string from the ’quotes’ property.

no-open-quote and no-close-quote
Same as ’none’, but increments (decrements) the level of nesting for quotes.

attr(X)
This function returns as a string the value of attribute X for the subject of the
selector. The string is not parsed by the CSS processor. If the subject of the
selector doesn’t have an attribute X, an empty string is returned. The
case-sensitivity of attribute names depends on the document language. Note. In
CSS 2.1, it is not possible to refer to attribute values for other elements than the
subject of the selector.

The ’display’ property controls whether the content is placed in a block, inline, or
marker box.

Example(s):

The following rule causes the string "Chapter: " to be generated before each H1
element:

H1:before {
 content: "Chapter: ";
 display: inline;
}

Authors may include newlines in the generated content by writing the "\A" escape
sequence in one of the strings after the ’content’ property. This inserted line break is
still subject to the ’white-space’ property. See "Strings" [p. 54] and "Characters and
case" [p. 42] for more information on the "\A" escape sequence.

Example(s):

h1:before {
 display: block;
 text-align: center;
 content: "chapter\A hoofdstuk\A chapitre"
}

Generated content does not alter the document tree. In particular, it is not fed back
to the document language processor (e.g., for reparsing).

12.3 Quotation marks
In CSS 2.1, authors may specify, in a style-sensitive and context-dependent manner,
how user agents should render quotation marks. The ’quotes’ property specifies
pairs of quotation marks for each level of embedded quotation. The ’content’ prop-
erty gives access to those quotation marks and causes them to be inserted before
and after a quotation.

18015 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 91

12.3.1 Specifying quotes with the ’quotes’ property

’quotes’

Value: [<string> <string>]+ | none | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies quotation marks for any number of embedded quotations.
Values have the following meanings:

none
The ’open-quote’ and ’close-quote’ values of the ’content’ property produce no
quotation marks.

[<string> <string>]+
Values for the ’open-quote’ and ’close-quote’ values of the ’content’ property are
taken from this list of pairs of quotation marks (opening and closing). The first
(leftmost) pair represents the outermost level of quotation, the second pair the
first level of embedding, etc. The user agent must apply the appropriate pair of
quotation marks according to the level of embedding.

Example(s):

For example, applying the following style sheet:

/* Specify pairs of quotes for two levels in two languages */
q:lang(en) { quotes: ’"’ ’"’ "’" "’" }
q:lang(no) { quotes: "«" "»" ’"’ ’"’ }

/* Insert quotes before and after Q element content */
q:before { content: open-quote }
q:after { content: close-quote }

to the following HTML fragment:

<HTML lang="en">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Quote me!</Q>
 </BODY>
</HTML>

would allow a user agent to produce:

15 Sep 2003 14:50181

Generated content, automatic numbering, and lists

"Quote me!"

while this HTML fragment:

<HTML lang="no">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Trøndere gråter når <Q>Vinsjan på kaia</Q> blir deklamert.</Q>
 </BODY>
</HTML>

would produce:

«Trøndere gråter når "Vinsjan på kaia" blir deklamert.»

Note. While the quotation marks specified by ’quotes’ in the previous examples
are conveniently located on computer keyboards, high quality typesetting would
require different ISO 10646 characters. The following informative table lists some of
the ISO 10646 quotation mark characters:

18215 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 92

Character
Approximate

rendering
ISO 10646
code (hex)

Description

" " 0022
QUOTATION MARK [the ASCII
double quotation mark]

’ ’ 0027
APOSTROPHE [the ASCII single
quotation mark]

‹ < 2039
SINGLE LEFT-POINTING ANGLE
QUOTATION MARK

› > 203A
SINGLE RIGHT-POINTING
ANGLE QUOTATION MARK

« « 00AB
LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK

» » 00BB
RIGHT-POINTING DOUBLE
ANGLE QUOTATION MARK

‘ ‘ 2018
LEFT SINGLE QUOTATION MARK
[single high-6]

’ ’ 2019
RIGHT SINGLE QUOTATION
MARK [single high-9]

“ ‘‘ 201C
LEFT DOUBLE QUOTATION
MARK [double high-6]

” ’’ 201D
RIGHT DOUBLE QUOTATION
MARK [double high-9]

„ ,, 201E
DOUBLE LOW-9 QUOTATION
MARK [double low-9]

12.3.2 Inserting quotes with the ’content’ property
Quotation marks are inserted in appropriate places in a document with the
’open-quote’ and ’close-quote’ values of the ’content’ property. Each occurrence of
’open-quote’ or ’close-quote’ is replaced by one of the strings from the value of
’quotes’, based on the depth of nesting.

’Open-quote’ refers to the first of a pair of quotes, ’close-quote’ refers to the
second. Which pair of quotes is used depends on the nesting level of quotes: the
number of occurrences of ’open-quote’ in all generated text before the current occur-
rence, minus the number of occurrences of ’close-quote’. If the depth is 0, the first
pair is used, if the depth is 1, the second pair is used, etc. If the depth is greater than
the number of pairs, the last pair is repeated. A ’close-quote’ that would make the
depth negative is in error and is ignored (at rendering time): the depth stays at 0 and

15 Sep 2003 14:50183

Generated content, automatic numbering, and lists

no quote mark is rendered (although the rest of the ’content’ property’s value is still
inserted).

Note. The quoting depth is independent of the nesting of the source document or
the formatting structure.

Some typographic styles require open quotation marks to be repeated before
every paragraph of a quote spanning several paragraphs, but only the last para-
graph ends with a closing quotation mark. In CSS, this can be achieved by inserting
"phantom" closing quotes. The keyword ’no-close-quote’ decrements the quoting
level, but does not insert a quotation mark.

Example(s):

The following style sheet puts opening quotation marks on every paragraph in a
BLOCKQUOTE, and inserts a single closing quote at the end:

blockquote p:before { content: open-quote }
blockquote p:after { content: no-close-quote }
blockquote p.last:after { content: close-quote }

This relies on the last paragraph being marked with a class "last".

For symmetry, there is also a ’no-open-quote’ keyword, which inserts nothing, but
increments the quotation depth by one.

12.4 Automatic counters and numbering
Automatic numbering in CSS2 is controlled with two properties, ’counter-increment’
and ’counter-reset’. The counters defined by these properties are used with the
counter() and counters() functions of the the ’content’ property.

’counter-reset’

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

’counter-increment’

18415 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 93

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

The ’counter-increment’ property accepts one or more names of counters (identi-
fiers), each one optionally followed by an integer. The integer indicates by how much
the counter is incremented for every occurrence of the element. The default incre-
ment is 1. Zero and negative integers are allowed.

The ’counter-reset’ property also contains a list of one or more names of counters,
each one optionally followed by an integer. The integer gives the value that the
counter is set to on each occurrence of the element. The default is 0.

If ’counter-increment’ refers to a counter that is not in the scope (see below
[p. 186]) of any ’counter-reset’, the counter is assumed to have been reset to 0 by
the root element.

Example(s):

This example shows a way to number chapters and sections with "Chapter 1",
"1.1", "1.2", etc.

H1:before {
 content: "Chapter " counter(chapter) ". ";
 counter-increment: chapter; /* Add 1 to chapter */
 counter-reset: section; /* Set section to 0 */
}
H2:before {
 content: counter(chapter) "." counter(section) " ";
 counter-increment: section;
}

If an element increments/resets a counter and also uses it (in the ’content’ prop-
erty of its :before or :after pseudo-element), the counter is used after being incre-
mented/reset.

If an element both resets and increments a counter, the counter is reset first and
then incremented.

The ’counter-reset’ property follows the cascading rules. Thus, due to cascading,
the following style sheet:

H1 { counter-reset: section -1 }
H1 { counter-reset: imagenum 99 }

will only reset ’imagenum’. To reset both counters, they have to be specified
together:

15 Sep 2003 14:50185

Generated content, automatic numbering, and lists

H1 { counter-reset: section -1 imagenum 99 }

12.4.1 Nested counters and scope
Counters are "self-nesting", in the sense that re-using a counter in a child element
automatically creates a new instance of the counter. This is important for situations
like lists in HTML, where elements can be nested inside themselves to arbitrary
depth. It would be impossible to define uniquely named counters for each level.

Example(s):

Thus, the following suffices to number nested list items. The result is very similar
to that of setting ’display:list-item’ and ’list-style: inside’ on the LI element:

OL { counter-reset: item }
LI { display: block }
LI:before { content: counter(item) ". "; counter-increment: item }

The self-nesting is based on the principle that every element that has a
’counter-reset’ for a counter X, creates a fresh counter X, the scope of which is the
element, its following siblings, and all the descendants of the element and its follow-
ing siblings.

In the example above, an OL will create a counter, and all children of the OL will
refer to that counter.

If we denote by item[n] the nth instance of the "item" counter, and by "(" and ")" the
beginning and end of a scope, then the following HTML fragment will use the indi-
cated counters. (We assume the style sheet as given in the example above).

 <!-- (set item[0] to 0 -->
 item <!-- increment item[0] (= 1) -->
 item <!-- increment item[0] (= 2) -->
 <!-- (set item[1] to 0 -->
 item <!-- increment item[1] (= 1) -->
 item <!-- increment item[1] (= 2) -->
 item <!-- increment item[1] (= 3) -->
 <!-- (set item[2] to 0 -->
 item <!-- increment item[2] (= 1) -->
 <!--) -->
 <!-- (set item[3] to 0 -->
 <!-- increment item[3] (= 1) -->
 <!--) -->
 item <!-- increment item[1] (= 4) -->
 <!--) -->
 item <!-- increment item[0] (= 3) -->
 item <!-- increment item[0] (= 4) -->
 <!--) -->
 <!-- (reset item[4] to 0 -->
 item <!-- increment item[4] (= 1) -->
 item <!-- increment item[4] (= 2) -->
 <!--) -->

18615 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 94

The ’counters()’ function generates a string composed of the values of all counters
with the same name, separated by a given string.

Example(s):

The following style sheet numbers nested list items as "1", "1.1", "1.1.1", etc.

OL { counter-reset: item }
LI { display: block }
LI:before { content: counters(item, "."); counter-increment: item }

12.4.2 Counter styles
By default, counters are formatted with decimal numbers, but all the styles available
for the ’list-style-type’ property are also available for counters. The notation is:

counter(name)

for the default style, or:

counter(name, ’list-style-type’)

All the styles are allowed, including ’disc’, ’circle’, ’square’, and ’none’.

Example(s):

H1:before { content: counter(chno, upper-latin) ". " }
H2:before { content: counter(section, upper-roman) " - " }
BLOCKQUOTE:after { content: " [" counter(bq, hebrew) "]" }
DIV.note:before { content: counter(notecntr, disc) " " }
P:before { content: counter(p, none) }

12.4.3 Counters in elements with ’display: none’
An element that is not displayed (’display’ set to ’none’) cannot increment or reset a
counter.

Example(s):

For example, with the following style sheet, H2s with class "secret" do not incre-
ment ’count2’.

H2.secret {counter-increment: count2; display: none}

Elements with ’visibility’ set to ’hidden’, on the other hand, do increment counters.

12.5 Lists
CSS 2.1 offers basic visual formatting of lists. An element with ’display: list-item’
generates a principal box [p. 109] for the element’s content and an optional marker
box as a visual indication that the element is a list item.

15 Sep 2003 14:50187

Generated content, automatic numbering, and lists

The list properties describe basic visual formatting of lists: they allow style sheets
to specify the marker type (image, glyph, or number), and the marker position with
respect to the principal box (outside it or within it before content). They do not allow
authors to specify distinct style (colors, fonts, alignment, etc.) for the list marker or
adjust its position with respect to the principal box, these may be derived from the
principal box.

The background properties [p. 206] apply to the principal box only; an ’outside’
marker box is transparent.

12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’ properties

’list-style-type’

Value: disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-latin | upper-latin | none |
inherit

Initial: disc
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies appearance of the list item marker if ’list-style-image’ has
the value ’none’ or if the image pointed to by the URI cannot be displayed. The value
’none’ specifies no marker, otherwise there are three types of marker: glyphs,
numbering systems, and alphabetic systems.

Glyphs are specified with disc, circle, and square. Their exact rendering depends
on the user agent.

Numbering systems are specified with:

decimal
Decimal numbers, beginning with 1.

decimal-leading-zero
Decimal numbers padded by initial zeros (e.g., 01, 02, 03, ..., 98, 99).

lower-roman
Lowercase roman numerals (i, ii, iii, iv, v, etc.).

upper-roman
Uppercase roman numerals (I, II, III, IV, V, etc.).

A user agent that does not recognize a numbering system should use ’decimal’.

18815 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 95

Alphabetic systems are specified with:

lower-latin or lower-alpha
Lowercase ascii letters (a, b, c, ... z).

upper-latin or upper-alpha
Uppercase ascii letters (A, B, C, ... Z).

This specification does not define how alphabetic systems wrap at the end of the
alphabet. For instance, after 26 list items, ’lower-latin’ rendering is undefined. There-
fore, for long lists, we recommend that authors specify true numbers.

For example, the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Lowercase latin numbering</TITLE>
 <STYLE type="text/css">
 ol { list-style-type: lower-roman }
 </STYLE>
 </HEAD>
 <BODY>

 This is the first item.
 This is the second item.
 This is the third item.

 </BODY>
</HTML>

might produce something like this:

 i This is the first item.
 ii This is the second item.
iii This is the third item.

The list marker alignment (here, right justified) depends on the user agent.

’list-style-image’

Value: <uri> | none | inherit
Initial: none
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: absolute URI or ’none’

This property sets the image that will be used as the list item marker. When the
image is available, it will replace the marker set with the ’list-style-type’ marker.

15 Sep 2003 14:50189

Generated content, automatic numbering, and lists

Example(s):

The following example sets the marker at the beginning of each list item to be the
image "ellipse.png".

ul { list-style-image: url("http://png.com/ellipse.png") }

’list-style-position’

Value: inside | outside | inherit
Initial: outside
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the position of the marker box in the principal block box.
Values have the following meanings:

outside
The marker box is outside the principal block box. CSS 2.1 does not specify the
precise location of the marker box.

inside
The marker box is the first inline box in the principal block box, after which the
element’s content flows.

For example:

<HTML>
 <HEAD>
 <TITLE>Comparison of inside/outside position</TITLE>
 <STYLE type="text/css">
 ul { list-style: outside }
 ul.compact { list-style: inside }
 </STYLE>
 </HEAD>
 <BODY>

 first list item comes first
 second list item comes second

 <UL class="compact">
 first list item comes first
 second list item comes second

 </BODY>
</HTML>

19015 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 96

The above example may be formatted as:

first list item
comes first

second list item
comes second

 first list
item comes first

 second list
item comes second

The left sides of the
list item boxes are not
affected by marker placement

In right-to-left text, the markers would have been on the right side of the box.

’list-style’

Value: [<’list-style-type’> || <’list-style-position’> ||
<’list-style-image’>] | inherit

Initial: see individual properties
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’list-style’ property is a shorthand notation for setting the three properties
’list-style-type’, ’list-style-image’, and ’list-style-position’ at the same place in the style
sheet.

Example(s):

ul { list-style: upper-roman inside } /* Any "ul" element */
ul > li > ul { list-style: circle outside } /* Any "ul" child
 of an "li" child
 of a "ul" element */

Although authors may specify ’list-style’ information directly on list item elements
(e.g., "li" in HTML), they should do so with care. The following rules look similar, but
the first declares a descendant selector [p. 62] and the second a (more specific)
child selector. [p. 63]

15 Sep 2003 14:50191

Generated content, automatic numbering, and lists

ol.alpha li { list-style: lower-alpha } /* Any "li" descendant of an "ol" */
ol.alpha > li { list-style: lower-alpha } /* Any "li" child of an "ol" */

Authors who use only the descendant selector [p. 62] may not achieve the results
they expect. Consider the following rules:

<HTML>
 <HEAD>
 <TITLE>WARNING: Unexpected results due to cascade</TITLE>
 <STYLE type="text/css">
 ol.alpha li { list-style: lower-alpha }
 ul li { list-style: disc }
 </STYLE>
 </HEAD>
 <BODY>
 <OL class="alpha">
 level 1

 level 2

 </BODY>
</HTML>

The desired rendering would have level 1 list items with ’lower-alpha’ labels and
level 2 items with ’disc’ labels. However, the cascading order [p. 83] will cause the
first style rule (which includes specific class information) to mask the second. The
following rules solve the problem by employing a child selector [p. 63] instead:

ol.alpha > li { list-style: lower-alpha }
ul li { list-style: disc }

Another solution would be to specify ’list-style’ information only on the list type
elements:

ol.alpha { list-style: lower-alpha }
ul { list-style: disc }

Inheritance will transfer the ’list-style’ values from OL and UL elements to LI
elements. This is the recommended way to specify list style information.

Example(s):

A URI value may be combined with any other value, as in:

ul { list-style: url("http://png.com/ellipse.png") disc }

In the example above, the ’disc’ will be used when the image is unavailable.

A value of ’none’ for the ’list-style’ property sets both ’list-style-type’ and
’list-style-image’ to ’none’:

ul { list-style: none }

19215 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 97

The result is that no list-item marker is displayed.

15 Sep 2003 14:50193

Generated content, automatic numbering, and lists

19415 Sep 2003 14:50

Generated content, automatic numbering, and lists

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 98

13 Paged media
Contents

........... 19513.1 Introduction to paged media

........... 19613.2 Page boxes: the @page rule

............. 19613.2.1 Page margins

..... 197Rendering page boxes that do not fit a target sheet

........ 197Positioning the page box on the sheet

.... 19713.2.2 Page selectors: selecting left, right, and first pages

......... 19813.2.3 Content outside the page box

............... 19913.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

.............. 199’page-break-inside’

...... 20013.3.2 Breaks inside elements: ’orphans’, ’widows’

............ 20113.3.3 Allowed page breaks

............ 20213.3.4 Forced page breaks

............ 20213.3.5 "Best" page breaks

........... 20213.4 Cascading in the page context

13.1 Introduction to paged media
Paged media (e.g., paper, transparencies, pages that are displayed on computer
screens, etc.) differ from continuous media [p. 89] in that the content of the docu-
ment is split into one or more discrete pages. To handle page breaks, CSS2 extends
the visual formatting model [p. 107] as follows:

1. The page box [p. 196] extends the box model [p. 91] to allow authors to specify
page margins.

2. The page model extends the visual formatting model [p. 107] to account for
page breaks. [p. 199]

The CSS 2.1 page model specifies how a document is formatted within the page
box [p. 196] . The page box does not necessarily correspond to the real sheet where
the document will ultimately be rendered (paper, transparency, screen, etc.). The
user agent is responsible for transferring the page box to the sheet. Transfer possi-
bilities include:

Transferring one page box to one sheet (e.g., single-sided printing).
Transferring two page boxes to both sides of the same sheet (e.g., double-sided
printing).
Transferring N (small) page boxes to one sheet (called "n-up").
Transferring one (large) page box to N x M sheets (called "tiling").
Creating signatures. A signature is a group of pages printed on a sheet, which,

15 Sep 2003 14:50195

Paged media

when folded and trimmed like a book, appear in their proper sequence.
Printing one document to several output trays.
Outputting to a file.

13.2 Page boxes: the @page rule
The page box is a rectangular region that contains two areas:

The page area. The page area includes the boxes laid out on that page. The
edges of the page area act as the initial containing block [p. 149] for layout that
occurs between page breaks.
The margin area, which surrounds the page area.

Authors can specify the margins of a page box inside an @page rule. An @page
rule consists of the keyword "@page", followed by an optional page selector,
followed by a block of declarations. The declarations are said to be in the page
context.

The page selector specifies for which pages the declarations apply. In CSS 2.1,
page selectors may designate the first page, all left pages, or all right pages

13.2.1 Page margins
The margin properties [p. 95] (’margin-top’, ’margin-right’, ’margin-bottom’,
’margin-left’, and ’margin’) apply within the page context [p. 196] . The following
diagram shows the relationships between the sheet, page box, and page margins:

Sheet

Page box

A

B

C

D

A: margin−top
B: margin−right
C: margin−bottom
D: margin−left

Page content

19615 Sep 2003 14:50

Paged media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 99

Example(s):

Here is a simple example which sets all page margins on all pages:

@page {
 margin: 3cm;
}

The page context [p. 196] has no notion of fonts, so ’em’ and ’ex’ units are not
allowed. Percentage values on the margin properties are relative to the dimensions
of the page box [p. 196] ; for left and right margins, they refer to page box width
while for top and bottom margins, they refer to page box height. All other units asso-
ciated with the respective CSS 2.1 properties are allowed.

Due to negative margin values (either on the page box or on elements) or absolute
positioning [p. 129] content may end up outside the page box, but this content may
be "cut" — by the user agent, the printer, or ultimately, the paper cutter.

The computed value of box margins at the top or bottom of the page area is zero.

Rendering page boxes that do not fit a target sheet

If a page box does not fit the target sheet dimensions, the user agent may choose to:

Rotate the page box 90° if this will make the page box fit.
Scale the page to fit the target.

The user agent should consult the user before performing these operations.

Positioning the page box on the sheet

When the page box is smaller than the target size, the user agent is free to place the
page box anywhere on the sheet. However, it is recommended that the page box be
centered on the sheet since this will align double-sided pages and avoid accidental
loss of information that is printed near the edge of the sheet.

13.2.2 Page selectors: selecting left, right, and first pages
When printing double-sided documents, the page boxes [p. 196] on left and right
pages may be different. This can be expressed through two CSS pseudo-classes
that may be used in page selectors.

All pages are automatically classified by user agents into either the :left or :right
pseudo-class.

Example(s):

15 Sep 2003 14:50197

Paged media

@page :left {
 margin-left: 4cm;
 margin-right: 3cm;
}

@page :right {
 margin-left: 3cm;
 margin-right: 4cm;
}

Authors may also specify style for the first page of a document with the :first
pseudo-class:

Example(s):

@page { margin: 2cm } /* All margins set to 2cm */

@page :first {
 margin-top: 10cm /* Top margin on first page 10cm */
}

Properties specified in a :left or :right @page rule override those specified in an
@page rule that has no pseudo-class specified. Properties specified in a :first
@page rule override those specified in :left or :right @page rules.

Margin declarations on left, right, and first pages may result in different page area
[p. 196] widths. To simplify implementations, user agents may use a single page
area width on left, right, and first pages. In this case, the page area width of the first
page should be used.

13.2.3 Content outside the page box
When formatting content in the page model, some content may end up outside the
page box. For example, an element whose ’white-space’ property has the value ’pre’
may generate a box that is wider than the page box. Also, when boxes are posi-
tioned absolutely [p. 129] , they may end up in "inconvenient" locations. For
example, images may be placed on the edge of the page box or 100,000 meters
below the page box.

The exact formatting of such elements lies outside the scope of this specification.
However, we recommend that authors and user agents observe the following
general principles concerning content outside the page box:

Content should be allowed slightly beyond the page box to allow pages to
"bleed".
User agents should avoid generating a large number of empty page boxes to
honor the positioning of elements (e.g., you don’t want to print 100 blank
pages).
Authors should not position elements in inconvenient locations just to avoid
rendering them.
User agents may handle boxes positioned outside the page box in several
ways, including discarding them or creating page boxes for them at the end of

19815 Sep 2003 14:50

Paged media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 100

the document.

13.3 Page breaks
This section describes page breaks in CSS 2.1. Five properties indicate where the
user agent may or should break pages, and on what page (left or right) the subse-
quent content should resume. Each page break ends layout in the current page box
[p. 196] and causes remaining pieces of the document tree [p. 33] to be laid out in a
new page box.

13.3.1 Page break properties: ’page-break-before’,
’page-break-after’, ’page-break-inside’

’page-break-before’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

’page-break-after’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

’page-break-inside’

Value: avoid | auto | inherit
Initial: auto
Applies to: block-level elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

15 Sep 2003 14:50199

Paged media

Values for these properties have the following meanings:

auto
Neither force nor forbid a page break before (after, inside) the generated box.

always
Always force a page break before (after) the generated box.

avoid
Avoid a page break before (after, inside) the generated box.

left
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a left page.

right
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a right page.

Whether the first page of a document is :left or :right depends on the major writing
direction of the document. A conforming user agent may interpret the values ’left’
and ’right’ as ’always’.

A potential page break location is typically under the influence of the parent
element’s ’page-break-inside’ property, the ’page-break-after’ property of the preced-
ing element, and the ’page-break-before’ property of the following element. When
these properties have values other than ’auto’, the values ’always’, ’left’, and ’right’
take precedence over ’avoid’.

These properties only apply to block level elements that are in the normal flow of
the root element.

13.3.2 Breaks inside elements: ’orphans’, ’widows’

’orphans’

Value: <integer> | inherit
Initial: 2
Applies to: block-level elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

’widows’

20015 Sep 2003 14:50

Paged media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 101

Value: <integer> | inherit
Initial: 2
Applies to: block-level elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

The ’orphans’ property specifies the minimum number of lines of a paragraph that
must be left at the bottom of a page. The ’widows’ property specifies the minimum
number of lines of a paragraph that must be left at the top of a page. Examples of
how they are used to control page breaks are given below.

For information about paragraph formatting, please consult the section on line
boxes [p. 118] .

13.3.3 Allowed page breaks
In the normal flow, page breaks can occur at the following places:

1. In the vertical margin between block boxes. When a page break occurs here,
the computed values [p. 80] of the relevant ’margin-top’ and ’margin-bottom’
properties are set to ’0’.

2. Between line boxes [p. 118] inside a block [p. 109] box.

These breaks are subject to the following rules:

Rule A: Breaking at (1) is allowed only if the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at
this margin allow it, which is when at least one of them has the value ’always’,
’left’, or ’right’, or when all of them are ’auto’.
Rule B: However, if all of them are ’auto’ and the nearest common ancestor of
all the elements has a ’page-break-inside’ value of ’avoid’, then breaking here is
not allowed.
Rule C: Breaking at (2) is allowed only if the number of line boxes [p. 118]
between the break and the start of the enclosing block box is the value of
’orphans’ or more, and the number of line boxes between the break and the end
of the box is the value of ’widows’ or more.
Rule D: In addition, breaking at (2) is allowed only if the ’page-break-inside’
property is ’auto’.

If the above doesn’t provide enough break points to keep content from overflowing
the page boxes, then rules B and D are dropped in order to find additional break-
points.

If that still does not lead to sufficient break points, rules A and C are dropped as
well, to find still more break points.

15 Sep 2003 14:50201

Paged media

13.3.4 Forced page breaks
A page break must occur at (1) if, among the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at this
margin, there is at least one with the value ’always’, ’left’, or ’right’.

13.3.5 "Best" page breaks
CSS2 does not define which of a set of allowed page breaks must be used; CSS2
does not forbid a user agent from breaking at every possible break point, or not to
break at all. But CSS2 does recommend that user agents observe the following
heuristics (while recognizing that they are sometimes contradictory):

Break as few times as possible.
Make all pages that don’t end with a forced break appear to have about the
same height.
Avoid breaking inside a block that has a border.
Avoid breaking inside a table.
Avoid breaking inside a floated element

Example(s):

Suppose, for example, that the style sheet contains ’orphans: 4’, ’widows: 2’, and
there are 20 lines (line boxes [p. 118]) available at the bottom of the current page:

If a paragraph at the end of the current page contains 20 lines or fewer, it should
be placed on the current page.
If the paragraph contains 21 or 22 lines, the second part of the paragraph must
not violate the ’widows’ constraint, and so the second part must contain exactly
two lines
If the paragraph contains 23 lines or more, the first part should contain 20 lines
and the second part the remaining lines.

Now suppose that ’orphans’ is ’10’, ’widows’ is ’20’, and there are 8 lines available
at the bottom of the current page:

If a paragraph at the end of the current page contains 8 lines or fewer, it should
be placed on the current page.
If the paragraph contains 9 lines or more, it cannot be split (that would violate
the orphan constraint), so it should move as a block to the next page.

13.4 Cascading in the page context
Declarations in the page context [p. 196] obey the cascade [p. 79] just like normal
CSS2 declarations.

20215 Sep 2003 14:50

Paged media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 102

Example(s):

Consider the following example:

@page {
 margin-left: 3cm;
}

@page :left {
 margin-left: 4cm;
}

Due to the higher specificity [p. 83] of the pseudo-class selector, the left margin on
left pages will be ’4cm’ and all other pages (i.e., the right pages) will have a left
margin of ’3cm’.

15 Sep 2003 14:50203

Paged media

20415 Sep 2003 14:50

Paged media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 103

14 Colors and Backgrounds
Contents

......... 20514.1 Foreground color: the ’color’ property

.............. 20514.2 The background
14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’, and

............... 206’background’

.............. 21214.3 Gamma correction

CSS properties allow authors to specify the foreground color and background of
an element. Backgrounds may be colors or images. Background properties allow
authors to position a background image, repeat it, and declare whether it should be
fixed with respect to the viewport [p. 108] or scrolled along with the document.

See the section on color units [p. 53] for the syntax of valid color values.

14.1 Foreground color: the ’color’ property
’color’

Value: <color> | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property describes the foreground color of an element’s text content. There
are different ways to specify red:

Example(s):

em { color: red } /* predefined color name */
em { color: rgb(255,0,0) } /* RGB range 0-255 */

14.2 The background
Authors may specify the background of an element (i.e., its rendering surface) as
either a color or an image. In terms of the box model [p. 91] , "background" refers to
the background of the content [p. 91] , padding [p. 91] and border [p. 91] areas.
Border colors and styles are set with the border properties [p. 100] . Margins are
always transparent.

15 Sep 2003 14:50205

Colors and backgrounds

Background properties are not inherited, but the parent box’s background will
shine through by default because of the initial ’transparent’ value on ’back-
ground-color’.

The background of the root element becomes the background of the canvas and
covers the entire canvas [p. 28] , anchored at the same point as it would be if it was
painted only for the root element itself. The root element does not paint this back-
ground again.

For HTML documents, however, we recommend that authors specify the back-
ground for the BODY element rather than the HTML element. User agents should
observe the following precedence rules to fill in the background of the canvas of
HTML documents: if the value of the ’background’ property for the HTML element is
different from ’transparent’ then use it, else use the value of the ’background’ prop-
erty for the BODY element. If the resulting value is ’transparent’, the rendering is
undefined. This does not apply to XHTML documents.

According to these rules, the canvas underlying the following HTML document will
have a "marble" background:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
 <TITLE>Setting the canvas background</TITLE>
 <STYLE type="text/css">
 BODY { background: url("http://example.com/marble.png") }
 </STYLE>
 <P>My background is marble.

Note that the rule for the BODY element will work even though the BODY tag has
been omitted in the HTML source since the HTML parser will infer the missing tag.

Backgrounds of elements that form a stacking context (see the ’z-index’ property)
are painted at the bottom of the element’s stacking context, below anything in that
stacking context.

14.2.1 Background properties: ’background-color’, ’back-
ground-image’, ’background-repeat’, ’background-attach-
ment’, ’background-position’, and ’background’

’background-color’

Value: <color> | transparent | inherit
Initial: transparent
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

20615 Sep 2003 14:50

Colors and backgrounds

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 104

This property sets the background color of an element, either a <color> value or
the keyword ’transparent’, to make the underlying colors shine through.

Example(s):

h1 { background-color: #F00 }

’background-image’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute URI

This property sets the background image of an element. When setting a back-
ground image, authors should also specify a background color that will be used
when the image is unavailable. When the image is available, it is rendered on top of
the background color. (Thus, the color is visible in the transparent parts of the
image).

Values for this property are either <uri>, to specify the image, or ’none’, when no
image is used.

Example(s):

body { background-image: url("marble.png") }
p { background-image: none }

’background-repeat’

Value: repeat | repeat-x | repeat-y | no-repeat | inherit
Initial: repeat
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether the image is
repeated (tiled), and how. All tiling covers the content [p. 91] , padding [p. 91] and
border [p. 91] areas of a box.

The tiling and positioning of the background-image on inline elements is undefined
in this specification. A future level of CSS may define the tiling and positioning of the
background-image on inline elements.

15 Sep 2003 14:50207

Colors and backgrounds

Values have the following meanings:

repeat
The image is repeated both horizontally and vertically.

repeat-x
The image is repeated horizontally only.

repeat-y
The image is repeated vertically only.

no-repeat
The image is not repeated: only one copy of the image is drawn.

Example(s):

body {
 background: white url("pendant.png");
 background-repeat: repeat-y;
 background-position: center;
}

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

center image

One copy of the background image is centered, and other copies are put above
and below it to make a vertical band behind the element.

20815 Sep 2003 14:50

Colors and backgrounds

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 105

’background-attachment’

Value: scroll | fixed | inherit
Initial: scroll
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether it is fixed with
regard to the viewport [p. 108] (’fixed’) or scrolls along with the containing block
(’scroll’).

Note that there is only one viewport per view. If an element has a scrolling mecha-
nism (see ’overflow’), a ’fixed’ background doesn’t move with the element, and a
’scroll’ background doesn’t move with the scrolling mechanism.

Even if the image is fixed, it is still only visible when it is in the background,
padding or border area of the element. Thus, unless the image is tiled (’back-
ground-repeat: repeat’), it may be invisible.

Example(s):

This example creates an infinite vertical band that remains "glued" to the viewport
when the element is scrolled.

body {
 background: red url("pendant.png");
 background-repeat: repeat-y;
 background-attachment: fixed;
}

User agents that do not support ’fixed’ backgrounds (for example due to limitations
of the hardware platform) should ignore declarations with the keyword ’fixed’. For
example:

body {
 background: white url(paper.png) scroll; /* for all UAs */
 background: white url(ledger.png) fixed; /* for UAs that do fixed backgrounds */
}

See the section on conformance [p. 34] for details.

’background-position’

15 Sep 2003 14:50209

Colors and backgrounds

Value: [[<percentage> | <length> | top | center | bottom] || [<percent-
age> | <length> | left | center | right]] | inherit

Initial: 0% 0%
Applies to: block-level and replaced elements
Inherited: no
Percentages: refer to the size of the box itself
Media: visual
Computed value: for <length> the absolute value, otherwise a percentage

If a background image has been specified, this property specifies its initial posi-
tion. Values have the following meanings:

<percentage> <percentage>
With a value pair of ’0% 0%’, the upper left corner of the image is aligned with
the upper left corner of the box’s padding edge [p. 92] . A value pair of ’100%
100%’ places the lower right corner of the image in the lower right corner of
padding area. With a value pair of ’14% 84%’, the point 14% across and 84%
down the image is to be placed at the point 14% across and 84% down the
padding area.

<length> <length>
With a value pair of ’2cm 1cm’, the upper left corner of the image is placed 2cm
to the right and 1cm below the upper left corner of the padding area.

top left and left top
Same as ’0% 0%’.

top, top center, and center top
Same as ’50% 0%’.

right top and top right
Same as ’100% 0%’.

left, left center, and center left
Same as ’0% 50%’.

center and center center
Same as ’50% 50%’.

right, right center, and center right
Same as ’100% 50%’.

bottom left and left bottom
Same as ’0% 100%’.

bottom, bottom center, and center bottom
Same as ’50% 100%’.

bottom right and right bottom
Same as ’100% 100%’.

If only one percentage or length value is given, it sets the horizontal position only,
and the vertical position will be 50%. If two values are given, the horizontal position
comes first. Combinations of keyword, length and percentage values are allowed,
(e.g., ’50% 2cm’ or ’center 2cm’ or ’center 10%’). For combinations of keyword and
non-keyword values, ’left’ and ’right’ may only be used as the first value, and ’top’
and ’bottom’ may only be used as the second value. Negative positions are allowed.

21015 Sep 2003 14:50

Colors and backgrounds

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 106

The computed value of background-position for the purpose of inheritance is
undefined, since the allowed values on this property may have different effects in a
child element due to differences in size and position of their respective boxes.

Example(s):

body { background: url("banner.jpeg") right top } /* 100% 0% */
body { background: url("banner.jpeg") top center } /* 50% 0% */
body { background: url("banner.jpeg") center } /* 50% 50% */
body { background: url("banner.jpeg") bottom } /* 50% 100% */

If the background image is fixed within the viewport (see the ’background-attach-
ment’ property), the image is placed relative to the viewport instead of the element’s
padding area. For example,

Example(s):

body {
 background-image: url("logo.png");
 background-attachment: fixed;
 background-position: 100% 100%;
 background-repeat: no-repeat;
}

In the example above, the (single) image is placed in the lower-right corner of the
viewport.

’background’

Value: [<’background-color’> || <’background-image’> || <’back-
ground-repeat’> || <’background-attachment’> || <’back-
ground-position’>] | inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: allowed on ’background-position’
Media: visual
Computed value: see individual properties

The ’background’ property is a shorthand property for setting the individual back-
ground properties (i.e., ’background-color’, ’background-image’, ’background-repeat’,
’background-attachment’ and ’background-position’) at the same place in the style
sheet.

Given a valid declaration, the ’background’ property first sets all the individual
background properties to their initial values, then assigns explicit values given in the
declaration.

Example(s):

15 Sep 2003 14:50211

Colors and backgrounds

In the first rule of the following example, only a value for ’background-color’ has
been given and the other individual properties are set to their initial value. In the
second rule, all individual properties have been specified.

BODY { background: red }
P { background: url("chess.png") gray 50% repeat fixed }

14.3 Gamma correction
For information about gamma issues, please consult the Gamma Tutorial in the PNG
specification ([PNG10]).

In the computation of gamma correction, UAs displaying on a CRT may assume
an ideal CRT and ignore any effects on apparent gamma caused by dithering. That
means the minimal handling they need to do on current platforms is:

PC using MS-Windows
none

Unix using X11
none

Mac using QuickDraw
apply gamma 1.45 [ICC32] (ColorSync-savvy applications may simply pass the
sRGB ICC profile to ColorSync to perform correct color correction)

SGI using X
apply the gamma value from /etc/config/system.glGammaVal (the
default value being 1.70; applications running on Irix 6.2 or above may simply
pass the sRGB ICC profile to the color management system)

NeXT using NeXTStep
apply gamma 2.22

"Applying gamma" means that each of the three R, G and B must be converted to
R’=Rgamma, G’=Ggamma, B’=Bgamma, before being handed to the OS.

This may be done rapidly by building a 256-element lookup table once per
browser invocation thus:

for i := 0 to 255 do
 raw := i / 255.0;
 corr := pow (raw, gamma);
 table[i] := trunc (0.5 + corr * 255.0)
end

which then avoids any need to do transcendental math per color attribute, far less
per pixel.

21215 Sep 2003 14:50

Colors and backgrounds

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 107

15 Fonts
Contents

............... 21315.1 Introduction

............ 21315.2 Font matching algorithm

......... 21415.3 Font family: the ’font-family’ property

.......... 21615.4 Font styling: the ’font-style’ property

......... 21615.5 Small-caps: the ’font-variant’ property

........ 21715.6 Font boldness: the ’font-weight’ property

.......... 22015.7 Font size: the ’font-size’ property

........ 22115.8 Shorthand font property: the ’font’ property

15.1 Introduction
Setting font properties will be among the most common uses of style sheets. Unfor-
tunately, there exists no well-defined and universally accepted taxonomy for classify-
ing fonts, and terms that apply to one font family may not be appropriate for others.
E.g. ’italic’ is commonly used to label slanted text, but slanted text may also be
labeled as being Oblique, Slanted, Incline, Cursive or Kursiv. Therefore it is not a
simple problem to map typical font selection properties to a specific font.

15.2 Font matching algorithm
Because there is no accepted, universal taxonomy of font properties, matching of
properties to font faces must be done carefully. The properties are matched in a
well-defined order to insure that the results of this matching process are as consis-
tent as possible across UAs (assuming that the same library of font faces is
presented to each of them).

1. The User Agent makes (or accesses) a database of relevant CSS 2.1 properties
of all the fonts of which the UA is aware. If there are two fonts with exactly the
same properties, the user agent selects one of them.

2. At a given element and for each character in that element, the UA assembles
the font properties applicable to that element. Using the complete set of proper-
ties, the UA uses the ’font-family’ property to choose a tentative font family. The
remaining properties are tested against the family according to the matching
criteria described with each property. If there are matches for all the remaining
properties, then that is the matching font face for the given element.

3. If there is no matching font face within the ’font-family’ being processed by step
2, and if there is a next alternative ’font-family’ in the font set, then repeat step 2
with the next alternative ’font-family’.

4. If there is a matching font face, but it doesn’t contain a glyph for the current
character, and if there is a next alternative ’font-family’ in the font sets, then

15 Sep 2003 14:50213

Fonts

repeat step 2 with the next alternative ’font-family’.
5. If there is no font within the family selected in 2, then use a UA-dependent

default ’font-family’ and repeat step 2, using the best match that can be obtained
within the default font. If a particular character cannot be displayed using this
font, then the UA has no suitable font for that character. The UA should map
each character for which it has no suitable font to a visible symbol chosen by
the UA, preferably a "missing character" glyph from one of the font faces avail-
able to the UA.

(The above algorithm can be optimized to avoid having to revisit the CSS 2.1
properties for each character.)

The per-property matching rules from (2) above are as follows:

1. ’font-style’ is tried first. ’italic’ will be satisfied if there is either a face in the UA’s
font database labeled with the CSS keyword ’italic’ (preferred) or ’oblique’.
Otherwise the values must be matched exactly or font-style will fail.

2. ’font-variant’ is tried next. ’small-caps’ matches (1) a font labeled as
’small-caps’, (2) a font in which the small caps are synthesized, or (3) a font
where all lowercase letters are replaced by upper case letters. A small-caps font
may be synthesized by electronically scaling uppercase letters from a normal
font. ’normal’ matches a font’s normal (non-small-caps) variant. A font cannot
fail to have a normal variant. A font that is only available as small-caps shall be
selectable as either a ’normal’ face or a ’small-caps’ face.

3. ’font-weight’ is matched next, it will never fail. (See ’font-weight’ below.)
4. ’font-size’ must be matched within a UA-dependent margin of tolerance. (Typi-

cally, sizes for scalable fonts are rounded to the nearest whole pixel, while the
tolerance for bitmapped fonts could be as large as 20%.) Further computations,
e.g. by ’em’ values in other properties, are based on the computed value of
’font-size’.

15.3 Font family: the ’font-family’ property
’font-family’

Value: [[<family-name> | <generic-family>] [, <family-name>|
<generic-family>]*] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

21415 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 108

The value is a prioritized list of font family names and/or generic family names.
Unlike most other CSS properties, values are separated by a comma to indicate that
they are alternatives:

body { font-family: Gill, Helvetica, sans-serif }

Although many fonts provide the "missing character" glyph, typically an open box,
as its name implies this should not be considered a match for characters that cannot
be found in the font. (It should, however, be considered a match for U+FFFD, the
"missing character" character’s code point).

There are two types of font family names:

<family-name>
The name of a font family of choice. In the last example, "Gill" and "Helvetica"
are font families.

<generic-family>
In the example above, the last value is a generic family name. The following
generic families are defined:

’serif’ (e.g. Times)
’sans-serif’ (e.g. Helvetica)
’cursive’ (e.g. Zapf-Chancery)
’fantasy’ (e.g. Western)
’monospace’ (e.g. Courier)

Style sheet designers are encouraged to offer a generic font family as a last
alternative. Generic font family names are keywords and must NOT be quoted.

If an unquoted font family name contains parentheses, brackets, and/or braces,
they must still be either balanced or escaped per CSS grammar rules. Similarly,
quote marks, semicolons, exclamation marks and commas within unquoted font
family names must be escaped. Font names containing any such characters or
whitespace should be quoted:

body { font-family: "New Century Schoolbook", serif }

<BODY STYLE="font-family: ’My own font’, fantasy">

If quoting is omitted, any whitespace characters before and after the font name are
ignored and any sequence of whitespace characters inside the font name is
converted to a single space. Font family names that happen to be the same as a
keyword value (e.g. ’initial’, ’inherit’, ’default’, ’serif’, ’sans-serif’, ’monospace’,
’fantasy’, and ’cursive’) must be quoted to prevent confusion with the keywords with
the same names. UAs must not consider these keywords as matching the
’<family-name>’ type.

15 Sep 2003 14:50215

Fonts

15.4 Font styling: the ’font-style’ property
’font-style’

Value: normal | italic | oblique | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’font-style’ property selects between normal (sometimes referred to as
"roman" or "upright"), italic and oblique faces within a font family.

A value of ’normal’ selects a font that is classified as ’normal’ in the UA’s font
database, while ’oblique’ selects a font that is labeled ’oblique’. A value of ’italic’
selects a font that is labeled ’italic’, or, if that is not available, one labeled ’oblique’.

The font that is labeled ’oblique’ in the UA’s font database may actually have been
generated by electronically slanting a normal font.

Fonts with Oblique, Slanted or Incline in their names will typically be labeled
’oblique’ in the UA’s font database. Fonts with Italic, Cursive or Kursiv in their names
will typically be labeled ’italic’.

h1, h2, h3 { font-style: italic }
h1 em { font-style: normal }

In the example above, emphasized text within ’H1’ will appear in a normal face.

15.5 Small-caps: the ’font-variant’ property
’font-variant’

Value: normal | small-caps | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

Another type of variation within a font family is the small-caps. In a small-caps font
the lower case letters look similar to the uppercase ones, but in a smaller size and
with slightly different proportions. The ’font-variant’ property selects that font.

21615 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 109

A value of ’normal’ selects a font that is not a small-caps font, ’small-caps’ selects
a small-caps font. It is acceptable (but not required) in CSS 2.1 if the small-caps font
is a created by taking a normal font and replacing the lower case letters by scaled
uppercase characters. As a last resort, uppercase letters will be used as replace-
ment for a small-caps font.

The following example results in an ’H3’ element in small-caps, with any empha-
sized words in oblique, and any emphasized words within an ’H3’ oblique
small-caps:

h3 { font-variant: small-caps }
em { font-style: oblique }

There may be other variants in the font family as well, such as fonts with old-style
numerals, small-caps numerals, condensed or expanded letters, etc. CSS 2.1 has
no properties that select those.

Note: insofar as this property causes text to be transformed to uppercase, the
same considerations as for ’text-transform’ apply.

15.6 Font boldness: the ’font-weight’ property
’font-weight’

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |
600 | 700 | 800 | 900 | inherit

Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see text

The ’font-weight’ property selects the weight of the font. The values ’100’ to ’900’
form an ordered sequence, where each number indicates a weight that is at least as
dark as its predecessor. The keyword ’normal’ is synonymous with ’400’, and ’bold’
is synonymous with ’700’. Keywords other than ’normal’ and ’bold’ have been shown
to be often confused with font names and a numerical scale was therefore chosen
for the 9-value list.

p { font-weight: normal } /* 400 */
h1 { font-weight: 700 } /* bold */

The ’bolder’ and ’lighter’ values select font weights that are relative to the weight
inherited from the parent:

strong { font-weight: bolder }

15 Sep 2003 14:50217

Fonts

Child elements inherit the resultant weight, not the keyword value.

Fonts (the font data) typically have one or more properties whose values are
names that are descriptive of the "weight" of a font. There is no accepted, universal
meaning to these weight names. Their primary role is to distinguish faces of differing
darkness within a single font family. Usage across font families is quite variant; for
example, a font that one might think of as being bold might be described as being
Regular, Roman, Book, Medium, Semi- or DemiBold, Bold, or Black, depending on
how black the "normal" face of the font is within the design. Because there is no
standard usage of names, the weight property values in CSS 2.1 are given on a
numerical scale in which the value ’400’ (or ’normal’) corresponds to the "normal"
text face for that family. The weight name associated with that face will typically be
Book, Regular, Roman, Normal or sometimes Medium.

The association of other weights within a family to the numerical weight values is
intended only to preserve the ordering of darkness within that family. However, the
following heuristics tell how the assignment is done in typical cases:

If the font family already uses a numerical scale with nine values (like e.g.
OpenType does), the font weights should be mapped directly.
If there is both a face labeled Medium and one labeled Book, Regular, Roman
or Normal, then the Medium is normally assigned to the ’500’.
The font labeled "Bold" will often correspond to the weight value ’700’.
If there are fewer then 9 weights in the family, the default algorithm for filling the
"holes" is as follows. If ’500’ is unassigned, it will be assigned the same font as
’400’. If any of the values ’600’, ’700’, ’800’ or ’900’ remains unassigned, they
are assigned to the same face as the next darker assigned keyword, if any, or
the next lighter one otherwise. If any of ’300’, ’200’ or ’100’ remains unassigned,
it is assigned to the next lighter assigned keyword, if any, or the next darker
otherwise.

The following two examples show typical mappings.

Assume four weights in the "Rattlesnake" family, from lightest to darkest: Regular,
Medium, Bold, Heavy.

First example of font-weight mapping

Available faces Assignments Filling the holes

"Rattlesnake Regular" 400 100, 200, 300

"Rattlesnake Medium" 500

"Rattlesnake Bold" 700 600

"Rattlesnake Heavy" 800 900

21815 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 110

Assume six weights in the "Ice Prawn" family: Book, Medium, Bold, Heavy, Black,
ExtraBlack. Note that in this instance the user agent has decided not to assign a
numeric value to "Ice Prawn ExtraBlack".

Second example of font-weight mapping

Available faces Assignments Filling the holes

"Ice Prawn Book" 400 100, 200, 300

"Ice Prawn Medium" 500

"Ice Prawn Bold" 700 600

"Ice Prawn Heavy" 800

"Ice Prawn Black" 900

"Ice Prawn ExtraBlack" (none)

Since the intent of the relative keywords ’bolder’ and ’lighter’ is to darken or lighten
the face within the family and because a family may not have faces aligned with all
the symbolic weight values, the matching of ’bolder’ is to the next darker face avail-
able on the client within the family and the matching of ’lighter’ is to the next lighter
face within the family. To be precise, the meaning of the relative keywords ’bolder’
and ’lighter’ is as follows:

’bolder’ selects the next weight that is assigned to a font that is darker than the
inherited one. If there is no such weight, it simply results in the next darker
numerical value (and the font remains unchanged), unless the inherited value
was ’900’ in which case the resulting weight is also ’900’.
’lighter’ is similar, but works in the opposite direction: it selects the next lighter
keyword with a different font from the inherited one, unless there is no such font,
in which case it selects the next lighter numerical value (and keeps the font
unchanged).

There is no guarantee that there will be a darker face for each of the ’font-weight’
values; for example, some fonts may have only a normal and a bold face, while
others may have eight face weights. There is no guarantee on how a UA will map
font faces within a family to weight values. The only guarantee is that a face of a
given value will be no less dark than the faces of lighter values.

The computed value of "font-weight" is either:

one of the legal number values, or
one of the legal number values combined with one or more of the relative values
(bolder or lighter). This type of computed values is necessary to use when the
font in question does not have all weight variations that are needed.

15 Sep 2003 14:50219

Fonts

CSS 2.1 does not specify how the computed value of font-weight is represented
internally or externally.

15.7 Font size: the ’font-size’ property
’font-size’

Value: <absolute-size> | <relative-size> | <length> | <percentage> |
inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to parent element’s font size
Media: visual
Computed value: absolute length

The font size corresponds to the em square, a concept used in typography. Note
that certain glyphs may bleed outside their em squares. Values have the following
meanings:

<absolute-size>
An <absolute-size> keyword is an index to a table of font sizes computed and
kept by the UA. Possible values are:

[xx-small | x-small | small | medium | large | x-large | xx-large]

The following table provides user agent guidelines for the absolute-size
scaling factor and their mapping to HTML heading and absolute font-sizes. The
’medium’ value is used as the reference middle value. The user agent may fine
tune these values for different fonts or different types of display devices.

CSS abso-
lute-size
values

xx-small x-small small medium large x-large xx-large

scaling
factor

3/5 3/4 8/9 1 6/5 3/2 2/1 3/1

HTML head-
ings

h6 h5 h4 h3 h2 h1

HTML font
sizes

1 2 3 4 5 6 7

Different media may need different scaling factors. Also, the UA should take
the quality and availability of fonts into account when computing the table. The
table may be different from one font family to another.

22015 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 111

Note 1. To preserve readability, a UA applying these guidelines should never-
theless avoid creating font-size resulting in less than 9 pixels per EM unit on a
computer display.

Note 2. In CSS1, the suggested scaling factor between adjacent indexes was
1.5 which user experience proved to be too large. In CSS2, the suggested
scaling factor for computer screen between adjacent indexes was 1.2 which still
created issues for the small sizes. The new scaling factor varies between each
index to provide better readability.

<relative-size>
A <relative-size> keyword is interpreted relative to the table of font sizes and the
font size of the parent element. Possible values are: [larger | smaller]. For
example, if the parent element has a font size of ’medium’, a value of ’larger’ will
make the font size of the current element be ’large’. If the parent element’s size
is not close to a table entry, the UA is free to interpolate between table entries or
round off to the closest one. The UA may have to extrapolate table values if the
numerical value goes beyond the keywords.

Length and percentage values should not take the font size table into account
when calculating the font size of the element.

Negative values are not allowed.

On all other properties, ’em’ and ’ex’ length values refer to the computed font size
of the current element. On the ’font-size’ property, these length units refer to the
computed font size of the parent element.

Note that an application may reinterpret an explicit size, depending on the context.
E.g., inside a VR scene a font may get a different size because of perspective distor-
tion.

Examples:

p { font-size: 16px; }
@media print {
 p { font-size: 12pt; }
}
blockquote { font-size: larger }
em { font-size: 150% }
em { font-size: 1.5em }

15.8 Shorthand font property: the ’font’ property
’font’

15 Sep 2003 14:50221

Fonts

Value: [[<’font-style’> || <’font-variant’> || <’font-weight’>]?
<’font-size’> [/ <’line-height’>]? <’font-family’>] | caption |
icon | menu | message-box | small-caption | status-bar |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: yes
Percentages: see individual properties
Media: visual
Computed value: see individual properties

The ’font’ property is, except as described below [p. 223] , a shorthand property for
setting ’font-style’, ’font-variant’, ’font-weight’, ’font-size’, ’line-height’ and ’font-family’
at the same place in the style sheet. The syntax of this property is based on a tradi-
tional typographical shorthand notation to set multiple properties related to fonts.

All font-related properties are first reset to their initial values, including those listed
in the preceding paragraph. Then, those properties that are given explicit values in
the ’font’ shorthand are set to those values. For a definition of allowed and initial
values, see the previously defined properties.

p { font: 12px/14px sans-serif }
p { font: 80% sans-serif }
p { font: x-large/110% "New Century Schoolbook", serif }
p { font: bold italic large Palatino, serif }
p { font: normal small-caps 120%/120% fantasy }

In the second rule, the font size percentage value (’80%’) refers to the font size of
the parent element. In the third rule, the line height percentage refers to the font size
of the element itself.

In the first three rules above, the ’font-style’, ’font-variant’ and ’font-weight’ are not
explicitly mentioned, which means they are all three set to their initial value
(’normal’). The fourth rule sets the ’font-weight’ to ’bold’, the ’font-style’ to ’italic’ and
implicitly sets ’font-variant’ to ’normal’.

The fifth rule sets the ’font-variant’ (’small-caps’), the ’font-size’ (120% of the
parent’s font), the ’line-height’ (120% times the font size) and the ’font-family’
(’fantasy’). It follows that the keyword ’normal’ applies to the two remaining proper-
ties: ’font-style’ and ’font-weight’.

The following values refer to system fonts:

caption
The font used for captioned controls (e.g., buttons, drop-downs, etc.).

icon
The font used to label icons.

menu
The font used in menus (e.g., dropdown menus and menu lists).

22215 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 112

message-box
The font used in dialog boxes.

small-caption
The font used for labeling small controls.

status-bar
The font used in window status bars.

System fonts may only be set as a whole; that is, the font family, size, weight,
style, etc. are all set at the same time. These values may then be altered individually
if desired. If no font with the indicated characteristics exists on a given platform, the
user agent should either intelligently substitute (e.g., a smaller version of the
’caption’ font might be used for the ’small-caption’ font), or substitute a user agent
default font. As for regular fonts, if, for a system font, any of the individual properties
are not part of the operating system’s available user preferences, those properties
should be set to their initial values.

That is why this property is "almost" a shorthand property: system fonts can only
be specified with this property, not with ’font-family’ itself, so ’font’ allows authors to
do more than the sum of its subproperties. However, the individual properties such
as ’font-weight’ are still given values taken from the system font, which can be inde-
pendently varied.

Example(s):

button { font: 300 italic 1.3em/1.7em "FB Armada", sans-serif }
button p { font: menu }
button p em { font-weight: bolder }

If the font used for dropdown menus on a particular system happened to be, for
example, 9-point Charcoal, with a weight of 600, then P elements that were descen-
dants of BUTTON would be displayed as if this rule were in effect:

button p { font: 600 9px Charcoal }

Because the ’font’ shorthand property resets any property not explicitly given a
value to its initial value, this has the same effect as this declaration:

button p {
 font-family: Charcoal;
 font-style: normal;
 font-variant: normal;
 font-weight: 600;
 font-size: 9px;
 line-height: normal;
}

15 Sep 2003 14:50223

Fonts

22415 Sep 2003 14:50

Fonts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 113

16 Text
Contents

......... 22516.1 Indentation: the ’text-indent’ property

.......... 22616.2 Alignment: the ’text-align’ property

................ 22716.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the ’text-decoration’

................ 227property
22916.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’ properties

........ 23116.5 Capitalization: the ’text-transform’ property

......... 23116.6 Whitespace: the ’white-space’ property

........ 23316.6.1 The ’white-space’ processing model

... 23316.6.2 Example of bidirectionality with white-space collapsing

The properties defined in the following sections affect the visual presentation of
characters, spaces, words, and paragraphs.

16.1 Indentation: the ’text-indent’ property
’text-indent’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: block-level elements, table cells and inline blocks
Inherited: yes
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

This property specifies the indentation of the first line of text in a block. More
precisely, it specifies the indentation of the first box that flows into the block’s first
line box [p. 118] . The box is indented with respect to the left (or right, for right-to-left
layout) edge of the line box. User agents should render this indentation as blank
space.

Values have the following meanings:

<length>
The indentation is a fixed length.

<percentage>
The indentation is a percentage of the containing block width.

15 Sep 2003 14:50225

Text

The value of ’text-indent’ may be negative, but there may be implementa-
tion-specific limits. If the value of ’text-indent’ is either negative or exceeds the width
of the block, that first box, described above, may overflow the block. The value of
’overflow’ will affect whether such text that overflows the block is visible.

Example(s):

The following example causes a ’3em’ text indent.

p { text-indent: 3em }

Note: Since the ’text-indent’ property inherits, when specified on a block element,
it will affect descendent inline-block elements. For this reason, it is often wise to
specify ’text-indent: 0’ on elements that are specified
’display:inline-block’.

16.2 Alignment: the ’text-align’ property
’text-align’

Value: left | right | center | justify | inherit
Initial: ’left’ if ’direction’ is ’ltr’; ’right’ if ’direction’ is ’rtl’
Applies to: block-level elements and table cells
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property describes how inline content of a block is aligned. Values have the
following meanings:

left, right, center, justify
Left, right, center, and justify text, respectively.

A block of text is a stack of line boxes [p. 118] . In the case of ’left’, ’right’ and
’center’, this property specifies how the inline boxes within each line box align with
respect to the line box’s left and right sides; alignment is not with respect to the view-
port [p. 108] . In the case of ’justify’, the UA may stretch the inline boxes in addition
to adjusting their positions. (See also ’letter-spacing’ and ’word-spacing’.)

If the computed value of text-align is ’justify’ while the computed value of
white-space is ’pre’ or ’pre-line’, the actual value of text-align is set to the initial
value.

Example(s):

In this example, note that since ’text-align’ is inherited, all block-level elements
inside the DIV element with ’class=important’ will have their inline content centered.

22615 Sep 2003 14:50

Text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 114

div.important { text-align: center }

Note. The actual justification algorithm used depends on the user-agent and the
language/script of the text.

Conforming user agents [p. 34] may interpret the value ’justify’ as ’left’ or ’right’,
depending on whether the element’s default writing direction is left-to-right or
right-to-left, respectively.

16.3 Decoration

16.3.1 Underlining, overlining, striking, and blinking: the
’text-decoration’ property

’text-decoration’

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none
Applies to: all elements
Inherited: no (see prose)
Percentages: N/A
Media: visual
Computed value: as specified

This property describes decorations that are added to the text of an element.
When specified on an inline element, it affects all the boxes generated by that
element, otherwise, the decorations are propagated to the anonymous inline box that
wraps all the inline contents of the element, using the element’s color. It is not,
however, further propagated to floating and absolutely positioned descendants, nor
to the contents of ’inline-table’ and ’inline-block’ descendants. Nor is it propagated to
block-level [p. 109] descendants of inline elements.

If an element contains no text (ignoring white space in elements that have
’white-space’ set to ’normal’, ’pre-line’, or ’no-wrap’), user agents must refrain from
rendering text decorations on the element. For example, elements containing only
images and collapsed white space will not be underlined.

Text decorations on inline boxes are drawn across the entire element, going
across any descendant elements without paying any attention to their presence. The
’text-decoration’ property on descendant elements cannot have any effect on the
decoration of the element. In determining the position of and thickness of text deco-
ration lines, user agents may consider the font sizes of and dominant baselines of
descendants, but must use the same baseline and thickness on each line.

Values have the following meanings:

15 Sep 2003 14:50227

Text

none
Produces no text decoration.

underline
Each line of text is underlined.

overline
Each line of text has a line above it.

line-through
Each line of text has a line through the middle.

blink
Text blinks (alternates between visible and invisible). Conforming user agents
[p. 34] may simply not blink the text. Note that not blinking the text is one tech-
nique to satisfy checkpoint 3.3 of WAI-UAAG [p. ??] .

The color(s) required for the text decoration must be derived from the ’color’ prop-
erty value of the element on which ’text-decoration’ is set. The color of decorations
should remain the same even if descendant elements have different ’color’ values.

Some user agents have implemented text-decoration by propagating the decora-
tion to the descendant elements as opposed to simply drawing the decoration
through the elements as described above. This was arguably allowed by the looser
wording in CSS2. SVG1, CSS1-only, and CSS2-only user agents may implement the
older model and still claim conformance to this part of CSS2.1. (This does not apply
to UAs developed after this specification was released.)

Example(s):

In the following example for HTML, the text content of all A elements acting as
hyperlinks (whether visited or not) will be underlined:

a:visited,a:link { text-decoration: underline }

Example(s):

In the following stylesheet and document fragment:

 blockquote { text-decoration: underline; color: blue; }
 em { display: block; }
 cite { color: fuchsia; }

 <blockquote>
 <p>

 Help, help!
 I am under a hat!
 <cite> —GwieF </cite>

 </p>
 </blockquote>

...the underlining for the blockquote element is propagated to an anonymous inline
element that surrounds the span element, causing the text "Help, help!" to be blue,
with the blue underlining from the anonymous inline underneath it, the color being
taken from the blockquote element. The text in the em block is not

22815 Sep 2003 14:50

Text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 115

underlined at all, as it is not contained in the same anonymous inline element. The
final line of text is fuchsia, but the underline underneath it is still the blue underline
from the anonymous inline element.

This diagram shows the boxes involved in the example above. The rounded aqua
line represents the anonymous inline element wrapping the inline contents of the
paragraph element, the rounded blue line represents the span element, and the
orange lines represent the blocks.

16.4 Letter and word spacing: the ’letter-spacing’ and
’word-spacing’ properties
’letter-spacing’

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: ’normal’ or absolute length

This property specifies spacing behavior between text characters. Values have the
following meanings:

normal
The spacing is the normal spacing for the current font. This value allows the
user agent to alter the space between characters in order to justify text.

<length>
This value indicates inter-character space in addition to the default space
between characters. Values may be negative, but there may be implementa-
tion-specific limits. User agents may not further increase or decrease the
inter-character space in order to justify text.

15 Sep 2003 14:50229

Text

Character spacing algorithms are user agent-dependent.

Example(s):

In this example, the space between characters in BLOCKQUOTE elements is
increased by ’0.1em’.

blockquote { letter-spacing: 0.1em }

In the following example, the user agent is not permitted to alter inter-character
space:

blockquote { letter-spacing: 0cm } /* Same as ’0’ */

When the resultant space between two characters is not the same as the default
space, user agents should not use ligatures.

’word-spacing’

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: for ’normal’ the value ’0’; otherwise the absolute length

This property specifies spacing behavior between words. Values have the follow-
ing meanings:

normal
The normal inter-word space, as defined by the current font and/or the UA.

<length>
This value indicates inter-word space in addition to the default space between
words. Values may be negative, but there may be implementation-specific limits.

Word spacing algorithms are user agent-dependent. Word spacing is also influ-
enced by justification (see the ’text-align’ property).

Example(s):

In this example, the word-spacing between each word in H1 elements is increased
by ’1em’.

h1 { word-spacing: 1em }

23015 Sep 2003 14:50

Text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 116

16.5 Capitalization: the ’text-transform’ property
’text-transform’

Value: capitalize | uppercase | lowercase | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property controls capitalization effects of an element’s text. Values have the
following meanings:

capitalize
Puts the first character of each word in uppercase.

uppercase
Puts all characters of each word in uppercase.

lowercase
Puts all characters of each word in lowercase.

none
No capitalization effects.

The actual transformation in each case is written language dependent. See RFC
2070 ([RFC2070]) for ways to find the language of an element.

Conforming user agents [p. 34] may consider the value of ’text-transform’ to be
’none’ for characters that are not from the Latin-1 repertoire and for elements in
languages for which the transformation is different from that specified by the
case-conversion tables of ISO 10646 ([ISO10646]).

Example(s):

In this example, all text in an H1 element is transformed to uppercase text.

h1 { text-transform: uppercase }

16.6 Whitespace: the ’white-space’ property
’white-space’

15 Sep 2003 14:50231

Text

Value: normal | pre | nowrap | pre-wrap | pre-line | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property declares how whitespace [p. 40] inside the element is handled.
Values have the following meanings:

normal
This value directs user agents to collapse sequences of whitespace, and break
lines as necessary to fill line boxes.

pre
This value prevents user agents from collapsing sequences of whitespace.
Lines are only broken at newlines in the source, or at occurrences of "\A" in
generated content.

nowrap
This value collapses whitespace as for ’normal’, but suppresses line breaks
within text.

pre-wrap
This value prevents user agents from collapsing sequences of whitespace.
Lines are broken at newlines in the source, at occurrences of "\A" in generated
content, and as necessary to fill line boxes.

pre-line
This value directs user agents to collapse sequences of whitespace. Lines are
broken at newlines in the source, at occurrences of "\A" in generated content,
and as necessary to fill line boxes.

Example(s):

The following examples show what whitespace [p. 40] behavior is expected from
the PRE and P elements, the "nowrap" attribute in HTML, and in generated content.

pre { white-space: pre }
p { white-space: normal }
td[nowrap] { white-space: nowrap }
:before,:after { white-space: pre-line }

In addition, the effect of an HTML PRE element with the non-standard "wrap"
attribute is demonstrated by the following example:

pre[wrap] { white-space: pre-wrap }

23215 Sep 2003 14:50

Text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 117

16.6.1 The ’white-space’ processing model
Any text that is directly contained inside a block (not inside an inline) should be
treated as an anonymous inline element.

For each inline (including anonymous inlines), the following steps are performed,
ignoring bidi formatting characters as if they were not there:

1. Each non-linefeed whitespace character surrounding a linefeed character is
removed if ’white-space’ is set to ’normal’, ’no-wrap’, or ’pre-line’.

2. If ’white-space’ is set to ’pre’ or ’pre-wrap’, any sequence of spaces (U+0020)
unbroken by an element boundary is treated as a sequence of non-breaking
spaces. However, a line breaking opportunity exists at the end of the sequence.

3. If ’white-space’ is set to ’normal’ or ’nowrap’, linefeed characters are trans-
formed for rendering purpose into one of the following characters: a space char-
acter, a zero width space character (U+200B), or no character (i.e. not
rendered), according to UA-specific algorithms based on the content script.

4. If ’white-space’ is set to ’normal’, ’nowrap’, or ’pre-line’,
1. every tab (U+0009) is converted to a space (U+0020)
2. any space (U+0020) following another space (U+0020) — even a space

before the inline, if that space also has ’white-space’ set to ’normal’,
’nowrap’ or ’pre-line’ — is removed.

Then, the entire block is rendered. Inlines are laid out, taking bidi reordering into
account, and wrapping as specified by the ’white-space’ property.

As each line is laid out,

1. If a space (U+0020) at the beginning of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is removed.

2. All tabs (U+0009) are rendered as a horizontal shift that lines up the start edge
of the next glyph with the next tab stop. Tab stops occur at points that are muti-
ples of 8 times the width of a space (U+0020) rendered in the block’s font from
the block’s starting content edge.

3. If a space (U+0020) at the end of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is also removed.

16.6.2 Example of bidirectionality with white-space collapsing
Given the following markup fragment, taking special note of spaces (with varied
backgrounds and borders for emphasis and identification):

 <ltr>A <rtl> B </rtl> C</ltr>

...where the <ltr> element represents a left-to-right embedding and the <rtl>
element represents a right-to-left embedding, and assuming that the ’white-space’
property is set to ’normal’, the above processing model would result in the following:

15 Sep 2003 14:50233

Text

The space before the B () would collapse with the space after the A ().
The space before the C () would collapse with the space after the B ().

This would leave two spaces, one after the A in the left-to-right embedding level,
and one after the B in the right-to-left embedding level. This is then rendered accord-
ing to the Unicode bidirectional algorithm, with the end result being:

 A BC

Note that there are two spaces between A and B, and none between B and C.
This is best avoided by using the natural bidirectionality of characters instead of
explicit embedding levels.

23415 Sep 2003 14:50

Text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 118

17 Tables
Contents

............. 23517.1 Introduction to tables

............. 23717.2 The CSS table model

........... 23817.2.1 Anonymous table objects

................ 24017.3 Columns

......... 24117.4 Tables in the visual formatting model

......... 24117.4.1 Caption position and alignment

........... 24217.5 Visual layout of table contents

......... 24417.5.1 Table layers and transparency

..... 24617.5.2 Table width algorithms: the ’table-layout’ property

............. 247Fixed table layout

............ 248Automatic table layout

........... 24917.5.3 Table height algorithms

......... 25117.5.4 Horizontal alignment in a column

......... 25117.5.5 Dynamic row and column effects

................ 25117.6 Borders

......... 25117.6.1 The separated borders model
Borders and Backgrounds around empty cells: the ’empty-cells’ prop-

................ 253erty

.......... 25417.6.2 The collapsing border model

........... 255Border conflict resolution

............. 25817.6.3 Border styles

17.1 Introduction to tables
Table layout can be used to represent tabular relationships between data. Authors
specify these relationships in the document language [p. 32] and can specify their
presentation using CSS 2.1.

In a visual medium, CSS tables can also be used to achieve specific layouts. In
this case, authors should not use table-related elements in the document language,
but should apply the CSS to the relevant structural elements to achieve the desired
layout.

Authors may specify the visual formatting of a table as a rectangular grid of cells.
Rows and columns of cells may be organized into row groups and column groups.
Rows, columns, row groups, column groups, and cells may have borders drawn
around them (there are two border models in CSS 2.1). Authors may align data verti-
cally or horizontally within a cell and align data in all cells of a row or column.

15 Sep 2003 14:50235

Tables

Example(s):

Here is a simple three-row, three-column table described in HTML 4.0:

<TABLE>
<CAPTION>This is a simple 3x3 table</CAPTION>
<TR id="row1">
 <TH>Header 1 <TD>Cell 1 <TD>Cell 2
<TR id="row2">
 <TH>Header 2 <TD>Cell 3 <TD>Cell 4
<TR id="row3">
 <TH>Header 3 <TD>Cell 5 <TD>Cell 6
</TABLE>

This code creates one table (the TABLE element), three rows (the TR elements),
three header cells (the TH elements), and six data cells (the TD elements). Note that
the three columns of this example are specified implicitly: there are as many
columns in the table as required by header and data cells.

The following CSS rule centers the text horizontally in the header cells and
presents the text in the header cells with a bold font weight

th { text-align: center; font-weight: bold }

The next rules align the text of the header cells on their baseline and vertically
center the text in each data cell:

th { vertical-align: baseline }
td { vertical-align: middle }

The next rules specify that the top row will be surrounded by a 3px solid blue
border and each of the other rows will be surrounded by a 1px solid black border:

table { border-collapse: collapse }
tr#row1 { border-top: 3px solid blue }
tr#row2 { border-top: 1px solid black }
tr#row3 { border-top: 1px solid black }

Note, however, that the borders around the rows overlap where the rows meet.
What color (black or blue) and thickness (1px or 3px) will the border between row1
and row2 be? We discuss this in the section on border conflict resolution. [p. 255]

The following rule puts the table caption above the table:

caption { caption-side: top }

The preceding example shows how CSS works with HTML 4.0 elements; in HTML
4.0, the semantics of the various table elements (TABLE, CAPTION, THEAD,
TBODY, TFOOT, COL, COLGROUP, TH, and TD) are well-defined. In other docu-
ment languages (such as XML applications), there may not be pre-defined table
elements. Therefore, CSS 2.1 allows authors to "map" document language elements
to table elements via the ’display’ property. For example, the following rule makes
the FOO element act like an HTML TABLE element and the BAR element act like a
CAPTION element:

23615 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 119

FOO { display : table }
BAR { display : table-caption }

We discuss the various table elements in the following section. In this specifica-
tion, the term table element refers to any element involved in the creation of a table.
An "internal" table element is one that produces a row, row group, column, column
group, or cell.

17.2 The CSS table model
The CSS table model is based on the HTML 4.0 table model, in which the structure
of a table closely parallels the visual layout of the table. In this model, a table
consists of an optional caption and any number of rows of cells. The table model is
said to be "row primary" since authors specify rows, not columns, explicitly in the
document language. Columns are derived once all the rows have been specified --
the first cell of each row belongs to the first column, the second to the second
column, etc.). Rows and columns may be grouped structurally and this grouping
reflected in presentation (e.g., a border may be drawn around a group of rows).

Thus, the table model consists of tables, captions, rows, row groups, columns,
column groups, and cells.

The CSS model does not require that the document language [p. 32] include
elements that correspond to each of these components. For document languages
(such as XML applications) that do not have pre-defined table elements, authors
must map document language elements to table elements; this is done with the
’display’ property. The following ’display’ values assign table formatting rules to an
arbitrary element:

table (In HTML: TABLE)
Specifies that an element defines a block-level [p. 109] table: it is a rectangular
block that participates in a block formatting context [p. 117] .

inline-table (In HTML: TABLE)
Specifies that an element defines an inline-level [p. 111] table: it is a rectangular
block that participates in an inline formatting context [p. 118]).

table-row (In HTML: TR)
Specifies that an element is a row of cells.

table-row-group (In HTML: TBODY)
Specifies that an element groups one or more rows.

table-header-group (In HTML: THEAD)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed before all other rows and rowgroups and after any top captions. Print
user agents may repeat header rows on each page spanned by a table. Use of
multiple elements with ’display: table-header-group’ is undefined.

table-footer-group (In HTML: TFOOT)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed after all other rows and rowgroups and before any bottom captions.
Print user agents may repeat footer rows on each page spanned by a table. Use

15 Sep 2003 14:50237

Tables

of multiple elements with ’display: table-footer-group’ is undefined.
table-column (In HTML: COL)

Specifies that an element describes a column of cells.
table-column-group (In HTML: COLGROUP)

Specifies that an element groups one or more columns.
table-cell (In HTML: TD, TH)

Specifies that an element represents a table cell.
table-caption (In HTML: CAPTION)

Specifies a caption for the table. Use of multiple elements with ’display: caption’
is undefined; authors should not put more than one element with ’display:
caption’ inside a table or inline-table element.

Elements with ’display’ set to ’table-column’ or ’table-column-group’ are not
rendered (exactly as if they had ’display: none’), but they are useful, because they
may have attributes which induce a certain style for the columns they represent.

The default style sheet for HTML 4.0 [p. 293] in the appendix illustrates the use of
these values for HTML 4.0:

table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell }
caption { display: table-caption }

User agents may ignore [p. 46] these ’display’ property values for HTML table
elements, since HTML tables may be rendered using other algorithms intended for
backwards compatible rendering. However, this is not meant to discourage the use
of ’display: table’ on other, non-table elements in HTML.

17.2.1 Anonymous table objects
Document languages other than HTML may not contain all the elements in the
CSS 2.1 table model. In these cases, the "missing" elements must be assumed in
order for the table model to work. Any table element will automatically generate
necessary anonymous table objects around itself, consisting of at least three nested
objects corresponding to a ’table’/’inline-table’ element, a ’table-row’ element, and a
’table-cell’ element. Missing elements generate anonymous [p. 111] objects (e.g.,
anonymous boxes in visual table layout) according to the following rules:

1. If the parent P of a ’table-cell’ element T is not a ’table-row’, an object corre-
sponding to a ’table-row’ will be generated between P and T. This object will
span all consecutive ’table-cell’ siblings (in the document tree) of T.

2. If the parent P of a ’table-row’ element T is not a ’table’, ’inline-table’, or
’table-row-group’ element, an object corresponding to a ’table’ element will be
generated between P and T. This object will span all consecutive siblings (in the

23815 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 120

document tree) of T that require a ’table’ parent: ’table-row’, ’table-row-group’,
’table-header-group’, ’table-footer-group’, ’table-column’, ’table-column-group’,
and ’table-caption’. T and T’s siblings may also be anonymous ’table-row’
objects generated by rule 1.

3. If the parent P of a ’table-column’ element T is not a ’table’, ’inline-table’, or
’table-column-group’ element, an object corresponding to a ’table’ element will
be generated between P and T. This object will span all consecutive siblings (in
the document tree) of T that require a ’table’ parent: ’table-row’,
’table-row-group’, ’table-header-group’, ’table-footer-group’, ’table-column’,
’table-column-group’, and ’table-caption’, including any anonymous ’table-row’
objects generated by rule 1.

4. If the parent P of a ’table-row-group’ (or ’table-header-group’,
’table-footer-group’, or ’table-column-group’ or ’table-caption’) element T is not a
’table’ or ’inline-table’, an object corresponding to a ’table’ element will be gener-
ated between P and T. This object will span all consecutive siblings (in the
document tree) of T that require a ’table’ parent: ’table-row’, ’table-row-group’,
’table-header-group’, ’table-footer-group’, ’table-column’, ’table-column-group’,
and ’table-caption’, including any anonymous ’table-row’ objects generated by
rule 1.

5. If a child T of a ’table’ element (or ’inline-table’) P is not a ’table-row-group’,
’table-header-group’, ’table-footer-group’, or ’table-row’ element, an object corre-
sponding to a ’table-row’ element will be generated between P and T. This
object spans all consecutive siblings of T that are not ’table-row-group’,
’table-header-group’, ’table-footer-group’, or ’table-row’ elements.

6. If a child T of a ’table-row-group’ element (or ’table-header-group’ or
’table-footer-group’) P is not a ’table-row’ element, an object corresponding to a
’table-row’ element will be generated between P and T. This object spans all
consecutive siblings of T that are not ’table-row’ elements.

7. If a child T of a ’table-row’ element P is not a ’table-cell’ element, an object
corresponding to a ’table-cell’ element will be generated between P and T. This
object spans all consecutive siblings of T that are not ’table-cell’ elements.

Example(s):

In this XML example, a ’table’ element is assumed to contain the HBOX element:

<HBOX>
 <VBOX>George</VBOX>
 <VBOX>4287</VBOX>
 <VBOX>1998</VBOX>
</HBOX>

because the associated style sheet is:

HBOX { display: table-row }
VBOX { display: table-cell }

15 Sep 2003 14:50239

Tables

Example(s):

In this example, three ’table-cell’ elements are assumed to contain the text in the
ROWs. Note that the text is further encapsulated in anonymous inline boxes, as
explained in visual formatting model [p. 111] :

<STACK>
 <ROW>This is the <D>top</D> row.</ROW>
 <ROW>This is the <D>middle</D> row.</ROW>
 <ROW>This is the <D>bottom</D> row.</ROW>
</STACK>

The style sheet is:

STACK { display: inline-table }
ROW { display: table-row }
D { display: inline; font-weight: bolder }

17.3 Columns
Table cells may belong to two contexts: rows and columns. However, in the source
document cells are descendants of rows, never of columns. Nevertheless, some
aspects of cells can be influenced by setting properties on columns.

The following properties apply to column and column-group elements:

’border’
The various border properties apply to columns only if ’border-collapse’ is set to
’collapse’ on the table element. In that case, borders set on columns and
column groups are input to the conflict resolution algorithm [p. 255] that selects
the border styles at every cell edge.

’background’
The background properties set the background for cells in the column, but only if
both the cell and row have transparent backgrounds. See "Table layers and
transparency." [p. 244]

’width’
The ’width’ property gives the minimum width for the column.

’visibility’
If the ’visibility’ of a column is set to ’collapse’, none of the cells in the column
are rendered, and cells that span into other columns are clipped. In addition, the
width of the table is diminished by the width the column would have taken up.
See "Dynamic effects" [p. 251] below. Other values for ’visibility’ have no effect.

Example(s):

Here are some examples of style rules that set properties on columns. The first
two rules together implement the "rules" attribute of HTML 4.0 with a value of "cols".
The third rule makes the "totals" column blue, the final two rules shows how to make
a column a fixed size, by using the fixed layout algorithm [p. 247] .

24015 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 121

col { border-style: none solid }
table { border-style: hidden }
col.totals { background: blue }
table { table-layout: fixed }
col.totals { width: 5em }

17.4 Tables in the visual formatting model
In terms of the visual formatting model [p. 107] , a table may behave like a
block-level [p. 109] or inline-level [p. 111] element. Tables have content, padding,
borders, and margins.

In both cases, the table element generates an anonymous [p. 111] box that
contains the table box itself and the caption’s box (if present). The table and caption
boxes retain their own content, padding, margin, and border areas, and the dimen-
sions of the rectangular anonymous box are the smallest required to contain both.
Vertical margins collapse where the table box and caption box touch. Any reposition-
ing of the table must move the entire anonymous box, not just the table box, so that
the caption follows the table.

caption caption caption caption caption

table’s margin

caption’s margin

} collapsed margin

Diagram of a table with a caption above it; the bottom margin of the caption is
collapsed with the top margin of the table.

17.4.1 Caption position and alignment

’caption-side’

15 Sep 2003 14:50241

Tables

Value: top | bottom | inherit
Initial: top
Applies to: ’table-caption’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the position of the caption box with respect to the table
box. Values have the following meanings:

top
Positions the caption box above the table box.

bottom
Positions the caption box below the table box.

Captions above or below a ’table’ element are formatted very much as if they were
a block element before or after the table, except that (1) they inherit inheritable prop-
erties from the table, and (2) they are not considered to be a block box for the
purposes of any ’run-in’ element that may precede the table.

A caption that is above or below a table box also behaves like a block box for
width and height calculations; the width and height are calculated with respect to the
table box’s containing block.

To align caption content horizontally within the caption box, use the ’text-align’
property.

Example(s):

In this example, the ’caption-side’ property places captions below tables. The
caption will be as wide as the parent of the table, and caption text will be left-justi-
fied.

caption { caption-side: bottom;
 width: auto;
 text-align: left }

17.5 Visual layout of table contents
Internal table elements generate rectangular boxes [p. 91] with content and borders.
Cells have padding as well. Internal table elements do not have margins.

The visual layout of these boxes is governed by a rectangular, irregular grid of
rows and columns. Each box occupies a whole number of grid cells, determined
according to the following rules. These rules do not apply to HTML 4 or earlier HTML
versions; HTML imposes its own limitations on row and column spans.

24215 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 122

1. Each row box occupies one row of grid cells. Together, the row boxes fill the
table from top to bottom in the order they occur in the source document (i.e., the
table occupies exactly as many grid rows as there are row elements).

2. A row group occupies the same grid cells as the rows it contains.
3. A column box occupies one or more columns of grid cells. Column boxes are

placed next to each other in the order they occur. The first column box may be
either on the left or on the right, depending on the value of the ’direction’ prop-
erty of the table.

4. A column group box occupies the same grid cells as the columns it contains.
5. Cells may span several rows or columns. (Although CSS 2.1 doesn’t define how

the number of spanned rows or columns is determined, a user agent may have
special knowledge about the source document; a future version of CSS may
provide a way to express this knowledge in CSS syntax.) Each cell is thus a
rectangular box, one or more grid cells wide and high. The top row of this rect-
angle is in the row specified by the cell’s parent. The rectangle must be as far to
the left as possible, but it may not overlap with any other cell box, and must be
to the right of all cells in the same row that are earlier in the source document.
(This constraint holds if the ’direction’ property of the table is ’ltr’; if the ’direction’
is ’rtl’, interchange "left" and "right" in the previous sentence.)

6. A cell box cannot extend beyond the last row box of a table or row-group; the
user agents must shorten it until it fits.

Note. Table cells may be positioned, but this is not recommended: absolute and
fixed positioning, as well as floating, remove a box from the flow, affecting table size.

Here are two examples. The first is assumed to occur in an HTML document, the
second an XHTML document:

<TABLE>
<TR><TD>1 <TD rowspan="2">2 <TD>3 <TD>4
<TR><TD colspan="2">5
</TABLE>

<table>
<tr><td>1 </td><td rowspan="2">2 </td><td>3 </td><td>4 <td><tr>
<tr><td colspan="2">5 <td><tr>
</table>

The second is formatted as in the figure on the right. However, the HTML table’s
rendering is explicitly undefined by HTML, and CSS doesn’t try to define it. User
agents are free to render it, e.g., as in the figure on the left.

1 2 3 4

5

1 2 3 4

5

15 Sep 2003 14:50243

Tables

On the left, one possible rendering of an erroneous HTML 4 table; on the right, the
only possible formatting of a similar XHTML table.

17.5.1 Table layers and transparency
For the purposes of finding the background of each table cell, the different table
elements may be thought of as being on six superimposed layers. The background
set on an element in one of the layers will only be visible if the layers above it have a
transparent background.

cells

rows

row groups

columns

table

column groups

Schema of table layers.

1. The lowest layer is a single plane, representing the table box itself. Like all
boxes, it may be transparent.

2. The next layer contains the column groups. Each column group extends from
the top of the cells in the top row to the bottom of the cells on the bottom row
and from the left edge of its leftmost column to the right edge of its rightmost
column. The background extends to cover the full area of all cells that originate
in the column group, but this extension does not affect background image posi-
tioning.

24415 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 123

3. On top of the column groups are the areas representing the column boxes.
Each column is as tall as the column groups and as wide as a normal
(single-column-spanning) cell in the column. The background extends to cover
the full area of all cells that originate in the column, even if they span outside the
column, but this extension does not affect background image positioning.

4. Next is the layer containing the row groups. Each row group extends from the
top left corner of its topmost cell in the first column to the bottom right corner of
its bottommost cell in the last column.

5. The next to last layer contains the rows. Each row is as wide as the row groups
and as tall as a normal (single-row-spanning) cell in the row. As with columns,
the background extends to cover the full area of all cells that originate in the
row, even if they span outside the row, but this this extension does not affect
background image positioning.

6. The topmost layer contains the cells themselves. As the figure shows, although
all rows contain the same number of cells, not every cell may have specified
content. If the value of their ’empty-cells’ property is ’hide’ these "empty" cells
are transparent through the cell, row, row group, column and column group
backgrounds, letting the table background show through.

The edges of the rows, columns, row groups and column groups in the collapsing
borders model [p. 254] coincide with the hypothetical grid lines on which the borders
of the cells are centered. (And thus, in this model, the rows together exactly cover
the table, leaving no gaps; ditto for the columns.) In the separated borders model,
[p. 251] the edges coincide with the border edges [p. 92] of cells. (And thus, in this
model, there may be gaps between the rows, columns, row groups or column
groups, corresponding to the ’border-spacing’ property.)

In the following example, the first row contains four cells, but the second row
contains no cells, and thus the table background shines through, except where a cell
from the first row spans into this row. The following HTML code and style rules

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
 <TITLE>Table example</TITLE>
 <STYLE type="text/css">
 TABLE { background: #ff0; border-collapse: collapse;
 empty-cells: hide }
 TD { background: red; border: double black }
 </STYLE>
 </HEAD>
 <BODY>
 <TABLE>
 <TR>
 <TD> 1
 <TD rowspan="2"> 2
 <TD> 3
 <TD> 4
 </TR>

15 Sep 2003 14:50245

Tables

 <TR><TD></TD></TR>
 </TABLE>
 </BODY>
</HTML>

might be formatted as follows:

1 2 3 4

Table with three empty cells in the bottom row.

Note that if the table has ’border-collapse: separate’, the background of the area
given by the ’border-spacing’ property is always the background of the table
element. See the separated borders model [p. 251] .

17.5.2 Table width algorithms: the ’table-layout’ property
CSS does not define an "optimal" layout for tables since, in many cases, what is
optimal is a matter of taste. CSS does define constraints that user agents must
respect when laying out a table. User agents may use any algorithm they wish to do
so, and are free to prefer rendering speed over precision, except when the "fixed
layout algorithm" is selected.

Note that this section overrides the rules that apply to calculating widths as
described in section 10.3 [p. 153] . In particular, if the margins of a table are set to ’0’
and the width to ’auto’, the table will not automatically size to fill its containing block.
However, once the calculated value of ’width’ for the table is found (using the algo-
rithms given below or, when appropriate, some other UA dependant algorithm) then
the other parts of section 10.3 do apply. Therefore a table can be centered using left
and right ’auto’ margins, for instance.

Future versions of CSS may introduce ways of making tables automatically fit their
containing blocks.

’table-layout’

Value: auto | fixed | inherit
Initial: auto
Applies to: ’table’ and ’inline-table’ elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The ’table-layout’ property controls the algorithm used to lay out the table cells,
rows, and columns. Values have the following meaning:

24615 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 124

fixed
Use the fixed table layout algorithm

auto
Use any automatic table layout algorithm

The two algorithms are described below.

Fixed table layout

With this (fast) algorithm, the horizontal layout of the table does not depend on the
contents of the cells; it only depends on the table’s width, the width of the columns,
and borders or cell spacing.

The table’s width may be specified explicitly with the ’width’ property. A value of
’auto’ (for both ’display: table’ and ’display: inline-table’) means use the automatic
table layout [p. 248] algorithm. However, if the table is a block-level table (’display:
table’) in normal flow, a UA may (but does not have to) use the algorithm of 10.3.3
[p. 153] to compute a width and apply fixed table layout even if the specified width is
’auto’.

Example(s):

If a UA supports fixed table layout when ’width’ is ’auto’, the following will create a
table that is 4em narrower than its containing block:

table { table-layout: fixed;
 margin-left: 2em;
 margin-right: 2em }

In the fixed table layout algorithm, the width of each column is determined as
follows:

1. A column element with a value other than ’auto’ for the ’width’ property sets the
width for that column.

2. Otherwise, a cell in the first row with a value other than ’auto’ for the ’width’
property sets the width for that column. If the cell spans more than one column,
the width is divided over the columns.

3. Any remaining columns equally divide the remaining horizontal table space
(minus borders or cell spacing).

The width of the table is then the greater of the value of the ’width’ property for the
table element and the sum of the column widths (plus cell spacing or borders). If the
table is wider than the columns, the extra space should be distributed over the
columns.

It is undefined what happens if a subsequent row has more columns than the first.
When using ’table-layout: fixed’, authors should not omit columns from the first row.

In this manner, the user agent can begin to lay out the table once the entire first
row has been received. Cells in subsequent rows do not affect column widths. Any
cell that has content that overflows uses the ’overflow’ property to determine whether

15 Sep 2003 14:50247

Tables

to clip the overflow content.

Automatic table layout

In this algorithm (which generally requires no more than two passes), the table’s
width is given by the width of its columns (and intervening borders [p. 251]). This
algorithm reflects the behavior of several popular HTML user agents at the writing of
this specification. UAs are not required to implement this algorithm to determine the
table layout in the case that ’table-layout’ is ’auto’; they can use any other algorithm.

This algorithm may be inefficient since it requires the user agent to have access to
all the content in the table before determining the final layout and may demand more
than one pass.

Column widths are determined as follows:

1. Calculate the minimum content width (MCW) of each cell: the formatted content
may span any number of lines but may not overflow the cell box. If the specified
’width’ (W) of the cell is greater than MCW, W is the minimum cell width. A value
of ’auto’ means that MCW is the minimum cell width.

Also, calculate the "maximum" cell width of each cell: formatting the content
without breaking lines other than where explicit line breaks occur.

2. For each column, determine a maximum and minimum column width from the
cells that span only that column. The minimum is that required by the cell with
the largest minimum cell width (or the column ’width’, whichever is larger). The
maximum is that required by the cell with the largest maximum cell width (or the
column ’width’, whichever is larger).

3. For each cell that spans more than one column, increase the minimum widths of
the columns it spans so that together, they are at least as wide as the cell. Do
the same for the maximum widths. If possible, widen all spanned columns by
approximately the same amount.

This gives a maximum and minimum width for each column. Column widths influ-
ence the final table width as follows:

1. If the ’table’ or ’inline-table’ element’s ’width’ property has a computed value (W)
other than ’auto’, the property’s value as used for layout is the greater of W and
the minimum width required by all the columns plus cell spacing or borders
(MIN). If W is greater than MIN, the extra width should be distributed over the
columns.

2. If the ’table’ or ’inline-table’ element has ’width: auto’, the table width used for
layout is the greater of the table’s containing block width and MIN. However, if
the maximum width required by the columns plus cell spacing or borders (MAX)
is less than that of the containing block, use MAX.

A percentage value for a column width is relative to the table width. If the table has
’width: auto’, a percentage represents a constraint on the column’s width, which a
UA should try to satisfy. (Obviously, this is not always possible: if the column’s width

24815 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 125

is ’110%’, the constraint cannot be satisfied.)

Note. In this algorithm, rows (and row groups) and columns (and column groups)
both constrain and are constrained by the dimensions of the cells they contain.
Setting the width of a column may indirectly influence the height of a row, and vice
versa.

17.5.3 Table height algorithms
The height of a table is given by the ’height’ property for the ’table’ or ’inline-table’
element. A value of ’auto’ means that the height is the sum of the row heights plus
any cell spacing or borders. Any other value specifies the height explicitly; the table
may thus be taller or shorter than the height of its rows. CSS 2.1 does not specify
rendering when the specified table height differs from the content height, in particular
whether content height should override specified height; if it doesn’t, how extra
space should be distributed among rows that add up to less than the specified table
height; or, if the content height exceeds the specified table height, whether the UA
should provide a scrolling mechanism. Note. Future versions of CSS may specify
this further.

The height of a ’table-row’ element’s box is calculated once the user agent has all
the cells in the row available: it is the maximum of the row’s specified ’height’ and the
minimum height (MIN) required by the cells. A ’height’ value of ’auto’ for a ’table-row’
means the row height used for layout is MIN. MIN depends on cell box heights and
cell box alignment (much like the calculation of a line box [p. 164] height). CSS 2.1
does not define what percentage values of ’height’ refer to when specified for table
rows and row groups.

In CSS 2.1, the height of a cell box is the maximum of the table cell’s ’height’ prop-
erty and the minimum height required by the content (MIN). A value of ’auto’ for
’height’ implies a that the value MIN will be used for layout. CSS 2.1 does not define
what percentage values of ’height’ refer to when specified for table cells.

CSS 2.1 does not specify how cells that span more than row affect row height
calculations except that the sum of the row heights involved must be great enough to
encompass the cell spanning the rows.

The ’vertical-align’ property of each table cell determines its alignment within the
row. Each cell’s content has a baseline, a top, a middle, and a bottom, as does the
row itself. In the context of tables, values for ’vertical-align’ have the following mean-
ings:

baseline
The baseline of the cell is put at the same height as the baseline of the first of
the rows it spans (see below for the definition of baselines of cells and rows).

top
The top of the cell box is aligned with the top of the first row it spans.

bottom
The bottom of the cell box is aligned with the bottom of the last row it spans.

15 Sep 2003 14:50249

Tables

middle
The center of the cell is aligned with the center of the rows it spans.

sub, super, text-top, text-bottom
These values do not apply to cells; the cell is aligned at the baseline instead.

The baseline of a cell is the baseline of the first line box [p. 118] in the cell. If there
is no text, the baseline is the baseline of whatever object is displayed in the cell, or, if
it has none, the bottom of the cell box. The maximum distance between the top of
the cell box and the baseline over all cells that have ’vertical-align: baseline’ is used
to set the baseline of the row. Here is an example:

1

baseline baseline top

Text Te

bottom middle

top

baseline

middle

bottom

text
text

3

4
2 5

Diagram showing the effect of various values of ’vertical-align’ on table cells.

Cell boxes 1 and 2 are aligned at their baselines. Cell box 2 has the largest height
above the baseline, so that determines the baseline of the row. Note that if there is
no cell box aligned at its baseline, the row will not have (nor need) a baseline.

To avoid ambiguous situations, the alignment of cells proceeds in the following
order:

1. First the cells that are aligned on their baseline are positioned. This will estab-
lish the baseline of the row. Next the cells with ’vertical-align: top’ are posi-
tioned.

2. The row now has a top, possibly a baseline, and a provisional height, which is
the distance from the top to the lowest bottom of the cells positioned so far.
(See conditions on the cell padding below.)

3. If any of the remaining cells, those aligned at the bottom or the middle, have a
height that is larger than the current height of the row, the height of the row will
be increased to the maximum of those cells, by lowering the bottom.

4. Finally the remaining cells are positioned.

Cell boxes that are smaller than the height of the row receive extra top or bottom
padding.

25015 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 126

17.5.4 Horizontal alignment in a column
The horizontal alignment of a cell’s content within a cell box is specified with the
’text-align’ property.

17.5.5 Dynamic row and column effects
The ’visibility’ property takes the value ’collapse’ for row, row group, column, and
column group elements. This value causes the entire row or column to be removed
from the display, and the space normally taken up by the row or column to be made
available for other content. Contents of spanned rows and columns that intersect the
collapsed column or row are clipped. The suppression of the row or column,
however, does not otherwise affect the layout of the table. This allows dynamic
effects to remove table rows or columns without forcing a re-layout of the table in
order to account for the potential change in column constraints.

17.6 Borders
There are two distinct models for setting borders on table cells in CSS. One is most
suitable for so-called separated borders around individual cells, the other is suitable
for borders that are continuous from one end of the table to the other. Many border
styles can be achieved with either model, so it is often a matter of taste which one is
used.

’border-collapse’

Value: collapse | separate | inherit
Initial: separate
Applies to: ’table’ and ’inline-table’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property selects a table’s border model. The value ’separate’ selects the
separated borders border model. The value ’collapse’ selects the collapsing borders
model. The models are described below.

17.6.1 The separated borders model

’border-spacing’

15 Sep 2003 14:50251

Tables

Value: <length> <length>? | inherit
Initial: 0
Applies to: ’table’ and ’inline-table’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: two absolute lengths

The lengths specify the distance that separates adjacent cell borders. If one length
is specified, it gives both the horizontal and vertical spacing. If two are specified, the
first gives the horizontal spacing and the second the vertical spacing. Lengths may
not be negative.

The distance between the table border and the borders of the cells on the edge of
the table is the table’s padding for that side, plus the relevant border spacing
distance. For example, on the right hand side, the distance is padding-right + hori-
zontal border-spacing.

In this model, each cell has an individual border. The ’border-spacing’ property
specifies the distance between the borders of adjacent cells. In this space, the row,
column, row group, and column group backgrounds are invisible, allowing the table
background to show through. Rows, columns, row groups, and column groups
cannot have borders (i.e., user agents must ignore [p. 46] the border properties for
those elements).

Example(s):

The table in the figure below could be the result of a style sheet like this:

table { border: outset 10pt;
 border-collapse: separate;
 border-spacing: 15pt }
td { border: inset 5pt }
td.special { border: inset 10pt } /* The top-left cell */

25215 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 127

table width

vertical
cell−spacing

cell−spacing
horizontal

table border
(outset)

cell width

cell border
(inset)

A table with ’border-spacing’ set to a length value. Note that each cell has its own
border, and the table has a separate border as well.

Borders and Backgrounds around empty cells: the ’empty-cells’ prop-
erty

’empty-cells’

Value: show | hide | inherit
Initial: show
Applies to: ’table-cell’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

In the separated borders model, this property controls the rendering of borders
and backgrounds around cells that have no visible content. Empty cells and cells
with the ’visibility’ property set to ’hidden’ are considered to have no visible content.
Visible content includes " " and other whitespace except ASCII CR ("\0D"), LF
("\0A"), tab ("\09"), and space ("\20").

15 Sep 2003 14:50253

Tables

When this property has the value ’show’, borders and backgrounds are drawn
around/behind empty cells (like normal cells).

A value of ’hide’ means that no borders or backgrounds are drawn around/behind
empty cells (see point 6 in 17.5.1 [p. 244]). Furthermore, if all the cells in a row have
a value of ’hide’ and have no visible content, the entire row behaves as if it had
’display: none’.

Example(s):

The following rule causes borders and backgrounds to be drawn around all cells:

table { empty-cells: show }

17.6.2 The collapsing border model
In the collapsing border model, it is possible to specify borders that surround all or
part of a cell, row, row group, column, and column group. Borders for HTML’s "rule"
attribute can be specified this way.

Borders are centered on the grid lines between the cells. User agents must find a
consistent rule for rounding off in the case of an odd number of discrete units
(screen pixels, printer dots).

The diagram below shows how the width of the table, the widths of the borders,
the padding, and the cell width interact. Their relation is given by the following equa-
tion, which holds for every row of the table:

row-width = (0.5 * border-width0) + padding-left1 + width1 + padding-right1 +
border-width1 + padding-left2 +...+ padding-rightn + (0.5 * border-widthn)

Here n is the number of cells in the row, and border-widthi refers to the border
between cells i and i + 1. Note only half of the two exterior borders are counted in
the table width; the other half of these two borders lies in the margin area.
Padding-left i and padding-right i refer to the left (resp., right) padding of cell i.

The half of the border that goes into the margin is taken into account when deter-
mining if the table overflows some ancestor (see ’overflow’).

25415 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 128

width width widthbo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th
pa

dd
in

g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

table width

cell

grid line

Schema showing the widths of cells and borders and the padding of cells.

Note that in this model, the width of the table includes half the table border. Also,
in this model, a table doesn’t have padding (but does have margins).

Border conflict resolution

In the collapsing border model, borders at every edge of every cell may be specified
by border properties on a variety of elements that meet at that edge (cells, rows, row
groups, columns, column groups, and the table itself), and these borders may vary in
width, style, and color. The rule of thumb is that at each edge the most "eye catch-
ing" border style is chosen, except that any occurrence of the style ’hidden’ uncondi-
tionally turns the border off.

The following rules determine which border style "wins" in case of a conflict:

1. Borders with the ’border-style’ of ’hidden’ take precedence over all other conflict-
ing borders. Any border with this value suppresses all borders at this location.

2. Borders with a style of ’none’ have the lowest priority. Only if the border proper-
ties of all the elements meeting at this edge are ’none’ will the border be omitted
(but note that ’none’ is the default value for the border style.)

3. If none of the styles are ’hidden’ and at least one of them is not ’none’, then
narrow borders are discarded in favor of wider ones. If several have the same
’border-width’ then styles are preferred in this order: ’double’, ’solid’, ’dashed’,
’dotted’, ’ridge’, ’outset’, ’groove’, and the lowest: ’inset’.

4. If border styles differ only in color, then a style set on a cell wins over one on a

15 Sep 2003 14:50255

Tables

row, which wins over a row group, column, column group and, lastly, table. It is
undefined which color is used when two elements of the same type disagree.

Example(s):

The following example illustrates the application of these precedence rules. This
style sheet:

table { border-collapse: collapse;
 border: 5px solid yellow; }
*#col1 { border: 3px solid black; }
td { border: 1px solid red; padding: 1em; }
td.solid-blue { border: 5px dashed blue; }
td.solid-green { border: 5px solid green; }

with this HTML source:

<P>
<TABLE>
<COL id="col1"><COL id="col2"><COL id="col3">
<TR id="row1">
 <TD> 1
 <TD> 2
 <TD> 3
</TR>
<TR id="row2">
 <TD> 4
 <TD class="solid-blue"> 5
 <TD class="solid-green"> 6
</TR>
<TR id="row3">
 <TD> 7
 <TD> 8
 <TD> 9
</TR>
<TR id="row4">
 <TD> 10
 <TD> 11
 <TD> 12
</TR>
<TR id="row5">
 <TD> 13
 <TD> 14
 <TD> 15
</TR>
</TABLE>

would produce something like this:

25615 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 129

11

4

2

15

12

9

14

8

13

10

7

1

5

3

6

An example of a table with collapsed borders.

Example(s):

The next example shows a table with horizontal rules between the rows. The top
border of the table is set to ’hidden’ to suppress the top border of the first row. This
implements the "rules" attribute of HTML 4.0 (rules="rows").

table[rules=rows] tr { border-top: solid }
table[rules=rows] { border-collapse: collapse;
 border-top: hidden }

a b c

3 4 5

5 12 13

Table with horizontal rules between the rows.

In this case the same effect can also be achieved without setting a ’hidden’ border
on TABLE, by addressing the first row separately. Which method is preferred is a
matter of taste.

tr:first-child { border-top: none }
tr { border-top: solid }

Example(s):

Here is another example of hidden collapsing borders:

15 Sep 2003 14:50257

Tables

Table with two omitted internal borders.

HTML source:

<TABLE style="border-collapse: collapse; border: solid;">
<TR><TD style="border-right: hidden; border-bottom: hidden">foo</TD>
 <TD style="border: solid">bar</TD></TR>
<TR><TD style="border: none">foo</TD>
 <TD style="border: solid">bar</TD></TR>
</TABLE>

17.6.3 Border styles
Some of the values of the ’border-style’ have different meanings in tables than for
other elements. In the list below they are marked with an asterisk.

none
No border.

*hidden
Same as ’none’, but in the collapsing border model [p. 254] , also inhibits any
other border (see the section on border conflicts [p. 255]).

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’grove’: the border looks as though it were coming out of the
canvas.

*inset
In the separated borders model [p. 251] , the border makes the entire box look
as though it were embedded in the canvas. In the collapsing border model
[p. 254] , same as ’ridge’.

*outset
In the separated borders model [p. 251] , the border makes the entire box look
as though it were coming out of the canvas. In the collapsing border model
[p. 254] , same as ’groove’.

25815 Sep 2003 14:50

Tables

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 130

18 User interface
Contents

........... 25918.1 Cursors: the ’cursor’ property

............. 26018.2 CSS2 System Colors

............ 26218.3 User preferences for fonts

......... 26218.4 Dynamic outlines: the ’outline’ property

........... 26418.4.1 Outlines and the focus

............... 26418.5 Magnification

18.1 Cursors: the ’cursor’ property
’cursor’

Value: [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize
| ne-resize | nw-resize | n-resize | se-resize | sw-resize |
s-resize | w-resize | text | wait | help | progress]] | inherit

Initial: auto
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual, interactive
Computed value: absolute URI; otherwise as specified

This property specifies the type of cursor to be displayed for the pointing device.
Values have the following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the ’se-resize’ cursor is
used when the movement starts from the south-east corner of the box.

text
Indicates text that may be selected. Often rendered as an I-beam.

15 Sep 2003 14:50259

User interface

wait,
Indicates that the program is busy and the user should wait. Often rendered as
a watch or hourglass.

progress
A progress indicator. The program is performing some processing, but is differ-
ent from ’wait’ in that the user may still interact with the program. Often rendered
as a spinning beach ball, or an arrow with a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question
mark or a balloon.

<uri>
The user agent retrieves the cursor from the resource designated by the URI. If
the user agent cannot handle the first cursor of a list of cursors, it should
attempt to handle the second, etc. If the user agent cannot handle any
user-defined cursor, it must use the generic cursor at the end of the list.

Example(s):

:link,:visited { cursor: url(example.svg#linkcursor), url(hyper.cur), pointer }

This example sets the cursor on all hyperlinks (whether visited or not) to an exter-
nal SVG cursor [p. ??] . User agents that don’t support SVG cursors would simply
skip to the next value and attempt to use the "hyper.cur" cursor. If that cursor format
was also not supported, the UA would skip to the next value and simply render the
’pointer’ cursor.

18.2 CSS2 System Colors
Note. The CSS2 System Colors are deprecated in the CSS3 Color Module [p. ??] .

In addition to being able to assign pre-defined color values [p. 53] to text, back-
grounds, etc., CSS2 introduced a set of named color values that allows authors to
specify colors in a manner that integrates them into the operating system’s graphic
environment.

For systems that do not have a corresponding value, the specified value should be
mapped to the nearest system value, or to a default color.

The following lists additional values for color-related CSS properties and their
general meaning. Any color property (e.g., ’color’ or ’background-color’) can take one
of the following names. Although these are case-insensitive, it is recommended that
the mixed capitalization shown below be used, to make the names more legible.

ActiveBorder
Active window border.

ActiveCaption
Active window caption.

26015 Sep 2003 14:50

User interface

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 131

AppWorkspace
Background color of multiple document interface.

Background
Desktop background.

ButtonFace
Face color for three-dimensional display elements.

ButtonHighlight
Highlight color for three-dimensional display elements (for edges facing away
from the light source).

ButtonShadow
Shadow color for three-dimensional display elements.

ButtonText
Text on push buttons.

CaptionText
Text in caption, size box, and scrollbar arrow box.

GrayText
Grayed (disabled) text. This color is set to #000 if the current display driver does
not support a solid gray color.

Highlight
Item(s) selected in a control.

HighlightText
Text of item(s) selected in a control.

InactiveBorder
Inactive window border.

InactiveCaption
Inactive window caption.

InactiveCaptionText
Color of text in an inactive caption.

InfoBackground
Background color for tooltip controls.

InfoText
Text color for tooltip controls.

Menu
Menu background.

MenuText
Text in menus.

Scrollbar
Scroll bar gray area.

ThreeDDarkShadow
Dark shadow for three-dimensional display elements.

ThreeDFace
Face color for three-dimensional display elements.

ThreeDHighlight
Highlight color for three-dimensional display elements.

ThreeDLightShadow
Light color for three-dimensional display elements (for edges facing the light

15 Sep 2003 14:50261

User interface

source).
ThreeDShadow

Dark shadow for three-dimensional display elements.
Window

Window background.
WindowFrame

Window frame.
WindowText

Text in windows.

Example(s):

For example, to set the foreground and background colors of a paragraph to the
same foreground and background colors of the user’s window, write the following:

p { color: WindowText; background-color: Window }

18.3 User preferences for fonts
As for colors, authors may specify fonts in a way that makes use of a user’s system
resources. Please consult the ’font’ property for details.

18.4 Dynamic outlines: the ’outline’ property
At times, style sheet authors may want to create outlines around visual objects such
as buttons, active form fields, image maps, etc., to make them stand out. CSS 2.1
outlines differ from borders [p. 100] in the following ways:

1. Outlines do not take up space.
2. Outlines may be non-rectangular.

The outline properties control the style of these dynamic outlines.

’outline’

Value: [<’outline-color’> || <’outline-style’> || <’outline-width’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: see individual properties

’outline-width’

26215 Sep 2003 14:50

User interface

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 132

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: absolute length; ’0’ if the outline style is ’none’ or ’hidden’

’outline-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

’outline-color’

Value: <color> | invert | inherit
Initial: invert
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

The outline created with the outline properties is drawn "over" a box, i.e., the
outline is always on top, and doesn’t influence the position or size of the box, or of
any other boxes. Therefore, displaying or suppressing outlines does not cause
reflow.

The outline may be drawn starting just outside the border edge [p. 92] .

Outlines may be non-rectangular. For example, if the element is broken across
several lines, the outline is the minimum outline that encloses all the element’s
boxes. In contrast to borders [p. 100] , the outline is not open at the line box’s end or
start, but is always fully connected if possible.

The ’outline-width’ property accepts the same values as ’border-width’.

The ’outline-style’ property accepts the same values as ’border-style’, except that
’hidden’ is not a legal outline style.

The ’outline-color’ accepts all colors, as well as the keyword ’invert’. ’Invert’ is
expected to perform a color inversion on the pixels on the screen. This is a common
trick to ensure the focus border is visible, regardless of color background.

15 Sep 2003 14:50263

User interface

Conformant UAs may ignore the ’invert’ value on platforms that do not support
color inversion of the pixels on the screen. If the UA does not support the ’invert’
value then the initial value of the ’outline-color’ property is the value of the ’color’
property, similar to the initial value of the ’border-top-color’ property.

The ’outline’ property is a shorthand property, and sets all three of ’outline-style’,
’outline-width’, and ’outline-color’.

Note. The outline is the same on all sides. In contrast to borders, there is no
’outline-top’ or ’outline-left’ property.

This specification does not define how multiple overlapping outlines are drawn, or
how outlines are drawn for boxes that are partially obscured behind other elements.

Note. Since the focus outline does not affect formatting (i.e., no space is left for it
in the box model), it may well overlap other elements on the page.

Example(s):

Here’s an example of drawing a thick outline around a BUTTON element:

button { outline-width : thick }

Scripts may be used to dynamically change the width of the outline, without
provoking a reflow.

18.4.1 Outlines and the focus
Graphical user interfaces may use outlines around elements to tell the user which
element on the page has the focus. These outlines are in addition to any borders,
and switching outlines on and off should not cause the document to reflow. The
focus is the subject of user interaction in a document (e.g., for entering text, select-
ing a button, etc.). User agents supporting the interactive media group [p. 89] must
keep track of where the focus lies and must also represent the focus. This may be
done by using dynamic outlines in conjunction with the :focus pseudo-class.

Example(s):

For example, to draw a thick black line around an element when it has the focus,
and a thick red line when it is active, the following rules can be used:

:focus { outline: thick solid black }
:active { outline: thick solid red }

18.5 Magnification
The CSS working group considers that the magnification of a document or portions
of a document should not be specified through style sheets. User agents may
support such magnification in different ways (e.g., larger images, louder sounds,
etc.)

26415 Sep 2003 14:50

User interface

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 133

When magnifying a page, UAs should preserve the relationships between posi-
tioned elements. For example, a comic strip may be composed of images with over-
laid text elements. When magnifying this page, a user agent should keep the text
within the comic strip balloon.

15 Sep 2003 14:50265

User interface

26615 Sep 2003 14:50

User interface

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 134

Appendix E. Elaborate description of Stacking
Contexts
Contents

................ 267E.1 Definitions

............... 267E.2 Painting order

................. 269E.3 Notes

This chapter defines the CSS2.1 painting order in more detail than described in
the rest of the specification.

E.1 Definitions
Tree Order

Preorder depth-first traversal of the rendering tree, in logical (not visual) order
for bidirectional content, after taking into account properties that move boxes
around such as the ’run-in’ value of ’display’.

Element
In this description, "element" refers to both actual elements and
pseudo-elements. Pseudo-elements and anonymous boxes are treated as
descendants in the appropriate places. For example, an outside list marker
comes before an adjacent ’:before’ box in the line box, which comes before the
content of the box, and so forth.

E.2 Painting order
The bottom of the stack is the furthest from the user, the top of the stack is the
nearest to the user:

 | | | |
 | | | | ⇦ ☻
 | | | user
 z-index: canvas -1 0 1 2

The stacking context background and most negative positioned stacking contexts
are at the bottom of the stack, while the most positive positioned stacking contexts
are at the top of the stack.

The canvas is transparent if contained within another, and given a UA-defined
color if it is not. It is infinite in extent and contains the root element. Initially, the view-
port is anchored with its top left corner at the canvas origin.

The stacking order for an element generating a stacking context (see the ’z-index’
property) is:

15 Sep 2003 14:50267

Elaborate description of Stacking Contexts

1. If the element is a root element:
1. background color of element over the entire canvas.
2. background image of element, unclipped, painted at the origin that would

be used if it was painted for the root element.
2. If the element is a block, list-item, or other block equivalent:

1. background color of element unless it is the root element.
2. background image of element unless it is the root element.
3. border of element.

Otherwise, if the element is a block level table:
1. table backgrounds (color then image) unless it is the root element.
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

3. Stacking contexts formed by positioned descendants with negative z-indices
(excluding 0) in z-index order (most negative first) then tree order.

4. For all its in-flow, non-positioned, block-level descendants in tree order: If the
element is a block, list-item, or other block equivalent:

1. background color of element.
2. background image of element.
3. border of element.

Otherwise, the element is a table:
1. table backgrounds (color then image).
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

5. All floating descendants, in tree order. For each one of these, treat the element
as if it created a new stacking context, but any descendants which actually
create a new stacking context should be considered part of the parent stacking
context, not this new one.

6. First for the element, then for all its in-flow, non-positioned, block-level descen-
dants in tree order:

1. For each element in each line box of the element, if any, or if the element is
inline-level (note that all elements in line boxes are forcably inline-level), on
a per-line-box basis:

1. Background color of element.
2. Background image of element.
3. Border of element.
4. For inline elements:

26815 Sep 2003 14:50

Elaborate description of Stacking Contexts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 135

1. Underline of element.
2. Overline of element.
3. Text of element.
4. Then all the element’s in-flow, non-positioned, inline-level descen-

dants, including anonymous inline elements generated for text
nodes inside the element, in tree order:

1. Jump to step 6.1 for this element.
5. Line-through of element.

For inline-block and inline-table elements:
1. For each one of these, treat the element as if it created a new

stacking context, but any descendants which actually create a new
stacking context should be considered part of the parent stacking
context, not this new one.

For inline-level replaced elements:
1. The replaced content, atomically.

5. Optionally, the outline of the element (see 9 below).
2. Otherwise, if the element is a block-level replaced element, then the

replaced content, atomically.
3. Optionally, if the element is block-level, the outline of the element (see 9

below).
7. All positioned descendants with ’z-index: auto’ or ’z-index: 0’, in tree order. For

those with ’z-index: auto’, treat the element as if it created a new stacking
context, but any descendants which actually create a new stacking context
should be considered part of the parent stacking context, not this new one. For
those with ’z-index: 0’, treat the stacking context generated atomically.

8. Stacking contexts formed by positioned descendants with z-indices greater than
or equal to 1 in z-index order (smallest first) then tree order.

9. Finally, implementations that do not draw outlines in steps above must draw
outlines from this stacking context at this stage.

E.3 Notes
If the root element is a block-level element, its background is only painted once, over
the whole canvas. If the root element is not a block-level element, then its back-
ground is painted twice, once for canvas, and once for the box(es) generated by the
element.

While the backgrounds of bidirectional inlines are painted in tree order, they are
positioned in visual order. Since the positioning of inline backgrounds is unspecified
in CSS2.1, the exact result of these two requirements is UA-defined. CSS3 may
define this in more detail.

15 Sep 2003 14:50269

Elaborate description of Stacking Contexts

27015 Sep 2003 14:50

Elaborate description of Stacking Contexts

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 136

Appendix H: Has been intentionally left blank

15 Sep 2003 14:50271

Has been intentionally left blank

27215 Sep 2003 14:50

Has been intentionally left blank

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 137

Appendix A. Aural style sheets
Contents

.......... 273A.1 The media types ’aural’ and ’speech’

........... 274A.2 Introduction to aural style sheets

............... 275A.2.1 Angles

............... 275A.2.2 Times

.............. 275A.2.3 Frequencies

............ 276A.3 Volume properties: ’volume’

............ 277A.4 Speaking properties: ’speak’

.... 278A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

...... 279A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

........... 280A.7 Mixing properties: ’play-during’

........ 281A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

........... 284’pitch-range’, ’stress’, and ’richness’

... 287A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

............ 288A.11 Audio rendering of tables

..... 289A.11.1 Speaking headers: the ’speak-header’ property

........... 291A.12 Sample style sheet for HTML

............... 292A.13 Emacspeak

This chapter is informative. UAs are not required to implement the properties of
this chapter in order to conform to CSS 2.1.

A.1 The media types ’aural’ and ’speech’
We expect that in a future level of CSS there will be new properties and values
defined for speech output. Therefore CSS 2.1 reserves the ’speech’ media type (see
chapter 7, "Media types" [p. 87]), but does not yet define which properties do or do
not apply to it.

The properties in this appendix apply to a media type ’aural’, that was introduced
in CSS2. The type ’aural’ is now deprecated.

This means that a style sheet such as

@media speech {
 body { voice-family: Paul }
}

is valid, but that its meaning is not defined by CSS 2.1, while

15 Sep 2003 14:50273

Aural style sheets

@media aural {
 body { voice-family: Paul }
}

is deprecated, but defined by this appendix.

A.2 Introduction to aural style sheets
The aural rendering of a document, already commonly used by the blind and
print-impaired communities, combines speech synthesis and "auditory icons." Often
such aural presentation occurs by converting the document to plain text and feeding
this to a screen reader -- software or hardware that simply reads all the characters
on the screen. This results in less effective presentation than would be the case if
the document structure were retained. Style sheet properties for aural presentation
may be used together with visual properties (mixed media) or as an aural alternative
to visual presentation.

Besides the obvious accessibility advantages, there are other large markets for
listening to information, including in-car use, industrial and medical documentation
systems (intranets), home entertainment, and to help users learning to read or who
have difficulty reading.

When using aural properties, the canvas consists of a three-dimensional physical
space (sound surrounds) and a temporal space (one may specify sounds before,
during, and after other sounds). The CSS properties also allow authors to vary the
quality of synthesized speech (voice type, frequency, inflection, etc.).

Example(s):

h1, h2, h3, h4, h5, h6 {
 voice-family: paul;
 stress: 20;
 richness: 90;
 cue-before: url("ping.au")
}
p.heidi { azimuth: center-left }
p.peter { azimuth: right }
p.goat { volume: x-soft }

This will direct the speech synthesizer to speak headers in a voice (a kind of
"audio font") called "paul", on a flat tone, but in a very rich voice. Before speaking the
headers, a sound sample will be played from the given URL. Paragraphs with class
"heidi" will appear to come from front left (if the sound system is capable of spatial
audio), and paragraphs of class "peter" from the right. Paragraphs with class "goat"
will be very soft.

27415 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 138

A.2.1 Angles
Angle values are denoted by <angle> in the text. Their format is a <number> imme-
diately followed by an angle unit identifier.

Angle unit identifiers are:

deg: degrees
grad: grads
rad: radians

Angle values may be negative. They should be normalized to the range 0-360deg
by the user agent. For example, -10deg and 350deg are equivalent.

For example, a right angle is ’90deg’ or ’100grad’ or ’1.570796326794897rad’.

Like for <length>, the unit may be omitted, if the value is zero: ’0deg’ may be
written as ’0’.

A.2.2 Times
Time values are denoted by <time> in the text. Their format is a <number> immedi-
ately followed by a time unit identifier.

Time unit identifiers are:

ms: milliseconds
s: seconds

Time values may not be negative.

Like for <length>, the unit may be omitted, if the value is zero: ’0s’ may be written
as ’0’.

A.2.3 Frequencies
Frequency values are denoted by <frequency> in the text. Their format is a
<number> immediately followed by a frequency unit identifier.

Frequency unit identifiers are:

Hz: Hertz
kHz: kilohertz

Frequency values may not be negative.

For example, 200Hz (or 200hz) is a bass sound, and 6kHz is a treble sound.

Like for <length>, the unit may be omitted, if the value is zero: ’0Hz’ may be
written as ’0’.

15 Sep 2003 14:50275

Aural style sheets

A.3 Volume properties: ’volume’
’volume’

Value: <number> | <percentage> | silent | x-soft | soft | medium |
loud | x-loud | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to inherited value
Media: aural
Computed value: number

Volume refers to the median volume of the waveform. In other words, a highly
inflected voice at a volume of 50 might peak well above that. The overall values are
likely to be human adjustable for comfort, for example with a physical volume control
(which would increase both the 0 and 100 values proportionately); what this property
does is adjust the dynamic range.

Values have the following meanings:

<number>
Any number between ’0’ and ’100’. ’0’ represents the minimum audible volume
level and 100 corresponds to the maximum comfortable level.

<percentage>
Percentage values are calculated relative to the inherited value, and are then
clipped to the range ’0’ to ’100’.

silent
No sound at all. The value ’0’ does not mean the same as ’silent’.

x-soft
Same as ’0’.

soft
Same as ’25’.

medium
Same as ’50’.

loud
Same as ’75’.

x-loud
Same as ’100’.

User agents should allow the values corresponding to ’0’ and ’100’ to be set by the
listener. No one setting is universally applicable; suitable values depend on the
equipment in use (speakers, headphones), the environment (in car, home theater,
library) and personal preferences. Some examples:

27615 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 139

A browser for in-car use has a setting for when there is lots of background
noise. ’0’ would map to a fairly high level and ’100’ to a quite high level. The
speech is easily audible over the road noise but the overall dynamic range is
compressed. Cars with better insulation might allow a wider dynamic range.
Another speech browser is being used in an apartment, late at night, or in a
shared study room. ’0’ is set to a very quiet level and ’100’ to a fairly quiet level,
too. As with the first example, there is a low slope; the dynamic range is
reduced. The actual volumes are low here, whereas they were high in the first
example.
In a quiet and isolated house, an expensive hi-fi home theater setup. ’0’ is set
fairly low and ’100’ to quite high; there is wide dynamic range.

The same author style sheet could be used in all cases, simply by mapping the ’0’
and ’100’ points suitably at the client side.

A.4 Speaking properties: ’speak’
’speak’

Value: normal | none | spell-out | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether text will be rendered aurally and if so, in what
manner. The possible values are:

none
Suppresses aural rendering so that the element requires no time to render.
Note, however, that descendants may override this value and will be spoken.
(To be sure to suppress rendering of an element and its descendants, use the
’display’ property).

normal
Uses language-dependent pronunciation rules for rendering an element and its
children.

spell-out
Spells the text one letter at a time (useful for acronyms and abbreviations).

Note the difference between an element whose ’volume’ property has a value of
’silent’ and an element whose ’speak’ property has the value ’none’. The former
takes up the same time as if it had been spoken, including any pause before and
after the element, but no sound is generated. The latter requires no time and is not
rendered (though its descendants may be).

15 Sep 2003 14:50277

Aural style sheets

A.5 Pause properties: ’pause-before’, ’pause-after’,
and ’pause’
’pause-before’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time

’pause-after’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time;;

These properties specify a pause to be observed before (or after) speaking an
element’s content. Values have the following meanings:

<time>
Expresses the pause in absolute time units (seconds and milliseconds).

<percentage>
Refers to the inverse of the value of the ’speech-rate’ property. For example, if
the speech-rate is 120 words per minute (i.e., a word takes half a second, or
500ms) then a ’pause-before’ of 100% means a pause of 500 ms and a
’pause-before’ of 20% means 100ms.

The pause is inserted between the element’s content and any ’cue-before’ or
’cue-after’ content.

Authors should use relative units to create more robust style sheets in the face of
large changes in speech-rate.

’pause’

27815 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 140

Value: [[<time> | <percentage>]{1,2}] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: see descriptions of ’pause-before’ and ’pause-after’
Media: aural
Computed value: see individual properties

The ’pause’ property is a shorthand for setting ’pause-before’ and ’pause-after’. If
two values are given, the first value is ’pause-before’ and the second is ’pause-after’.
If only one value is given, it applies to both properties.

Example(s):

h1 { pause: 20ms } /* pause-before: 20ms; pause-after: 20ms */
h2 { pause: 30ms 40ms } /* pause-before: 30ms; pause-after: 40ms */
h3 { pause-after: 10ms } /* pause-before unspecified; pause-after: 10ms */

A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’
’cue-before’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

’cue-after’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

Auditory icons are another way to distinguish semantic elements. Sounds may be
played before and/or after the element to delimit it. Values have the following mean-
ings:

<uri>
The URI must designate an auditory icon resource. If the URI resolves to some-
thing other than an audio file, such as an image, the resource should be ignored

15 Sep 2003 14:50279

Aural style sheets

and the property treated as if it had the value ’none’.
none

No auditory icon is specified.

Example(s):

a {cue-before: url("bell.aiff"); cue-after: url("dong.wav") }
h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }

’cue’

Value: [<’cue-before’> || <’cue-after’>] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: see individual properties

The ’cue’ property is a shorthand for setting ’cue-before’ and ’cue-after’. If two
values are given, the first value is ’cue-before’ and the second is ’cue-after’. If only
one value is given, it applies to both properties.

Example(s):

The following two rules are equivalent:

h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }
h1 {cue: url("pop.au") }

If a user agent cannot render an auditory icon (e.g., the user’s environment does
not permit it), we recommend that it produce an alternative cue.

Please see the sections on the :before and :after pseudo-elements [p. 177] for
information on other content generation techniques. ’cue-before’ sounds and
’pause-before’ gaps are inserted before content from the ’:before’ pseudo-element.
Similarly, ’pause-after’ gaps and ’cue-after’ sounds are inserted after content from
the ’:after’ pseudo-element.

A.7 Mixing properties: ’play-during’
’play-during’

28015 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 141

Value: <uri> [mix || repeat]? | auto | none | inherit
Initial: auto
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI, rest as specified

Similar to the ’cue-before’ and ’cue-after’ properties, this property specifies a
sound to be played as a background while an element’s content is spoken. Values
have the following meanings:

<uri>
The sound designated by this <uri> is played as a background while the
element’s content is spoken.

mix
When present, this keyword means that the sound inherited from the parent
element’s ’play-during’ property continues to play and the sound designated by
the <uri> is mixed with it. If ’mix’ is not specified, the element’s background
sound replaces the parent’s.

repeat
When present, this keyword means that the sound will repeat if it is too short to
fill the entire duration of the element. Otherwise, the sound plays once and then
stops. This is similar to the ’background-repeat’ property. If the sound is too long
for the element, it is clipped once the element has been spoken.

auto
The sound of the parent element continues to play (it is not restarted, which
would have been the case if this property had been inherited).

none
This keyword means that there is silence. The sound of the parent element (if
any) is silent during the current element and continues after the current element.

Example(s):

blockquote.sad { play-during: url("violins.aiff") }
blockquote Q { play-during: url("harp.wav") mix }
span.quiet { play-during: none }

A.8 Spatial properties: ’azimuth’ and ’elevation’
Spatial audio is an important stylistic property for aural presentation. It provides a
natural way to tell several voices apart, as in real life (people rarely all stand in the
same spot in a room). Stereo speakers produce a lateral sound stage. Binaural
headphones or the increasingly popular 5-speaker home theater setups can gener-
ate full surround sound, and multi-speaker setups can create a true three-dimen-
sional sound stage. VRML 2.0 also includes spatial audio, which implies that in time
consumer-priced spatial audio hardware will become more widely available.

15 Sep 2003 14:50281

Aural style sheets

’azimuth’

Value: <angle> | [[left-side | far-left | left | center-left | center |
center-right | right | far-right | right-side] || behind] | leftwards
| rightwards | inherit

Initial: center
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values have the following meanings:

<angle>
Position is described in terms of an angle within the range ’-360deg’ to ’360deg’.
The value ’0deg’ means directly ahead in the center of the sound stage. ’90deg’
is to the right, ’180deg’ behind, and ’270deg’ (or, equivalently and more conve-
niently, ’-90deg’) to the left.

left-side
Same as ’270deg’. With ’behind’, ’270deg’.

far-left
Same as ’300deg’. With ’behind’, ’240deg’.

left
Same as ’320deg’. With ’behind’, ’220deg’.

center-left
Same as ’340deg’. With ’behind’, ’200deg’.

center
Same as ’0deg’. With ’behind’, ’180deg’.

center-right
Same as ’20deg’. With ’behind’, ’160deg’.

right
Same as ’40deg’. With ’behind’, ’140deg’.

far-right
Same as ’60deg’. With ’behind’, ’120deg’.

right-side
Same as ’90deg’. With ’behind’, ’90deg’.

leftwards
Moves the sound to the left, relative to the current angle. More precisely,
subtracts 20 degrees. Arithmetic is carried out modulo 360 degrees. Note that
’leftwards’ is more accurately described as "turned counter-clockwise," since it
always subtracts 20 degrees, even if the inherited azimuth is already behind the
listener (in which case the sound actually appears to move to the right).

rightwards
Moves the sound to the right, relative to the current angle. More precisely, adds
20 degrees. See ’leftwards’ for arithmetic.

28215 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 142

This property is most likely to be implemented by mixing the same signal into
different channels at differing volumes. It might also use phase shifting, digital delay,
and other such techniques to provide the illusion of a sound stage. The precise
means used to achieve this effect and the number of speakers used to do so are
user agent-dependent; this property merely identifies the desired end result.

Example(s):

h1 { azimuth: 30deg }
td.a { azimuth: far-right } /* 60deg */
#12 { azimuth: behind far-right } /* 120deg */
p.comment { azimuth: behind } /* 180deg */

If spatial-azimuth is specified and the output device cannot produce sounds
behind the listening position, user agents should convert values in the rearwards
hemisphere to forwards hemisphere values. One method is as follows:

if 90deg < x <= 180deg then x := 180deg - x
if 180deg < x <= 270deg then x := 540deg - x

’elevation’

Value: <angle> | below | level | above | higher | lower | inherit
Initial: level
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values of this property have the following meanings:

<angle>
Specifies the elevation as an angle, between ’-90deg’ and ’90deg’. ’0deg’
means on the forward horizon, which loosely means level with the listener.
’90deg’ means directly overhead and ’-90deg’ means directly below.

below
Same as ’-90deg’.

level
Same as ’0deg’.

above
Same as ’90deg’.

higher
Adds 10 degrees to the current elevation.

lower
Subtracts 10 degrees from the current elevation.

15 Sep 2003 14:50283

Aural style sheets

The precise means used to achieve this effect and the number of speakers used
to do so are undefined. This property merely identifies the desired end result.

Example(s):

h1 { elevation: above }
tr.a { elevation: 60deg }
tr.b { elevation: 30deg }
tr.c { elevation: level }

A.9 Voice characteristic properties: ’speech-rate’,
’voice-family’, ’pitch’, ’pitch-range’, ’stress’, and ’rich-
ness’
’speech-rate’

Value: <number> | x-slow | slow | medium | fast | x-fast | faster |
slower | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: number

This property specifies the speaking rate. Note that both absolute and relative
keyword values are allowed (compare with ’font-size’). Values have the following
meanings:

<number>
Specifies the speaking rate in words per minute, a quantity that varies some-
what by language but is nevertheless widely supported by speech synthesizers.

x-slow
Same as 80 words per minute.

slow
Same as 120 words per minute

medium
Same as 180 - 200 words per minute.

fast
Same as 300 words per minute.

x-fast
Same as 500 words per minute.

faster
Adds 40 words per minute to the current speech rate.

slower
Subtracts 40 words per minutes from the current speech rate.

28415 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 143

’voice-family’

Value: [[<specific-voice> | <generic-voice>],]* [<specific-voice> |
<generic-voice>] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

The value is a comma-separated, prioritized list of voice family names (compare
with ’font-family’). Values have the following meanings:

<generic-voice>
Values are voice families. Possible values are ’male’, ’female’, and ’child’.

<specific-voice>
Values are specific instances (e.g., comedian, trinoids, carlos, lani).

Example(s):

h1 { voice-family: announcer, male }
p.part.romeo { voice-family: romeo, male }
p.part.juliet { voice-family: juliet, female }

Names of specific voices may be quoted, and indeed must be quoted if any of the
words that make up the name does not conform to the syntax rules for identifiers
[p. 37] . It is also recommended to quote specific voices with a name consisting of
more than one word. If quoting is omitted, any whitespace [p. 40] characters before
and after the voice family name are ignored and any sequence of whitespace char-
acters inside the voice family name is converted to a single space.

’pitch’

Value: <frequency> | x-low | low | medium | high | x-high | inherit
Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: frequency

Specifies the average pitch (a frequency) of the speaking voice. The average pitch
of a voice depends on the voice family. For example, the average pitch for a stan-
dard male voice is around 120Hz, but for a female voice, it’s around 210Hz.

15 Sep 2003 14:50285

Aural style sheets

Values have the following meanings:

<frequency>
Specifies the average pitch of the speaking voice in hertz (Hz).

x-low, low, medium, high, x-high
These values do not map to absolute frequencies since these values depend on
the voice family. User agents should map these values to appropriate frequen-
cies based on the voice family and user environment. However, user agents
must map these values in order (i.e., ’x-low’ is a lower frequency than ’low’,
etc.).

’pitch-range’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies variation in average pitch. The perceived pitch of a human voice is deter-
mined by the fundamental frequency and typically has a value of 120Hz for a male
voice and 210Hz for a female voice. Human languages are spoken with varying
inflection and pitch; these variations convey additional meaning and emphasis. Thus,
a highly animated voice, i.e., one that is heavily inflected, displays a high pitch
range. This property specifies the range over which these variations occur, i.e., how
much the fundamental frequency may deviate from the average pitch.

Values have the following meanings:

<number>
A value between ’0’ and ’100’. A pitch range of ’0’ produces a flat, monotonic
voice. A pitch range of 50 produces normal inflection. Pitch ranges greater than
50 produce animated voices.

’stress’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

28615 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 144

Specifies the height of "local peaks" in the intonation contour of a voice. For
example, English is a stressed language, and different parts of a sentence are
assigned primary, secondary, or tertiary stress. The value of ’stress’ controls the
amount of inflection that results from these stress markers. This property is a
companion to the ’pitch-range’ property and is provided to allow developers to exploit
higher-end auditory displays.

Values have the following meanings:

<number>
A value, between ’0’ and ’100’. The meaning of values depends on the language
being spoken. For example, a level of ’50’ for a standard, English-speaking male
voice (average pitch = 122Hz), speaking with normal intonation and emphasis
would have a different meaning than ’50’ for an Italian voice.

’richness’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies the richness, or brightness, of the speaking voice. A rich voice will
"carry" in a large room, a smooth voice will not. (The term "smooth" refers to how the
wave form looks when drawn.)

Values have the following meanings:

<number>
A value between ’0’ and ’100’. The higher the value, the more the voice will
carry. A lower value will produce a soft, mellifluous voice.

A.10 Speech properties: ’speak-punctuation’ and
’speak-numeral’
An additional speech property, ’speak-header’, is described below.

’speak-punctuation’

15 Sep 2003 14:50287

Aural style sheets

Value: code | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies how punctuation is spoken. Values have the following
meanings:

code
Punctuation such as semicolons, braces, and so on are to be spoken literally.

none
Punctuation is not to be spoken, but instead rendered naturally as various
pauses.

’speak-numeral’

Value: digits | continuous | inherit
Initial: continuous
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property controls how numerals are spoken. Values have the following mean-
ings:

digits
Speak the numeral as individual digits. Thus, "237" is spoken "Two Three
Seven".

continuous
Speak the numeral as a full number. Thus, "237" is spoken "Two hundred thirty
seven". Word representations are language-dependent.

A.11 Audio rendering of tables
When a table is spoken by a speech generator, the relation between the data cells
and the header cells must be expressed in a different way than by horizontal and
vertical alignment. Some speech browsers may allow a user to move around in the
2-dimensional space, thus giving them the opportunity to map out the spatially repre-
sented relations. When that is not possible, the style sheet must specify at which
points the headers are spoken.

28815 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 145

A.11.1 Speaking headers: the ’speak-header’ property

’speak-header’

Value: once | always | inherit
Initial: once
Applies to: elements that have table header information
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether table headers are spoken before every cell, or
only before a cell when that cell is associated with a different header than the previ-
ous cell. Values have the following meanings:

once
The header is spoken one time, before a series of cells.

always
The header is spoken before every pertinent cell.

Each document language may have different mechanisms that allow authors to
specify headers. For example, in HTML 4.0 ([HTML40]), it is possible to specify
header information with three different attributes ("headers", "scope", and "axis"),
and the specification gives an algorithm for determining header information when
these attributes have not been specified.

Image of a table with header cells ("San Jose" and "Seattle") that are not in the
same column or row as the data they apply to.

This HTML example presents the money spent on meals, hotels and transport in
two locations (San Jose and Seattle) for successive days. Conceptually, you can
think of the table in terms of an n-dimensional space. The headers of this space are:
location, day, category and subtotal. Some cells define marks along an axis while

15 Sep 2003 14:50289

Aural style sheets

others give money spent at points within this space. The markup for this table is:

<TABLE>
<CAPTION>Travel Expense Report</CAPTION>
<TR>
 <TH></TH>
 <TH>Meals</TH>
 <TH>Hotels</TH>
 <TH>Transport</TH>
 <TH>subtotal</TH>
</TR>
<TR>
 <TH id="san-jose" axis="san-jose">San Jose</TH>
</TR>
<TR>
 <TH headers="san-jose">25-Aug-97</TH>
 <TD>37.74</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">26-Aug-97</TH>
 <TD>27.28</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">subtotal</TH>
 <TD>65.02</TD>
 <TD>224.00</TD>
 <TD>90.00</TD>
 <TD>379.02</TD>
</TR>
<TR>
 <TH id="seattle" axis="seattle">Seattle</TH>
</TR>
<TR>
 <TH headers="seattle">27-Aug-97</TH>
 <TD>96.25</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">28-Aug-97</TH>
 <TD>35.00</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">subtotal</TH>
 <TD>131.25</TD>
 <TD>218.00</TD>
 <TD>72.00</TD>

29015 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 146

 <TD>421.25</TD>
</TR>
<TR>
 <TH>Totals</TH>
 <TD>196.27</TD>
 <TD>442.00</TD>
 <TD>162.00</TD>
 <TD>800.27</TD>
</TR>
</TABLE>

By providing the data model in this way, authors make it possible for speech
enabled-browsers to explore the table in rich ways, e.g., each cell could be spoken
as a list, repeating the applicable headers before each data cell:

 San Jose, 25-Aug-97, Meals: 37.74
 San Jose, 25-Aug-97, Hotels: 112.00
 San Jose, 25-Aug-97, Transport: 45.00
 ...

The browser could also speak the headers only when they change:

San Jose, 25-Aug-97, Meals: 37.74
 Hotels: 112.00
 Transport: 45.00
 26-Aug-97, Meals: 27.28
 Hotels: 112.00
...

A.12 Sample style sheet for HTML
This style sheet describes a possible rendering of HTML 4.0:

@media aural {
h1, h2, h3,
h4, h5, h6 { voice-family: paul, male; stress: 20; richness: 90 }
h1 { pitch: x-low; pitch-range: 90 }
h2 { pitch: x-low; pitch-range: 80 }
h3 { pitch: low; pitch-range: 70 }
h4 { pitch: medium; pitch-range: 60 }
h5 { pitch: medium; pitch-range: 50 }
h6 { pitch: medium; pitch-range: 40 }
li, dt, dd { pitch: medium; richness: 60 }
dt { stress: 80 }
pre, code, tt { pitch: medium; pitch-range: 0; stress: 0; richness: 80 }
em { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
strong { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
dfn { pitch: high; pitch-range: 60; stress: 60 }
s, strike { richness: 0 }
i { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
b { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
u { richness: 0 }
a:link { voice-family: harry, male }
a:visited { voice-family: betty, female }
a:active { voice-family: betty, female; pitch-range: 80; pitch: x-high }
}

15 Sep 2003 14:50291

Aural style sheets

A.13 Emacspeak
For information, here is the list of properties implemented by Emacspeak, a speech
subsystem for the Emacs editor.

voice-family
stress (but with a different range of values)
richness (but with a different range of values)
pitch (but with differently named values)
pitch-range (but with a different range of values)

(We thank T. V. Raman for the information about implementation status of aural
properties.)

29215 Sep 2003 14:50

Aural style sheets

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 147

Appendix D. Default style sheet for HTML 4.0
This appendix is informative, not normative.

This style sheet describes the typical formatting of all HTML 4.0 ([HTML40])
elements based on extensive research into current UA practice. Developers are
encouraged to use it as a default style sheet in their implementations.

The full presentation of some HTML elements cannot be expressed in CSS 2.1,
including replaced [p. 32] elements ("img", "object"), scripting elements ("script",
"applet"), form control elements, and frame elements.

For other elements, the legacy presentation can be described in CSS but the solu-
tion removes the element. For example, the FONT element can be replaced by
attaching CSS declarations to other elements (e.g., DIV). Likewise, legacy presenta-
tion of presentational attributes (e.g., the "border" attribute on TABLE) can be
described in CSS, but the markup in the source document must be changed.

address,
blockquote,
body, dd, div,
dl, dt, fieldset, form,
frame, frameset,
h1, h2, h3, h4,
h5, h6, noframes,
ol, p, ul, center,
dir, hr, menu, pre { display: block }
li { display: list-item }
head { display: none }
table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell; }
caption { display: table-caption }
th { font-weight: bolder; text-align: center }
caption { text-align: center }
body { margin: 8px; line-height: 1.12 }
h1 { font-size: 2em; margin: .67em 0 }
h2 { font-size: 1.5em; margin: .75em 0 }
h3 { font-size: 1.17em; margin: .83em 0 }
h4, p,
blockquote, ul,
fieldset, form,
ol, dl, dir,
menu { margin: 1.12em 0 }
h5 { font-size: .83em; margin: 1.5em 0 }
h6 { font-size: .75em; margin: 1.67em 0 }
h1, h2, h3, h4,
h5, h6, b,

15 Sep 2003 14:50293

Default style sheet for HTML 4.0

strong { font-weight: bolder }
blockquote { margin-left: 40px; margin-right: 40px }
i, cite, em,
var, address { font-style: italic }
pre, tt, code,
kbd, samp { font-family: monospace }
pre { white-space: pre }
button, textarea,
input, object,
select { display:inline-block; }
big { font-size: 1.17em }
small, sub, sup { font-size: .83em }
sub { vertical-align: sub }
sup { vertical-align: super }
thead, tbody,
tfoot { vertical-align: middle }
td, th { vertical-align: inherit }
s, strike, del { text-decoration: line-through }
hr { border: 1px inset }
ol, ul, dir,
menu, dd { margin-left: 40px }
ol { list-style-type: decimal }
ol ul, ul ol,
ul ul, ol ol { margin-top: 0; margin-bottom: 0 }
u, ins { text-decoration: underline }
br:before { content: "\A" }
:before, :after { white-space: pre-line }
center { text-align: center }
abbr, acronym { font-variant: small-caps; letter-spacing: 0.1em }
:link, :visited { text-decoration: underline }
:focus { outline: thin dotted invert }

/* Begin bidirectionality settings (do not change) */
BDO[DIR="ltr"] { direction: ltr; unicode-bidi: bidi-override }
BDO[DIR="rtl"] { direction: rtl; unicode-bidi: bidi-override }

*[DIR="ltr"] { direction: ltr; unicode-bidi: embed }
*[DIR="rtl"] { direction: rtl; unicode-bidi: embed }

@media print {
 h1 { page-break-before: always }
 h1, h2, h3,
 h4, h5, h6 { page-break-after: avoid }
 ul, ol, dl { page-break-before: avoid }
}

29415 Sep 2003 14:50

Default style sheet for HTML 4.0

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 148

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

1 of 62 04-08-24 12.58

XSL Transformations (XSLT)
Version 1.0

W3C Recommendation 16 November 1999

This version:
http://www.w3.org/TR/1999/REC-xslt-19991116
(available in XML or HTML)

Latest version:
http://www.w3.org/TR/xslt

Previous versions:
http://www.w3.org/TR/1999/PR-xslt-19991008
http://www.w3.org/1999/08/WD-xslt-19990813
http://www.w3.org/1999/07/WD-xslt-19990709
http://www.w3.org/TR/1999/WD-xslt-19990421
http://www.w3.org/TR/1998/WD-xsl-19981216
http://www.w3.org/TR/1998/WD-xsl-19980818

Editor:
James Clark <jjc@jclark.com>

Copyright © 1999 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use
and software licensing rules apply.

Abstract

This specification defines the syntax and semantics of XSLT, which is a language for transforming XML
documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In addition to XSLT, XSL
includes an XML vocabulary for specifying formatting. XSL specifies the styling of an XML document by
using XSLT to describe how the document is transformed into another XML document that uses the
formatting vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not intended as a completely
general-purpose XML transformation language. Rather it is designed primarily for the kinds of
transformations that are needed when XSLT is used as part of XSL.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed by
the Director as a W3C Recommendation. It is a stable document and may be used as reference material or
cited as a normative reference from other documents. W3C's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

The list of known errors in this specification is available at
http://www.w3.org/1999/11/REC-xslt-19991116-errata.

Comments on this specification may be sent to xsl-editors@w3.org; archives of the comments are available.
Public discussion of XSL, including XSL Transformations, takes place on the XSL-List mailing list.

The English version of this specification is the only normative version. However, for translations of this
document, see http://www.w3.org/Style/XSL/translations.html.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

2 of 62 04-08-24 12.58

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

This specification has been produced as part of the W3C Style activity.

Table of contents

1 Introduction
2 Stylesheet Structure
 2.1 XSLT Namespace
 2.2 Stylesheet Element
 2.3 Literal Result Element as Stylesheet
 2.4 Qualified Names
 2.5 Forwards-Compatible Processing
 2.6 Combining Stylesheets
 2.6.1 Stylesheet Inclusion
 2.6.2 Stylesheet Import
 2.7 Embedding Stylesheets
3 Data Model
 3.1 Root Node Children
 3.2 Base URI
 3.3 Unparsed Entities
 3.4 Whitespace Stripping
4 Expressions
5 Template Rules
 5.1 Processing Model
 5.2 Patterns
 5.3 Defining Template Rules
 5.4 Applying Template Rules
 5.5 Conflict Resolution for Template Rules
 5.6 Overriding Template Rules
 5.7 Modes
 5.8 Built-in Template Rules
6 Named Templates
7 Creating the Result Tree
 7.1 Creating Elements and Attributes
 7.1.1 Literal Result Elements
 7.1.2 Creating Elements with xsl:element
 7.1.3 Creating Attributes with xsl:attribute
 7.1.4 Named Attribute Sets
 7.2 Creating Text
 7.3 Creating Processing Instructions
 7.4 Creating Comments
 7.5 Copying
 7.6 Computing Generated Text
 7.6.1 Generating Text with xsl:value-of
 7.6.2 Attribute Value Templates
 7.7 Numbering
 7.7.1 Number to String Conversion Attributes
8 Repetition
9 Conditional Processing
 9.1 Conditional Processing with xsl:if
 9.2 Conditional Processing with xsl:choose
10 Sorting
11 Variables and Parameters
 11.1 Result Tree Fragments
 11.2 Values of Variables and Parameters
 11.3 Using Values of Variables and Parameters with xsl:copy-of
 11.4 Top-level Variables and Parameters
 11.5 Variables and Parameters within Templates

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 149

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

3 of 62 04-08-24 12.58

 11.6 Passing Parameters to Templates
12 Additional Functions
 12.1 Multiple Source Documents
 12.2 Keys
 12.3 Number Formatting
 12.4 Miscellaneous Additional Functions
13 Messages
14 Extensions
 14.1 Extension Elements
 14.2 Extension Functions
15 Fallback
16 Output
 16.1 XML Output Method
 16.2 HTML Output Method
 16.3 Text Output Method
 16.4 Disabling Output Escaping
17 Conformance
18 Notation

Appendices

A References
 A.1 Normative References
 A.2 Other References
B Element Syntax Summary
C DTD Fragment for XSLT Stylesheets (Non-Normative)
D Examples (Non-Normative)
 D.1 Document Example
 D.2 Data Example
E Acknowledgements (Non-Normative)
F Changes from Proposed Recommendation (Non-Normative)
G Features under Consideration for Future Versions of XSLT (Non-Normative)

1 Introduction

This specification defines the syntax and semantics of the XSLT language. A transformation in the XSLT
language is expressed as a well-formed XML document [XML] conforming to the Namespaces in XML
Recommendation [XML Names], which may include both elements that are defined by XSLT and elements
that are not defined by XSLT. XSLT-defined elements are distinguished by belonging to a specific XML
namespace (see [2.1 XSLT Namespace]), which is referred to in this specification as the XSLT
namespace. Thus this specification is a definition of the syntax and semantics of the XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree into a result tree. The
transformation is achieved by associating patterns with templates. A pattern is matched against elements in
the source tree. A template is instantiated to create part of the result tree. The result tree is separate from
the source tree. The structure of the result tree can be completely different from the structure of the source
tree. In constructing the result tree, elements from the source tree can be filtered and reordered, and
arbitrary structure can be added.

A transformation expressed in XSLT is called a stylesheet. This is because, in the case when XSLT is
transforming into the XSL formatting vocabulary, the transformation functions as a stylesheet.

This document does not specify how an XSLT stylesheet is associated with an XML document. It is
recommended that XSL processors support the mechanism described in [XML Stylesheet]. When this or any
other mechanism yields a sequence of more than one XSLT stylesheet to be applied simultaneously to a XML
document, then the effect should be the same as applying a single stylesheet that imports each member of
the sequence in order (see [2.6.2 Stylesheet Import]).

A stylesheet contains a set of template rules. A template rule has two parts: a pattern which is matched
against nodes in the source tree and a template which can be instantiated to form part of the result tree. This
allows a stylesheet to be applicable to a wide class of documents that have similar source tree structures.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

4 of 62 04-08-24 12.58

A template is instantiated for a particular source element to create part of the result tree. A template can
contain elements that specify literal result element structure. A template can also contain elements from the
XSLT namespace that are instructions for creating result tree fragments. When a template is instantiated,
each instruction is executed and replaced by the result tree fragment that it creates. Instructions can select
and process descendant source elements. Processing a descendant element creates a result tree fragment
by finding the applicable template rule and instantiating its template. Note that elements are only processed
when they have been selected by the execution of an instruction. The result tree is constructed by finding
the template rule for the root node and instantiating its template.

In the process of finding the applicable template rule, more than one template rule may have a pattern that
matches a given element. However, only one template rule will be applied. The method for deciding which
template rule to apply is described in [5.5 Conflict Resolution for Template Rules].

A single template by itself has considerable power: it can create structures of arbitrary complexity; it can pull
string values out of arbitrary locations in the source tree; it can generate structures that are repeated
according to the occurrence of elements in the source tree. For simple transformations where the structure of
the result tree is independent of the structure of the source tree, a stylesheet can often consist of only a
single template, which functions as a template for the complete result tree. Transformations on XML
documents that represent data are often of this kind (see [D.2 Data Example]). XSLT allows a simplified
syntax for such stylesheets (see [2.3 Literal Result Element as Stylesheet]).

When a template is instantiated, it is always instantiated with respect to a current node and a current
node list. The current node is always a member of the current node list. Many operations in XSLT are
relative to the current node. Only a few instructions change the current node list or the current node (see [5
Template Rules] and [8 Repetition]); during the instantiation of one of these instructions, the current
node list changes to a new list of nodes and each member of this new list becomes the current node in turn;
after the instantiation of the instruction is complete, the current node and current node list revert to what they
were before the instruction was instantiated.

XSLT makes use of the expression language defined by [XPath] for selecting elements for processing, for
conditional processing and for generating text.

XSLT provides two "hooks" for extending the language, one hook for extending the set of instruction
elements used in templates and one hook for extending the set of functions used in XPath expressions.
These hooks are both based on XML namespaces. This version of XSLT does not define a mechanism for
implementing the hooks. See [14 Extensions].

NOTE:The XSL WG intends to define such a mechanism in a future version of this specification
or in a separate specification.

The element syntax summary notation used to describe the syntax of XSLT-defined elements is described in
[18 Notation].

The MIME media types text/xml and application/xml [RFC2376] should be used for XSLT stylesheets. It is
possible that a media type will be registered specifically for XSLT stylesheets; if and when it is, that media
type may also be used.

2 Stylesheet Structure

2.1 XSLT Namespace

The XSLT namespace has the URI http://www.w3.org/1999/XSL/Transform.

NOTE:The 1999 in the URI indicates the year in which the URI was allocated by the W3C. It does
not indicate the version of XSLT being used, which is specified by attributes (see [2.2
Stylesheet Element] and [2.3 Literal Result Element as Stylesheet]).

XSLT processors must use the XML namespaces mechanism [XML Names] to recognize elements and
attributes from this namespace. Elements from the XSLT namespace are recognized only in the stylesheet
not in the source document. The complete list of XSLT-defined elements is specified in [B Element
Syntax Summary]. Vendors must not extend the XSLT namespace with additional elements or attributes.

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 150

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

5 of 62 04-08-24 12.58

Instead, any extension must be in a separate namespace. Any namespace that is used for additional
instruction elements must be identified by means of the extension element mechanism specified in [14.1
Extension Elements].

This specification uses a prefix of xsl: for referring to elements in the XSLT namespace. However, XSLT
stylesheets are free to use any prefix, provided that there is a namespace declaration that binds the prefix to
the URI of the XSLT namespace.

An element from the XSLT namespace may have any attribute not from the XSLT namespace, provided that
the expanded-name of the attribute has a non-null namespace URI. The presence of such attributes must not
change the behavior of XSLT elements and functions defined in this document. Thus, an XSLT processor is
always free to ignore such attributes, and must ignore such attributes without giving an error if it does not
recognize the namespace URI. Such attributes can provide, for example, unique identifiers, optimization
hints, or documentation.

It is an error for an element from the XSLT namespace to have attributes with expanded-names that have null
namespace URIs (i.e. attributes with unprefixed names) other than attributes defined for the element in this
document.

NOTE:The conventions used for the names of XSLT elements, attributes and functions are that
names are all lower-case, use hyphens to separate words, and use abbreviations only if they
already appear in the syntax of a related language such as XML or HTML.

2.2 Stylesheet Element

<xsl:stylesheet
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:stylesheet>

<xsl:transform
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:transform>

A stylesheet is represented by an xsl:stylesheet element in an XML document. xsl:transform is allowed as a
synonym for xsl:stylesheet.

An xsl:stylesheet element must have a version attribute, indicating the version of XSLT that the stylesheet
requires. For this version of XSLT, the value should be 1.0. When the value is not equal to 1.0,
forwards-compatible processing mode is enabled (see [2.5 Forwards-Compatible Processing]).

The xsl:stylesheet element may contain the following types of elements:

xsl:import

xsl:include

xsl:strip-space

xsl:preserve-space

xsl:output

xsl:key

xsl:decimal-format

xsl:namespace-alias

xsl:attribute-set

xsl:variable

xsl:param

xsl:template

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

6 of 62 04-08-24 12.58

An element occurring as a child of an xsl:stylesheet element is called a top-level element.

This example shows the structure of a stylesheet. Ellipses (...) indicate where attribute values or content
have been omitted. Although this example shows one of each type of allowed element, stylesheets may
contain zero or more of each of these elements.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:import href="..."/>

 <xsl:include href="..."/>

 <xsl:strip-space elements="..."/>

 <xsl:preserve-space elements="..."/>

 <xsl:output method="..."/>

 <xsl:key name="..." match="..." use="..."/>

 <xsl:decimal-format name="..."/>

 <xsl:namespace-alias stylesheet-prefix="..." result-prefix="..."/>

 <xsl:attribute-set name="...">
 ...
 </xsl:attribute-set>

 <xsl:variable name="...">...</xsl:variable>

 <xsl:param name="...">...</xsl:param>

 <xsl:template match="...">
 ...
 </xsl:template>

 <xsl:template name="...">
 ...
 </xsl:template>

</xsl:stylesheet>

The order in which the children of the xsl:stylesheet element occur is not significant except for xsl:import
elements and for error recovery. Users are free to order the elements as they prefer, and stylesheet creation
tools need not provide control over the order in which the elements occur.

In addition, the xsl:stylesheet element may contain any element not from the XSLT namespace, provided that
the expanded-name of the element has a non-null namespace URI. The presence of such top-level elements
must not change the behavior of XSLT elements and functions defined in this document; for example, it would
not be permitted for such a top-level element to specify that xsl:apply-templates was to use different rules to
resolve conflicts. Thus, an XSLT processor is always free to ignore such top-level elements, and must ignore
a top-level element without giving an error if it does not recognize the namespace URI. Such elements can
provide, for example,

information used by extension elements or extension functions (see [14 Extensions]),

information about what to do with the result tree,

information about how to obtain the source tree,

metadata about the stylesheet,

structured documentation for the stylesheet.

2.3 Literal Result Element as Stylesheet

A simplified syntax is allowed for stylesheets that consist of only a single template for the root node. The
stylesheet may consist of just a literal result element (see [7.1.1 Literal Result Elements]). Such a
stylesheet is equivalent to a stylesheet with an xsl:stylesheet element containing a template rule containing
the literal result element; the template rule has a match pattern of /. For example

<html xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/TR/xhtml1/strict">
 <head>
 <title>Expense Report Summary</title>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 151

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

7 of 62 04-08-24 12.58

 </head>
 <body>
 <p>Total Amount: <xsl:value-of select="expense-report/total"/></p>
 </body>
</html>

has the same meaning as

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/TR/xhtml1/strict">
<xsl:template match="/">
<html>
 <head>
 <title>Expense Report Summary</title>
 </head>
 <body>
 <p>Total Amount: <xsl:value-of select="expense-report/total"/></p>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

A literal result element that is the document element of a stylesheet must have an xsl:version attribute, which
indicates the version of XSLT that the stylesheet requires. For this version of XSLT, the value should be 1.0;
the value must be a Number. Other literal result elements may also have an xsl:version attribute. When the
xsl:version attribute is not equal to 1.0, forwards-compatible processing mode is enabled (see [2.5
Forwards-Compatible Processing]).

The allowed content of a literal result element when used as a stylesheet is no different from when it occurs
within a stylesheet. Thus, a literal result element used as a stylesheet cannot contain top-level elements.

In some situations, the only way that a system can recognize that an XML document needs to be processed
by an XSLT processor as an XSLT stylesheet is by examining the XML document itself. Using the simplified
syntax makes this harder.

NOTE:For example, another XML language (AXL) might also use an axl:version on the document
element to indicate that an XML document was an AXL document that required processing by an
AXL processor; if a document had both an axl:version attribute and an xsl:version attribute, it
would be unclear whether the document should be processed by an XSLT processor or an AXL
processor.

Therefore, the simplified syntax should not be used for XSLT stylesheets that may be used in such a
situation. This situation can, for example, arise when an XSLT stylesheet is transmitted as a message with a
MIME media type of text/xml or application/xml to a recipient that will use the MIME media type to determine
how the message is processed.

2.4 Qualified Names

The name of an internal XSLT object, specifically a named template (see [6 Named Templates]), a mode
(see [5.7 Modes]), an attribute set (see [7.1.4 Named Attribute Sets]), a key (see [12.2 Keys]), a
decimal-format (see [12.3 Number Formatting]), a variable or a parameter (see [11 Variables and
Parameters]) is specified as a QName. If it has a prefix, then the prefix is expanded into a URI reference
using the namespace declarations in effect on the attribute in which the name occurs. The expanded-name
consisting of the local part of the name and the possibly null URI reference is used as the name of the object.
The default namespace is not used for unprefixed names.

2.5 Forwards-Compatible Processing

An element enables forwards-compatible mode for itself, its attributes, its descendants and their attributes if
either it is an xsl:stylesheet element whose version attribute is not equal to 1.0, or it is a literal result element
that has an xsl:version attribute whose value is not equal to 1.0, or it is a literal result element that does not
have an xsl:version attribute and that is the document element of a stylesheet using the simplified syntax
(see [2.3 Literal Result Element as Stylesheet]). A literal result element that has an xsl:version
attribute whose value is equal to 1.0 disables forwards-compatible mode for itself, its attributes, its
descendants and their attributes.

If an element is processed in forwards-compatible mode, then:

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

8 of 62 04-08-24 12.58

if it is a top-level element and XSLT 1.0 does not allow such elements as top-level elements, then the
element must be ignored along with its content;

if it is an element in a template and XSLT 1.0 does not allow such elements to occur in templates, then if
the element is not instantiated, an error must not be signaled, and if the element is instantiated, the
XSLT must perform fallback for the element as specified in [15 Fallback];

if the element has an attribute that XSLT 1.0 does not allow the element to have or if the element has an
optional attribute with a value that the XSLT 1.0 does not allow the attribute to have, then the attribute
must be ignored.

Thus, any XSLT 1.0 processor must be able to process the following stylesheet without error, although the
stylesheet includes elements from the XSLT namespace that are not defined in this specification:

<xsl:stylesheet version="1.1"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:choose>
 <xsl:when test="system-property('xsl:version') >= 1.1">
 <xsl:exciting-new-1.1-feature/>
 </xsl:when>
 <xsl:otherwise>
 <html>
 <head>
 <title>XSLT 1.1 required</title>
 </head>
 <body>
 <p>Sorry, this stylesheet requires XSLT 1.1.</p>
 </body>
 </html>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

NOTE:If a stylesheet depends crucially on a top-level element introduced by a version of XSL
after 1.0, then the stylesheet can use an xsl:message element with terminate="yes" (see [13
Messages]) to ensure that XSLT processors implementing earlier versions of XSL will not
silently ignore the top-level element. For example,

<xsl:stylesheet version="1.5"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:important-new-1.1-declaration/>

 <xsl:template match="/">
 <xsl:choose>
 <xsl:when test="system-property('xsl:version') < 1.1">
 <xsl:message terminate="yes">
 <xsl:text>Sorry, this stylesheet requires XSLT 1.1.</xsl:text>
 </xsl:message>
 </xsl:when>
 <xsl:otherwise>
 ...
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
 ...
</xsl:stylesheet>

If an expression occurs in an attribute that is processed in forwards-compatible mode, then an XSLT
processor must recover from errors in the expression as follows:

if the expression does not match the syntax allowed by the XPath grammar, then an error must not be
signaled unless the expression is actually evaluated;

if the expression calls a function with an unprefixed name that is not part of the XSLT library, then an
error must not be signaled unless the function is actually called;

if the expression calls a function with a number of arguments that XSLT does not allow or with
arguments of types that XSLT does not allow, then an error must not be signaled unless the function is
actually called.

2.6 Combining Stylesheets

XSLT provides two mechanisms to combine stylesheets:

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 152

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

9 of 62 04-08-24 12.58

an inclusion mechanism that allows stylesheets to be combined without changing the semantics of the
stylesheets being combined, and
an import mechanism that allows stylesheets to override each other.

2.6.1 Stylesheet Inclusion

<!-- Category: top-level-element -->
<xsl:include
 href = uri-reference />

An XSLT stylesheet may include another XSLT stylesheet using an xsl:include element. The xsl:include
element has an href attribute whose value is a URI reference identifying the stylesheet to be included. A
relative URI is resolved relative to the base URI of the xsl:include element (see [3.2 Base URI]).

The xsl:include element is only allowed as a top-level element.

The inclusion works at the XML tree level. The resource located by the href attribute value is parsed as an
XML document, and the children of the xsl:stylesheet element in this document replace the xsl:include
element in the including document. The fact that template rules or definitions are included does not affect the
way they are processed.

The included stylesheet may use the simplified syntax described in [2.3 Literal Result Element as
Stylesheet]. The included stylesheet is treated the same as the equivalent xsl:stylesheet element.

It is an error if a stylesheet directly or indirectly includes itself.

NOTE:Including a stylesheet multiple times can cause errors because of duplicate definitions.
Such multiple inclusions are less obvious when they are indirect. For example, if stylesheet B
includes stylesheet A, stylesheet C includes stylesheet A, and stylesheet D includes both
stylesheet B and stylesheet C, then A will be included indirectly by D twice. If all of B, C and D are
used as independent stylesheets, then the error can be avoided by separating everything in B
other than the inclusion of A into a separate stylesheet B' and changing B to contain just
inclusions of B' and A, similarly for C, and then changing D to include A, B', C'.

2.6.2 Stylesheet Import

<xsl:import
 href = uri-reference />

An XSLT stylesheet may import another XSLT stylesheet using an xsl:import element. Importing a stylesheet
is the same as including it (see [2.6.1 Stylesheet Inclusion]) except that definitions and template rules
in the importing stylesheet take precedence over template rules and definitions in the imported stylesheet;
this is described in more detail below. The xsl:import element has an href attribute whose value is a URI
reference identifying the stylesheet to be imported. A relative URI is resolved relative to the base URI of the
xsl:import element (see [3.2 Base URI]).

The xsl:import element is only allowed as a top-level element. The xsl:import element children must precede
all other element children of an xsl:stylesheet element, including any xsl:include element children. When
xsl:include is used to include a stylesheet, any xsl:import elements in the included document are moved up in
the including document to after any existing xsl:import elements in the including document.

For example,

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:import href="article.xsl"/>
 <xsl:import href="bigfont.xsl"/>
 <xsl:attribute-set name="note-style">
 <xsl:attribute name="font-style">italic</xsl:attribute>
 </xsl:attribute-set>
</xsl:stylesheet>

The xsl:stylesheet elements encountered during processing of a stylesheet that contains xsl:import
elements are treated as forming an import tree. In the import tree, each xsl:stylesheet element has one
import child for each xsl:import element that it contains. Any xsl:include elements are resolved before

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

10 of 62 04-08-24 12.58

constructing the import tree. An xsl:stylesheet element in the import tree is defined to have lower import
precedence than another xsl:stylesheet element in the import tree if it would be visited before that
xsl:stylesheet element in a post-order traversal of the import tree (i.e. a traversal of the import tree in which
an xsl:stylesheet element is visited after its import children). Each definition and template rule has import
precedence determined by the xsl:stylesheet element that contains it.

For example, suppose

stylesheet A imports stylesheets B and C in that order;

stylesheet B imports stylesheet D;

stylesheet C imports stylesheet E.

Then the order of import precedence (lowest first) is D, B, E, C, A.

NOTE:Since xsl:import elements are required to occur before any definitions or template rules,
an implementation that processes imported stylesheets at the point at which it encounters the
xsl:import element will encounter definitions and template rules in increasing order of import
precedence.

In general, a definition or template rule with higher import precedence takes precedence over a definition or
template rule with lower import precedence. This is defined in detail for each kind of definition and for template
rules.

It is an error if a stylesheet directly or indirectly imports itself. Apart from this, the case where a stylesheet
with a particular URI is imported in multiple places is not treated specially. The import tree will have a separate
xsl:stylesheet for each place that it is imported.

NOTE:If xsl:apply-imports is used (see [5.6 Overriding Template Rules]), the behavior
may be different from the behavior if the stylesheet had been imported only at the place with the
highest import precedence.

2.7 Embedding Stylesheets

Normally an XSLT stylesheet is a complete XML document with the xsl:stylesheet element as the document
element. However, an XSLT stylesheet may also be embedded in another resource. Two forms of embedding
are possible:

the XSLT stylesheet may be textually embedded in a non-XML resource, or
the xsl:stylesheet element may occur in an XML document other than as the document element.

To facilitate the second form of embedding, the xsl:stylesheet element is allowed to have an ID attribute that
specifies a unique identifier.

NOTE:In order for such an attribute to be used with the XPath id function, it must actually be
declared in the DTD as being an ID.

The following example shows how the xml-stylesheet processing instruction [XML Stylesheet] can be used to
allow a document to contain its own stylesheet. The URI reference uses a relative URI with a fragment
identifier to locate the xsl:stylesheet element:

<?xml-stylesheet type="text/xml" href="#style1"?>
<!DOCTYPE doc SYSTEM "doc.dtd">
<doc>
<head>
<xsl:stylesheet id="style1"
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">
<xsl:import href="doc.xsl"/>
<xsl:template match="id('foo')">
 <fo:block font-weight="bold"><xsl:apply-templates/></fo:block>
</xsl:template>
<xsl:template match="xsl:stylesheet">
 <!-- ignore -->
</xsl:template>
</xsl:stylesheet>
</head>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 153

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

11 of 62 04-08-24 12.58

<body>
<para id="foo">
...
</para>
</body>
</doc>

NOTE:A stylesheet that is embedded in the document to which it is to be applied or that may be
included or imported into an stylesheet that is so embedded typically needs to contain a template
rule that specifies that xsl:stylesheet elements are to be ignored.

3 Data Model

The data model used by XSLT is the same as that used by XPath with the additions described in this section.
XSLT operates on source, result and stylesheet documents using the same data model. Any two XML
documents that have the same tree will be treated the same by XSLT.

Processing instructions and comments in the stylesheet are ignored: the stylesheet is treated as if neither
processing instruction nodes nor comment nodes were included in the tree that represents the stylesheet.

3.1 Root Node Children

The normal restrictions on the children of the root node are relaxed for the result tree. The result tree may
have any sequence of nodes as children that would be possible for an element node. In particular, it may
have text node children, and any number of element node children. When written out using the XML output
method (see [16 Output]), it is possible that a result tree will not be a well-formed XML document; however,
it will always be a well-formed external general parsed entity.

When the source tree is created by parsing a well-formed XML document, the root node of the source tree will
automatically satisfy the normal restrictions of having no text node children and exactly one element child.
When the source tree is created in some other way, for example by using the DOM, the usual restrictions are
relaxed for the source tree as for the result tree.

3.2 Base URI

Every node also has an associated URI called its base URI, which is used for resolving attribute values that
represent relative URIs into absolute URIs. If an element or processing instruction occurs in an external
entity, the base URI of that element or processing instruction is the URI of the external entity; otherwise, the
base URI is the base URI of the document. The base URI of the document node is the URI of the document
entity. The base URI for a text node, a comment node, an attribute node or a namespace node is the base
URI of the parent of the node.

3.3 Unparsed Entities

The root node has a mapping that gives the URI for each unparsed entity declared in the document's DTD.
The URI is generated from the system identifier and public identifier specified in the entity declaration. The
XSLT processor may use the public identifier to generate a URI for the entity instead of the URI specified in
the system identifier. If the XSLT processor does not use the public identifier to generate the URI, it must use
the system identifier; if the system identifier is a relative URI, it must be resolved into an absolute URI using
the URI of the resource containing the entity declaration as the base URI [RFC2396].

3.4 Whitespace Stripping

After the tree for a source document or stylesheet document has been constructed, but before it is otherwise
processed by XSLT, some text nodes are stripped. A text node is never stripped unless it contains only
whitespace characters. Stripping the text node removes the text node from the tree. The stripping process
takes as input a set of element names for which whitespace must be preserved. The stripping process is
applied to both stylesheets and source documents, but the set of whitespace-preserving element names is
determined differently for stylesheets and for source documents.

A text node is preserved if any of the following apply:

The element name of the parent of the text node is in the set of whitespace-preserving element names.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

12 of 62 04-08-24 12.58

The text node contains at least one non-whitespace character. As in XML, a whitespace character is
#x20, #x9, #xD or #xA.

An ancestor element of the text node has an xml:space attribute with a value of preserve, and no closer
ancestor element has xml:space with a value of default.

Otherwise, the text node is stripped.

The xml:space attributes are not stripped from the tree.

NOTE:This implies that if an xml:space attribute is specified on a literal result element, it will be
included in the result.

For stylesheets, the set of whitespace-preserving element names consists of just xsl:text.

<!-- Category: top-level-element -->
<xsl:strip-space
 elements = tokens />

<!-- Category: top-level-element -->
<xsl:preserve-space
 elements = tokens />

For source documents, the set of whitespace-preserving element names is specified by xsl:strip-space and
xsl:preserve-space top-level elements. These elements each have an elements attribute whose value is a
whitespace-separated list of NameTests. Initially, the set of whitespace-preserving element names contains
all element names. If an element name matches a NameTest in an xsl:strip-space element, then it is removed
from the set of whitespace-preserving element names. If an element name matches a NameTest in an
xsl:preserve-space element, then it is added to the set of whitespace-preserving element names. An element
matches a NameTest if and only if the NameTest would be true for the element as an XPath node test.
Conflicts between matches to xsl:strip-space and xsl:preserve-space elements are resolved the same way as
conflicts between template rules (see [5.5 Conflict Resolution for Template Rules]). Thus, the
applicable match for a particular element name is determined as follows:

First, any match with lower import precedence than another match is ignored.

Next, any match with a NameTest that has a lower default priority than the default priority of the
NameTest of another match is ignored.

It is an error if this leaves more than one match. An XSLT processor may signal the error; if it does not signal
the error, it must recover by choosing, from amongst the matches that are left, the one that occurs last in the
stylesheet.

4 Expressions

XSLT uses the expression language defined by XPath [XPath]. Expressions are used in XSLT for a variety of
purposes including:

selecting nodes for processing;
specifying conditions for different ways of processing a node;
generating text to be inserted in the result tree.

An expression must match the XPath production Expr.

Expressions occur as the value of certain attributes on XSLT-defined elements and within curly braces in
attribute value templates.

In XSLT, an outermost expression (i.e. an expression that is not part of another expression) gets its context
as follows:

the context node comes from the current node

the context position comes from the position of the current node in the current node list; the first
position is 1

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 154

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

13 of 62 04-08-24 12.58

the context size comes from the size of the current node list

the variable bindings are the bindings in scope on the element which has the attribute in which the
expression occurs (see [11 Variables and Parameters])

the set of namespace declarations are those in scope on the element which has the attribute in which
the expression occurs; this includes the implicit declaration of the prefix xml required by the the XML
Namespaces Recommendation [XML Names]; the default namespace (as declared by xmlns) is not part
of this set

the function library consists of the core function library together with the additional functions defined in
[12 Additional Functions] and extension functions as described in [14 Extensions]; it is an
error for an expression to include a call to any other function

5 Template Rules

5.1 Processing Model

A list of source nodes is processed to create a result tree fragment. The result tree is constructed by
processing a list containing just the root node. A list of source nodes is processed by appending the result
tree structure created by processing each of the members of the list in order. A node is processed by finding
all the template rules with patterns that match the node, and choosing the best amongst them; the chosen
rule's template is then instantiated with the node as the current node and with the list of source nodes as the
current node list. A template typically contains instructions that select an additional list of source nodes for
processing. The process of matching, instantiation and selection is continued recursively until no new
source nodes are selected for processing.

Implementations are free to process the source document in any way that produces the same result as if it
were processed using this processing model.

5.2 Patterns

Template rules identify the nodes to which they apply by using a pattern. As well as being used in template
rules, patterns are used for numbering (see [7.7 Numbering]) and for declaring keys (see [12.2 Keys]).
A pattern specifies a set of conditions on a node. A node that satisfies the conditions matches the pattern; a
node that does not satisfy the conditions does not match the pattern. The syntax for patterns is a subset of
the syntax for expressions. In particular, location paths that meet certain restrictions can be used as
patterns. An expression that is also a pattern always evaluates to an object of type node-set. A node
matches a pattern if the node is a member of the result of evaluating the pattern as an expression with
respect to some possible context; the possible contexts are those whose context node is the node being
matched or one of its ancestors.

Here are some examples of patterns:

para matches any para element

* matches any element

chapter|appendix matches any chapter element and any appendix element

olist/item matches any item element with an olist parent

appendix//para matches any para element with an appendix ancestor element

/ matches the root node

text() matches any text node

processing-instruction() matches any processing instruction

node() matches any node other than an attribute node and the root node

id("W11") matches the element with unique ID W11

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

14 of 62 04-08-24 12.58

para[1] matches any para element that is the first para child element of its parent

*[position()=1 and self::para] matches any para element that is the first child element of its parent

para[last()=1] matches any para element that is the only para child element of its parent

items/item[position()>1] matches any item element that has a items parent and that is not the first item
child of its parent

item[position() mod 2 = 1] would be true for any item element that is an odd-numbered item child of its
parent.

div[@class="appendix"]//p matches any p element with a div ancestor element that has a class attribute
with value appendix

@class matches any class attribute (not any element that has a class attribute)

@* matches any attribute

A pattern must match the grammar for Pattern. A Pattern is a set of location path patterns separated by |. A
location path pattern is a location path whose steps all use only the child or attribute axes. Although
patterns must not use the descendant-or-self axis, patterns may use the // operator as well as the / operator.
Location path patterns can also start with an id or key function call with a literal argument. Predicates in a
pattern can use arbitrary expressions just like predicates in a location path.

Patterns

[1] Pattern ::= LocationPathPattern

| Pattern '|' LocationPathPattern

[2] LocationPathPattern ::= '/' RelativePathPattern?

| IdKeyPattern (('/' | '//') RelativePathPattern)?

| '//'? RelativePathPattern

[3] IdKeyPattern ::= 'id' '(' Literal ')'

| 'key' '(' Literal ',' Literal ')'

[4] RelativePathPattern ::= StepPattern

| RelativePathPattern '/' StepPattern

| RelativePathPattern '//' StepPattern

[5] StepPattern ::= ChildOrAttributeAxisSpecifier NodeTest Predicate*

[6] ChildOrAttributeAxisSpecifier ::= AbbreviatedAxisSpecifier

| ('child' | 'attribute') '::'

A pattern is defined to match a node if and only if there is possible context such that when the pattern is
evaluated as an expression with that context, the node is a member of the resulting node-set. When a node is
being matched, the possible contexts have a context node that is the node being matched or any ancestor of
that node, and a context node list containing just the context node.

For example, p matches any p element, because for any p if the expression p is evaluated with the parent of
the p element as context the resulting node-set will contain that p element as one of its members.

NOTE:This matches even a p element that is the document element, since the document root is
the parent of the document element.

Although the semantics of patterns are specified indirectly in terms of expression evaluation, it is easy to
understand the meaning of a pattern directly without thinking in terms of expression evaluation. In a pattern,
| indicates alternatives; a pattern with one or more | separated alternatives matches if any one of the
alternative matches. A pattern that consists of a sequence of StepPatterns separated by / or // is matched
from right to left. The pattern only matches if the rightmost StepPattern matches and a suitable element
matches the rest of the pattern; if the separator is / then only the parent is a suitable element; if the

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 155

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

15 of 62 04-08-24 12.58

separator is //, then any ancestor is a suitable element. A StepPattern that uses the child axis matches if the
NodeTest is true for the node and the node is not an attribute node. A StepPattern that uses the attribute axis
matches if the NodeTest is true for the node and the node is an attribute node. When [] is present, then the
first PredicateExpr in a StepPattern is evaluated with the node being matched as the context node and the
siblings of the context node that match the NodeTest as the context node list, unless the node being
matched is an attribute node, in which case the context node list is all the attributes that have the same
parent as the attribute being matched and that match the NameTest.

For example

appendix//ulist/item[position()=1]

matches a node if and only if all of the following are true:

the NodeTest item is true for the node and the node is not an attribute; in other words the node is an item
element

evaluating the PredicateExpr position()=1 with the node as context node and the siblings of the node
that are item elements as the context node list yields true

the node has a parent that matches appendix//ulist; this will be true if the parent is a ulist element that
has an appendix ancestor element.

5.3 Defining Template Rules

<!-- Category: top-level-element -->
<xsl:template
 match = pattern
 name = qname
 priority = number
 mode = qname>
 <!-- Content: (xsl:param*, template) -->
</xsl:template>

A template rule is specified with the xsl:template element. The match attribute is a Pattern that identifies the
source node or nodes to which the rule applies. The match attribute is required unless the xsl:template element
has a name attribute (see [6 Named Templates]). It is an error for the value of the match attribute to contain
a VariableReference. The content of the xsl:template element is the template that is instantiated when the
template rule is applied.

For example, an XML document might contain:

This is an <emph>important</emph> point.

The following template rule matches emph elements and produces a fo:inline-sequence formatting object with a
font-weight property of bold.

<xsl:template match="emph">
 <fo:inline-sequence font-weight="bold">
 <xsl:apply-templates/>
 </fo:inline-sequence>
</xsl:template>

NOTE:Examples in this document use the fo: prefix for the namespace
http://www.w3.org/1999/XSL/Format, which is the namespace of the formatting objects defined in
[XSL].

As described next, the xsl:apply-templates element recursively processes the children of the source element.

5.4 Applying Template Rules

<!-- Category: instruction -->
<xsl:apply-templates
 select = node-set-expression
 mode = qname>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

This example creates a block for a chapter element and then processes its immediate children.

<xsl:template match="chapter">

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

16 of 62 04-08-24 12.58

 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

In the absence of a select attribute, the xsl:apply-templates instruction processes all of the children of the
current node, including text nodes. However, text nodes that have been stripped as specified in [3.4
Whitespace Stripping] will not be processed. If stripping of whitespace nodes has not been enabled for
an element, then all whitespace in the content of the element will be processed as text, and thus whitespace
between child elements will count in determining the position of a child element as returned by the position
function.

A select attribute can be used to process nodes selected by an expression instead of processing all children.
The value of the select attribute is an expression. The expression must evaluate to a node-set. The selected
set of nodes is processed in document order, unless a sorting specification is present (see [10 Sorting]).
The following example processes all of the author children of the author-group:

<xsl:template match="author-group">
 <fo:inline-sequence>
 <xsl:apply-templates select="author"/>
 </fo:inline-sequence>
</xsl:template>

The following example processes all of the given-names of the authors that are children of author-group:

<xsl:template match="author-group">
 <fo:inline-sequence>
 <xsl:apply-templates select="author/given-name"/>
 </fo:inline-sequence>
</xsl:template>

This example processes all of the heading descendant elements of the book element.

<xsl:template match="book">
 <fo:block>
 <xsl:apply-templates select=".//heading"/>
 </fo:block>
</xsl:template>

It is also possible to process elements that are not descendants of the current node. This example assumes
that a department element has group children and employee descendants. It finds an employee's department and
then processes the group children of the department.

<xsl:template match="employee">
 <fo:block>
 Employee <xsl:apply-templates select="name"/> belongs to group
 <xsl:apply-templates select="ancestor::department/group"/>
 </fo:block>
</xsl:template>

Multiple xsl:apply-templates elements can be used within a single template to do simple reordering. The
following example creates two HTML tables. The first table is filled with domestic sales while the second table
is filled with foreign sales.

<xsl:template match="product">
 <table>
 <xsl:apply-templates select="sales/domestic"/>
 </table>
 <table>
 <xsl:apply-templates select="sales/foreign"/>
 </table>
</xsl:template>

NOTE: It is possible for there to be two matching descendants where one is a descendant of the
other. This case is not treated specially: both descendants will be processed as usual. For
example, given a source document

<doc><div><div></div></div></doc>

the rule

<xsl:template match="doc">
 <xsl:apply-templates select=".//div"/>
</xsl:template>

will process both the outer div and inner div elements.

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 156

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

17 of 62 04-08-24 12.58

NOTE:Typically, xsl:apply-templates is used to process only nodes that are descendants of the
current node. Such use of xsl:apply-templates cannot result in non-terminating processing loops.
However, when xsl:apply-templates is used to process elements that are not descendants of the
current node, the possibility arises of non-terminating loops. For example,

<xsl:template match="foo">
 <xsl:apply-templates select="."/>
</xsl:template>

Implementations may be able to detect such loops in some cases, but the possibility exists that a
stylesheet may enter a non-terminating loop that an implementation is unable to detect. This may
present a denial of service security risk.

5.5 Conflict Resolution for Template Rules

It is possible for a source node to match more than one template rule. The template rule to be used is
determined as follows:

First, all matching template rules that have lower import precedence than the matching template rule or
rules with the highest import precedence are eliminated from consideration.

1.

Next, all matching template rules that have lower priority than the matching template rule or rules with
the highest priority are eliminated from consideration. The priority of a template rule is specified by the
priority attribute on the template rule. The value of this must be a real number (positive or negative),
matching the production Number with an optional leading minus sign (-). The default priority is
computed as follows:

If the pattern contains multiple alternatives separated by |, then it is treated equivalently to a set
of template rules, one for each alternative.

If the pattern has the form of a QName preceded by a ChildOrAttributeAxisSpecifier or has the
form processing-instruction(Literal) preceded by a ChildOrAttributeAxisSpecifier, then the priority
is 0.

If the pattern has the form NCName:* preceded by a ChildOrAttributeAxisSpecifier, then the
priority is -0.25.

Otherwise, if the pattern consists of just a NodeTest preceded by a
ChildOrAttributeAxisSpecifier, then the priority is -0.5.

Otherwise, the priority is 0.5.

Thus, the most common kind of pattern (a pattern that tests for a node with a particular type and a
particular expanded-name) has priority 0. The next less specific kind of pattern (a pattern that tests for
a node with a particular type and an expanded-name with a particular namespace URI) has priority
-0.25. Patterns less specific than this (patterns that just tests for nodes with particular types) have
priority -0.5. Patterns more specific than the most common kind of pattern have priority 0.5.

2.

It is an error if this leaves more than one matching template rule. An XSLT processor may signal the error; if it
does not signal the error, it must recover by choosing, from amongst the matching template rules that are
left, the one that occurs last in the stylesheet.

5.6 Overriding Template Rules

<!-- Category: instruction -->
<xsl:apply-imports />

A template rule that is being used to override a template rule in an imported stylesheet (see [5.5 Conflict
Resolution for Template Rules]) can use the xsl:apply-imports element to invoke the overridden
template rule.

At any point in the processing of a stylesheet, there is a current template rule. Whenever a template rule
is chosen by matching a pattern, the template rule becomes the current template rule for the instantiation of
the rule's template. When an xsl:for-each element is instantiated, the current template rule becomes null for

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

18 of 62 04-08-24 12.58

the instantiation of the content of the xsl:for-each element.

xsl:apply-imports processes the current node using only template rules that were imported into the stylesheet
element containing the current template rule; the node is processed in the current template rule's mode. It is
an error if xsl:apply-imports is instantiated when the current template rule is null.

For example, suppose the stylesheet doc.xsl contains a template rule for example elements:

<xsl:template match="example">
 <pre><xsl:apply-templates/></pre>
</xsl:template>

Another stylesheet could import doc.xsl and modify the treatment of example elements as follows:

<xsl:import href="doc.xsl"/>

<xsl:template match="example">
 <div style="border: solid red">
 <xsl:apply-imports/>
 </div>
</xsl:template>

The combined effect would be to transform an example into an element of the form:

<div style="border: solid red"><pre>...</pre></div>

5.7 Modes

Modes allow an element to be processed multiple times, each time producing a different result.

Both xsl:template and xsl:apply-templates have an optional mode attribute. The value of the mode attribute is a
QName, which is expanded as described in [2.4 Qualified Names]. If xsl:template does not have a match
attribute, it must not have a mode attribute. If an xsl:apply-templates element has a mode attribute, then it
applies only to those template rules from xsl:template elements that have a mode attribute with the same value;
if an xsl:apply-templates element does not have a mode attribute, then it applies only to those template rules
from xsl:template elements that do not have a mode attribute.

5.8 Built-in Template Rules

There is a built-in template rule to allow recursive processing to continue in the absence of a successful
pattern match by an explicit template rule in the stylesheet. This template rule applies to both element nodes
and the root node. The following shows the equivalent of the built-in template rule:

<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>

There is also a built-in template rule for each mode, which allows recursive processing to continue in the
same mode in the absence of a successful pattern match by an explicit template rule in the stylesheet. This
template rule applies to both element nodes and the root node. The following shows the equivalent of the
built-in template rule for mode m.

<xsl:template match="*|/" mode="m">
 <xsl:apply-templates mode="m"/>
</xsl:template>

There is also a built-in template rule for text and attribute nodes that copies text through:

<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>

The built-in template rule for processing instructions and comments is to do nothing.

<xsl:template match="processing-instruction()|comment()"/>

The built-in template rule for namespace nodes is also to do nothing. There is no pattern that can match a
namespace node; so, the built-in template rule is the only template rule that is applied for namespace nodes.

The built-in template rules are treated as if they were imported implicitly before the stylesheet and so have
lower import precedence than all other template rules. Thus, the author can override a built-in template rule by

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 157

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

19 of 62 04-08-24 12.58

including an explicit template rule.

6 Named Templates

<!-- Category: instruction -->
<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

Templates can be invoked by name. An xsl:template element with a name attribute specifies a named template.
The value of the name attribute is a QName, which is expanded as described in [2.4 Qualified Names]. If
an xsl:template element has a name attribute, it may, but need not, also have a match attribute. An
xsl:call-template element invokes a template by name; it has a required name attribute that identifies the
template to be invoked. Unlike xsl:apply-templates, xsl:call-template does not change the current node or the
current node list.

The match, mode and priority attributes on an xsl:template element do not affect whether the template is
invoked by an xsl:call-template element. Similarly, the name attribute on an xsl:template element does not
affect whether the template is invoked by an xsl:apply-templates element.

It is an error if a stylesheet contains more than one template with the same name and same import
precedence.

7 Creating the Result Tree

This section describes instructions that directly create nodes in the result tree.

7.1 Creating Elements and Attributes

7.1.1 Literal Result Elements

In a template, an element in the stylesheet that does not belong to the XSLT namespace and that is not an
extension element (see [14.1 Extension Elements]) is instantiated to create an element node with the
same expanded-name. The content of the element is a template, which is instantiated to give the content of
the created element node. The created element node will have the attribute nodes that were present on the
element node in the stylesheet tree, other than attributes with names in the XSLT namespace.

The created element node will also have a copy of the namespace nodes that were present on the element
node in the stylesheet tree with the exception of any namespace node whose string-value is the XSLT
namespace URI (http://www.w3.org/1999/XSL/Transform), a namespace URI declared as an extension
namespace (see [14.1 Extension Elements]), or a namespace URI designated as an excluded
namespace. A namespace URI is designated as an excluded namespace by using an exclude-result-prefixes
attribute on an xsl:stylesheet element or an xsl:exclude-result-prefixes attribute on a literal result element.
The value of both these attributes is a whitespace-separated list of namespace prefixes. The namespace
bound to each of the prefixes is designated as an excluded namespace. It is an error if there is no
namespace bound to the prefix on the element bearing the exclude-result-prefixes or
xsl:exclude-result-prefixes attribute. The default namespace (as declared by xmlns) may be designated as an
excluded namespace by including #default in the list of namespace prefixes. The designation of a
namespace as an excluded namespace is effective within the subtree of the stylesheet rooted at the element
bearing the exclude-result-prefixes or xsl:exclude-result-prefixes attribute; a subtree rooted at an
xsl:stylesheet element does not include any stylesheets imported or included by children of that
xsl:stylesheet element.

NOTE:When a stylesheet uses a namespace declaration only for the purposes of addressing
the source tree, specifying the prefix in the exclude-result-prefixes attribute will avoid superfluous
namespace declarations in the result tree.

The value of an attribute of a literal result element is interpreted as an attribute value template: it can contain
expressions contained in curly braces ({}).

A namespace URI in the stylesheet tree that is being used to specify a namespace URI in the result tree is
called a literal namespace URI. This applies to:

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

20 of 62 04-08-24 12.58

the namespace URI in the expanded-name of a literal result element in the stylesheet

the namespace URI in the expanded-name of an attribute specified on a literal result element in the
stylesheet

the string-value of a namespace node on a literal result element in the stylesheet

<!-- Category: top-level-element -->
<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

A stylesheet can use the xsl:namespace-alias element to declare that one namespace URI is an alias for
another namespace URI. When a literal namespace URI has been declared to be an alias for another
namespace URI, then the namespace URI in the result tree will be the namespace URI that the literal
namespace URI is an alias for, instead of the literal namespace URI itself. The xsl:namespace-alias element
declares that the namespace URI bound to the prefix specified by the stylesheet-prefix attribute is an alias
for the namespace URI bound to the prefix specified by the result-prefix attribute. Thus, the
stylesheet-prefix attribute specifies the namespace URI that will appear in the stylesheet, and the
result-prefix attribute specifies the corresponding namespace URI that will appear in the result tree. The
default namespace (as declared by xmlns) may be specified by using #default instead of a prefix. If a
namespace URI is declared to be an alias for multiple different namespace URIs, then the declaration with the
highest import precedence is used. It is an error if there is more than one such declaration. An XSLT
processor may signal the error; if it does not signal the error, it must recover by choosing, from amongst the
declarations with the highest import precedence, the one that occurs last in the stylesheet.

When literal result elements are being used to create element, attribute, or namespace nodes that use the
XSLT namespace URI, the stylesheet must use an alias. For example, the stylesheet

<xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:axsl="http://www.w3.org/1999/XSL/TransformAlias">

<xsl:namespace-alias stylesheet-prefix="axsl" result-prefix="xsl"/>

<xsl:template match="/">
 <axsl:stylesheet>
 <xsl:apply-templates/>
 </axsl:stylesheet>
</xsl:template>

<xsl:template match="block">
 <axsl:template match="{.}">
 <fo:block><axsl:apply-templates/></fo:block>
 </axsl:template>
</xsl:template>

</xsl:stylesheet>

will generate an XSLT stylesheet from a document of the form:

<elements>
<block>p</block>
<block>h1</block>
<block>h2</block>
<block>h3</block>
<block>h4</block>
</elements>

NOTE:It may be necessary also to use aliases for namespaces other than the XSLT namespace
URI. For example, literal result elements belonging to a namespace dealing with digital signatures
might cause XSLT stylesheets to be mishandled by general-purpose security software; using an
alias for the namespace would avoid the possibility of such mishandling.

7.1.2 Creating Elements with xsl:element

<!-- Category: instruction -->
<xsl:element
 name = { qname }
 namespace = { uri-reference }
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:element>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 158

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

21 of 62 04-08-24 12.58

The xsl:element element allows an element to be created with a computed name. The expanded-name of the
element to be created is specified by a required name attribute and an optional namespace attribute. The content
of the xsl:element element is a template for the attributes and children of the created element.

The name attribute is interpreted as an attribute value template. It is an error if the string that results from
instantiating the attribute value template is not a QName. An XSLT processor may signal the error; if it does
not signal the error, then it must recover by making the the result of instantiating the xsl:element element be
the sequence of nodes created by instantiating the content of the xsl:element element, excluding any initial
attribute nodes. If the namespace attribute is not present then the QName is expanded into an expanded-name
using the namespace declarations in effect for the xsl:element element, including any default namespace
declaration.

If the namespace attribute is present, then it also is interpreted as an attribute value template. The string that
results from instantiating the attribute value template should be a URI reference. It is not an error if the string
is not a syntactically legal URI reference. If the string is empty, then the expanded-name of the element has
a null namespace URI. Otherwise, the string is used as the namespace URI of the expanded-name of the
element to be created. The local part of the QName specified by the name attribute is used as the local part of
the expanded-name of the element to be created.

XSLT processors may make use of the prefix of the QName specified in the name attribute when selecting the
prefix used for outputting the created element as XML; however, they are not required to do so.

7.1.3 Creating Attributes with xsl:attribute

<!-- Category: instruction -->
<xsl:attribute
 name = { qname }
 namespace = { uri-reference }>
 <!-- Content: template -->
</xsl:attribute>

The xsl:attribute element can be used to add attributes to result elements whether created by literal result
elements in the stylesheet or by instructions such as xsl:element. The expanded-name of the attribute to be
created is specified by a required name attribute and an optional namespace attribute. Instantiating an
xsl:attribute element adds an attribute node to the containing result element node. The content of the
xsl:attribute element is a template for the value of the created attribute.

The name attribute is interpreted as an attribute value template. It is an error if the string that results from
instantiating the attribute value template is not a QName or is the string xmlns. An XSLT processor may signal
the error; if it does not signal the error, it must recover by not adding the attribute to the result tree. If the
namespace attribute is not present, then the QName is expanded into an expanded-name using the namespace
declarations in effect for the xsl:attribute element, not including any default namespace declaration.

If the namespace attribute is present, then it also is interpreted as an attribute value template. The string that
results from instantiating it should be a URI reference. It is not an error if the string is not a syntactically legal
URI reference. If the string is empty, then the expanded-name of the attribute has a null namespace URI.
Otherwise, the string is used as the namespace URI of the expanded-name of the attribute to be created. The
local part of the QName specified by the name attribute is used as the local part of the expanded-name of the
attribute to be created.

XSLT processors may make use of the prefix of the QName specified in the name attribute when selecting the
prefix used for outputting the created attribute as XML; however, they are not required to do so and, if the
prefix is xmlns, they must not do so. Thus, although it is not an error to do:

<xsl:attribute name="xmlns:xsl" namespace="whatever">http://www.w3.org/1999/XSL/Transform</xsl:attribute>

it will not result in a namespace declaration being output.

Adding an attribute to an element replaces any existing attribute of that element with the same
expanded-name.

The following are all errors:

Adding an attribute to an element after children have been added to it; implementations may either

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

22 of 62 04-08-24 12.58

signal the error or ignore the attribute.

Adding an attribute to a node that is not an element; implementations may either signal the error or
ignore the attribute.

Creating nodes other than text nodes during the instantiation of the content of the xsl:attribute
element; implementations may either signal the error or ignore the offending nodes.

NOTE:When an xsl:attribute contains a text node with a newline, then the XML output must
contain a character reference. For example,

<xsl:attribute name="a">x
y</xsl:attribute>

will result in the output

a="x
y"

(or with any equivalent character reference). The XML output cannot be

a="x
y"

This is because XML 1.0 requires newline characters in attribute values to be normalized into
spaces but requires character references to newline characters not to be normalized. The
attribute values in the data model represent the attribute value after normalization. If a newline
occurring in an attribute value in the tree were output as a newline character rather than as
character reference, then the attribute value in the tree created by reparsing the XML would
contain a space not a newline, which would mean that the tree had not been output correctly.

7.1.4 Named Attribute Sets

<!-- Category: top-level-element -->
<xsl:attribute-set
 name = qname
 use-attribute-sets = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

The xsl:attribute-set element defines a named set of attributes. The name attribute specifies the name of the
attribute set. The value of the name attribute is a QName, which is expanded as described in [2.4 Qualified
Names]. The content of the xsl:attribute-set element consists of zero or more xsl:attribute elements that
specify the attributes in the set.

Attribute sets are used by specifying a use-attribute-sets attribute on xsl:element, xsl:copy (see [7.5
Copying]) or xsl:attribute-set elements. The value of the use-attribute-sets attribute is a
whitespace-separated list of names of attribute sets. Each name is specified as a QName, which is
expanded as described in [2.4 Qualified Names]. Specifying a use-attribute-sets attribute is equivalent
to adding xsl:attribute elements for each of the attributes in each of the named attribute sets to the
beginning of the content of the element with the use-attribute-sets attribute, in the same order in which the
names of the attribute sets are specified in the use-attribute-sets attribute. It is an error if use of
use-attribute-sets attributes on xsl:attribute-set elements causes an attribute set to directly or indirectly
use itself.

Attribute sets can also be used by specifying an xsl:use-attribute-sets attribute on a literal result element.
The value of the xsl:use-attribute-sets attribute is a whitespace-separated list of names of attribute sets.
The xsl:use-attribute-sets attribute has the same effect as the use-attribute-sets attribute on xsl:element with
the additional rule that attributes specified on the literal result element itself are treated as if they were
specified by xsl:attribute elements before any actual xsl:attribute elements but after any xsl:attribute
elements implied by the xsl:use-attribute-sets attribute. Thus, for a literal result element, attributes from
attribute sets named in an xsl:use-attribute-sets attribute will be added first, in the order listed in the
attribute; next, attributes specified on the literal result element will be added; finally, any attributes specified
by xsl:attribute elements will be added. Since adding an attribute to an element replaces any existing
attribute of that element with the same name, this means that attributes specified in attribute sets can be
overridden by attributes specified on the literal result element itself.

The template within each xsl:attribute element in an xsl:attribute-set element is instantiated each time the

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 159

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

23 of 62 04-08-24 12.58

attribute set is used; it is instantiated using the same current node and current node list as is used for
instantiating the element bearing the use-attribute-sets or xsl:use-attribute-sets attribute. However, it is the
position in the stylesheet of the xsl:attribute element rather than of the element bearing the
use-attribute-sets or xsl:use-attribute-sets attribute that determines which variable bindings are visible (see
[11 Variables and Parameters]); thus, only variables and parameters declared by top-level
xsl:variable and xsl:param elements are visible.

The following example creates a named attribute set title-style and uses it in a template rule.

<xsl:template match="chapter/heading">
 <fo:block quadding="start" xsl:use-attribute-sets="title-style">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:attribute-set name="title-style">
 <xsl:attribute name="font-size">12pt</xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

Multiple definitions of an attribute set with the same expanded-name are merged. An attribute from a
definition that has higher import precedence takes precedence over an attribute from a definition that has
lower import precedence. It is an error if there are two attribute sets that have the same expanded-name and
equal import precedence and that both contain the same attribute, unless there is a definition of the attribute
set with higher import precedence that also contains the attribute. An XSLT processor may signal the error; if
it does not signal the error, it must recover by choosing from amongst the definitions that specify the
attribute that have the highest import precedence the one that was specified last in the stylesheet. Where
the attributes in an attribute set were specified is relevant only in merging the attributes into the attribute set;
it makes no difference when the attribute set is used.

7.2 Creating Text

A template can also contain text nodes. Each text node in a template remaining after whitespace has been
stripped as specified in [3.4 Whitespace Stripping] will create a text node with the same string-value in
the result tree. Adjacent text nodes in the result tree are automatically merged.

Note that text is processed at the tree level. Thus, markup of < in a template will be represented in the
stylesheet tree by a text node that includes the character <. This will create a text node in the result tree that
contains a < character, which will be represented by the markup < (or an equivalent character reference)
when the result tree is externalized as an XML document (unless output escaping is disabled as described in
[16.4 Disabling Output Escaping]).

<!-- Category: instruction -->
<xsl:text
 disable-output-escaping = "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

Literal data characters may also be wrapped in an xsl:text element. This wrapping may change what
whitespace characters are stripped (see [3.4 Whitespace Stripping]) but does not affect how the
characters are handled by the XSLT processor thereafter.

NOTE:The xml:lang and xml:space attributes are not treated specially by XSLT. In particular,

it is the responsibility of the stylesheet author explicitly to generate any xml:lang or
xml:space attributes that are needed in the result;

specifying an xml:lang or xml:space attribute on an element in the XSLT namespace will not
cause any xml:lang or xml:space attributes to appear in the result.

7.3 Creating Processing Instructions

<!-- Category: instruction -->
<xsl:processing-instruction
 name = { ncname }>
 <!-- Content: template -->
</xsl:processing-instruction>

The xsl:processing-instruction element is instantiated to create a processing instruction node. The content of

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

24 of 62 04-08-24 12.58

the xsl:processing-instruction element is a template for the string-value of the processing instruction node.
The xsl:processing-instruction element has a required name attribute that specifies the name of the processing
instruction node. The value of the name attribute is interpreted as an attribute value template.

For example, this

<xsl:processing-instruction name="xml-stylesheet">href="book.css" type="text/css"</xsl:processing-instructio

would create the processing instruction

<?xml-stylesheet href="book.css" type="text/css"?>

It is an error if the string that results from instantiating the name attribute is not both an NCName and a
PITarget. An XSLT processor may signal the error; if it does not signal the error, it must recover by not adding
the processing instruction to the result tree.

NOTE:This means that xsl:processing-instruction cannot be used to output an XML declaration.
The xsl:output element should be used instead (see [16 Output]).

It is an error if instantiating the content of xsl:processing-instruction creates nodes other than text nodes. An
XSLT processor may signal the error; if it does not signal the error, it must recover by ignoring the offending
nodes together with their content.

It is an error if the result of instantiating the content of the xsl:processing-instruction contains the string ?>.
An XSLT processor may signal the error; if it does not signal the error, it must recover by inserting a space
after any occurrence of ? that is followed by a >.

7.4 Creating Comments

<!-- Category: instruction -->
<xsl:comment>
 <!-- Content: template -->
</xsl:comment>

The xsl:comment element is instantiated to create a comment node in the result tree. The content of the
xsl:comment element is a template for the string-value of the comment node.

For example, this

<xsl:comment>This file is automatically generated. Do not edit!</xsl:comment>

would create the comment

<!--This file is automatically generated. Do not edit!-->

It is an error if instantiating the content of xsl:comment creates nodes other than text nodes. An XSLT
processor may signal the error; if it does not signal the error, it must recover by ignoring the offending nodes
together with their content.

It is an error if the result of instantiating the content of the xsl:comment contains the string -- or ends with -. An
XSLT processor may signal the error; if it does not signal the error, it must recover by inserting a space after
any occurrence of - that is followed by another - or that ends the comment.

7.5 Copying

<!-- Category: instruction -->
<xsl:copy
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:copy>

The xsl:copy element provides an easy way of copying the current node. Instantiating the xsl:copy element
creates a copy of the current node. The namespace nodes of the current node are automatically copied as
well, but the attributes and children of the node are not automatically copied. The content of the xsl:copy
element is a template for the attributes and children of the created node; the content is instantiated only for
nodes of types that can have attributes or children (i.e. root nodes and element nodes).

The xsl:copy element may have a use-attribute-sets attribute (see [7.1.4 Named Attribute Sets]). This

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 160

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

25 of 62 04-08-24 12.58

is used only when copying element nodes.

The root node is treated specially because the root node of the result tree is created implicitly. When the
current node is the root node, xsl:copy will not create a root node, but will just use the content template.

For example, the identity transformation can be written using xsl:copy as follows:

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

When the current node is an attribute, then if it would be an error to use xsl:attribute to create an attribute
with the same name as the current node, then it is also an error to use xsl:copy (see [7.1.3 Creating
Attributes with xsl:attribute]).

The following example shows how xml:lang attributes can be easily copied through from source to result. If a
stylesheet defines the following named template:

<xsl:template name="apply-templates-copy-lang">
 <xsl:for-each select="@xml:lang">
 <xsl:copy/>
 </xsl:for-each>
 <xsl:apply-templates/>
</xsl:template>

then it can simply do

<xsl:call-template name="apply-templates-copy-lang"/>

instead of

<xsl:apply-templates/>

when it wants to copy the xml:lang attribute.

7.6 Computing Generated Text

Within a template, the xsl:value-of element can be used to compute generated text, for example by
extracting text from the source tree or by inserting the value of a variable. The xsl:value-of element does this
with an expression that is specified as the value of the select attribute. Expressions can also be used inside
attribute values of literal result elements by enclosing the expression in curly braces ({}).

7.6.1 Generating Text with xsl:value-of

<!-- Category: instruction -->
<xsl:value-of
 select = string-expression
 disable-output-escaping = "yes" | "no" />

The xsl:value-of element is instantiated to create a text node in the result tree. The required select attribute is
an expression; this expression is evaluated and the resulting object is converted to a string as if by a call to
the string function. The string specifies the string-value of the created text node. If the string is empty, no
text node will be created. The created text node will be merged with any adjacent text nodes.

The xsl:copy-of element can be used to copy a node-set over to the result tree without converting it to a
string. See [11.3 Using Values of Variables and Parameters with xsl:copy-of].

For example, the following creates an HTML paragraph from a person element with given-name and family-name
attributes. The paragraph will contain the value of the given-name attribute of the current node followed by a
space and the value of the family-name attribute of the current node.

<xsl:template match="person">
 <p>
 <xsl:value-of select="@given-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@family-name"/>
 </p>
</xsl:template>

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

26 of 62 04-08-24 12.58

For another example, the following creates an HTML paragraph from a person element with given-name and
family-name children elements. The paragraph will contain the string-value of the first given-name child element
of the current node followed by a space and the string-value of the first family-name child element of the
current node.

<xsl:template match="person">
 <p>
 <xsl:value-of select="given-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="family-name"/>
 </p>
</xsl:template>

The following precedes each procedure element with a paragraph containing the security level of the
procedure. It assumes that the security level that applies to a procedure is determined by a security attribute
on the procedure element or on an ancestor element of the procedure. It also assumes that if more than one
such element has a security attribute then the security level is determined by the element that is closest to
the procedure.

<xsl:template match="procedure">
 <fo:block>
 <xsl:value-of select="ancestor-or-self::*[@security][1]/@security"/>
 </fo:block>
 <xsl:apply-templates/>
</xsl:template>

7.6.2 Attribute Value Templates

In an attribute value that is interpreted as an attribute value template, such as an attribute of a literal
result element, an expression can be used by surrounding the expression with curly braces ({}). The attribute
value template is instantiated by replacing the expression together with surrounding curly braces by the
result of evaluating the expression and converting the resulting object to a string as if by a call to the string
function. Curly braces are not recognized in an attribute value in an XSLT stylesheet unless the attribute is
specifically stated to be one that is interpreted as an attribute value template; in an element syntax
summary, the value of such attributes is surrounded by curly braces.

NOTE:Not all attributes are interpreted as attribute value templates. Attributes whose value is
an expression or pattern, attributes of top-level elements and attributes that refer to named XSLT
objects are not interpreted as attribute value templates. In addition, xmlns attributes are not
interpreted as attribute value templates; it would not be conformant with the XML Namespaces
Recommendation to do this.

The following example creates an img result element from a photograph element in the source; the value of the
src attribute of the img element is computed from the value of the image-dir variable and the string-value of the
href child of the photograph element; the value of the width attribute of the img element is computed from the
value of the width attribute of the size child of the photograph element:

<xsl:variable name="image-dir">/images</xsl:variable>

<xsl:template match="photograph">

</xsl:template>

With this source

<photograph>
 <href>headquarters.jpg</href>
 <size width="300"/>
</photograph>

the result would be

When an attribute value template is instantiated, a double left or right curly brace outside an expression will
be replaced by a single curly brace. It is an error if a right curly brace occurs in an attribute value template
outside an expression without being followed by a second right curly brace. A right curly brace inside a Literal
in an expression is not recognized as terminating the expression.

Curly braces are not recognized recursively inside expressions. For example:

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 161

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

27 of 62 04-08-24 12.58

is not allowed. Instead, use simply:

7.7 Numbering

<!-- Category: instruction -->
<xsl:number
 level = "single" | "multiple" | "any"
 count = pattern
 from = pattern
 value = number-expression
 format = { string }
 lang = { nmtoken }
 letter-value = { "alphabetic" | "traditional" }
 grouping-separator = { char }
 grouping-size = { number } />

The xsl:number element is used to insert a formatted number into the result tree. The number to be inserted
may be specified by an expression. The value attribute contains an expression. The expression is evaluated
and the resulting object is converted to a number as if by a call to the number function. The number is
rounded to an integer and then converted to a string using the attributes specified in [7.7.1 Number to
String Conversion Attributes]; in this context, the value of each of these attributes is interpreted as an
attribute value template. After conversion, the resulting string is inserted in the result tree. For example, the
following example numbers a sorted list:

<xsl:template match="items">
 <xsl:for-each select="item">
 <xsl:sort select="."/>
 <p>
 <xsl:number value="position()" format="1. "/>
 <xsl:value-of select="."/>
 </p>
 </xsl:for-each>
</xsl:template>

If no value attribute is specified, then the xsl:number element inserts a number based on the position of the
current node in the source tree. The following attributes control how the current node is to be numbered:

The level attribute specifies what levels of the source tree should be considered; it has the values
single, multiple or any. The default is single.

The count attribute is a pattern that specifies what nodes should be counted at those levels. If count
attribute is not specified, then it defaults to the pattern that matches any node with the same node type
as the current node and, if the current node has an expanded-name, with the same expanded-name as
the current node.

The from attribute is a pattern that specifies where counting starts.

In addition, the attributes specified in [7.7.1 Number to String Conversion Attributes] are used for
number to string conversion, as in the case when the value attribute is specified.

The xsl:number element first constructs a list of positive integers using the level, count and from attributes:

When level="single", it goes up to the first node in the ancestor-or-self axis that matches the count
pattern, and constructs a list of length one containing one plus the number of preceding siblings of that
ancestor that match the count pattern. If there is no such ancestor, it constructs an empty list. If the
from attribute is specified, then the only ancestors that are searched are those that are descendants of
the nearest ancestor that matches the from pattern. Preceding siblings has the same meaning here as
with the preceding-sibling axis.

When level="multiple", it constructs a list of all ancestors of the current node in document order
followed by the element itself; it then selects from the list those nodes that match the count pattern; it
then maps each node in the list to one plus the number of preceding siblings of that node that match the
count pattern. If the from attribute is specified, then the only ancestors that are searched are those that
are descendants of the nearest ancestor that matches the from pattern. Preceding siblings has the
same meaning here as with the preceding-sibling axis.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

28 of 62 04-08-24 12.58

When level="any", it constructs a list of length one containing the number of nodes that match the count
pattern and belong to the set containing the current node and all nodes at any level of the document
that are before the current node in document order, excluding any namespace and attribute nodes (in
other words the union of the members of the preceding and ancestor-or-self axes). If the from attribute is
specified, then only nodes after the first node before the current node that match the from pattern are
considered.

The list of numbers is then converted into a string using the attributes specified in [7.7.1 Number to
String Conversion Attributes]; in this context, the value of each of these attributes is interpreted as an
attribute value template. After conversion, the resulting string is inserted in the result tree.

The following would number the items in an ordered list:

<xsl:template match="ol/item">
 <fo:block>
 <xsl:number/><xsl:text>. </xsl:text><xsl:apply-templates/>
 </fo:block>
<xsl:template>

The following two rules would number title elements. This is intended for a document that contains a
sequence of chapters followed by a sequence of appendices, where both chapters and appendices contain
sections, which in turn contain subsections. Chapters are numbered 1, 2, 3; appendices are numbered A, B,
C; sections in chapters are numbered 1.1, 1.2, 1.3; sections in appendices are numbered A.1, A.2, A.3.

<xsl:template match="title">
 <fo:block>
 <xsl:number level="multiple"
 count="chapter|section|subsection"
 format="1.1 "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:template match="appendix//title" priority="1">
 <fo:block>
 <xsl:number level="multiple"
 count="appendix|section|subsection"
 format="A.1 "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

The following example numbers notes sequentially within a chapter:

<xsl:template match="note">
 <fo:block>
 <xsl:number level="any" from="chapter" format="(1) "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

The following example would number H4 elements in HTML with a three-part label:

<xsl:template match="H4">
 <fo:block>
 <xsl:number level="any" from="H1" count="H2"/>
 <xsl:text>.</xsl:text>
 <xsl:number level="any" from="H2" count="H3"/>
 <xsl:text>.</xsl:text>
 <xsl:number level="any" from="H3" count="H4"/>
 <xsl:text> </xsl:text>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

7.7.1 Number to String Conversion Attributes

The following attributes are used to control conversion of a list of numbers into a string. The numbers are
integers greater than 0. The attributes are all optional.

The main attribute is format. The default value for the format attribute is 1. The format attribute is split into a
sequence of tokens where each token is a maximal sequence of alphanumeric characters or a maximal
sequence of non-alphanumeric characters. Alphanumeric means any character that has a Unicode category
of Nd, Nl, No, Lu, Ll, Lt, Lm or Lo. The alphanumeric tokens (format tokens) specify the format to be used for
each number in the list. If the first token is a non-alphanumeric token, then the constructed string will start
with that token; if the last token is non-alphanumeric token, then the constructed string will end with that

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 162

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

29 of 62 04-08-24 12.58

token. Non-alphanumeric tokens that occur between two format tokens are separator tokens that are used to
join numbers in the list. The nth format token will be used to format the nth number in the list. If there are more
numbers than format tokens, then the last format token will be used to format remaining numbers. If there are
no format tokens, then a format token of 1 is used to format all numbers. The format token specifies the string
to be used to represent the number 1. Each number after the first will be separated from the preceding
number by the separator token preceding the format token used to format that number, or, if there are no
separator tokens, then by . (a period character).

Format tokens are a superset of the allowed values for the type attribute for the OL element in HTML 4.0 and
are interpreted as follows:

Any token where the last character has a decimal digit value of 1 (as specified in the Unicode character
property database), and the Unicode value of preceding characters is one less than the Unicode value
of the last character generates a decimal representation of the number where each number is at least
as long as the format token. Thus, a format token 1 generates the sequence 1 2 ... 10 11 12 ..., and a
format token 01 generates the sequence 01 02 ... 09 10 11 12 ... 99 100 101.

A format token A generates the sequence A B C ... Z AA AB AC....

A format token a generates the sequence a b c ... z aa ab ac....

A format token i generates the sequence i ii iii iv v vi vii viii ix x

A format token I generates the sequence I II III IV V VI VII VIII IX X

Any other format token indicates a numbering sequence that starts with that token. If an
implementation does not support a numbering sequence that starts with that token, it must use a format
token of 1.

When numbering with an alphabetic sequence, the lang attribute specifies which language's alphabet is to be
used; it has the same range of values as xml:lang [XML]; if no lang value is specified, the language should be
determined from the system environment. Implementers should document for which languages they support
numbering.

NOTE:Implementers should not make any assumptions about how numbering works in particular
languages and should properly research the languages that they wish to support. The numbering
conventions of many languages are very different from English.

The letter-value attribute disambiguates between numbering sequences that use letters. In many languages
there are two commonly used numbering sequences that use letters. One numbering sequence assigns
numeric values to letters in alphabetic sequence, and the other assigns numeric values to each letter in
some other manner traditional in that language. In English, these would correspond to the numbering
sequences specified by the format tokens a and i. In some languages, the first member of each sequence is
the same, and so the format token alone would be ambiguous. A value of alphabetic specifies the alphabetic
sequence; a value of traditional specifies the other sequence. If the letter-value attribute is not specified,
then it is implementation-dependent how any ambiguity is resolved.

NOTE:It is possible for two conforming XSLT processors not to convert a number to exactly the
same string. Some XSLT processors may not support some languages. Furthermore, there may
be variations possible in the way conversions are performed for any particular language that are
not specifiable by the attributes on xsl:number. Future versions of XSLT may provide additional
attributes to provide control over these variations. Implementations may also use
implementation-specific namespaced attributes on xsl:number for this.

The grouping-separator attribute gives the separator used as a grouping (e.g. thousands) separator in decimal
numbering sequences, and the optional grouping-size specifies the size (normally 3) of the grouping. For
example, grouping-separator="," and grouping-size="3" would produce numbers of the form 1,000,000. If only
one of the grouping-separator and grouping-size attributes is specified, then it is ignored.

Here are some examples of conversion specifications:

format="ア" specifies Katakana numbering

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

30 of 62 04-08-24 12.58

format="イ" specifies Katakana numbering in the "iroha" order

format="๑" specifies numbering with Thai digits

format="א" letter-value="traditional" specifies "traditional" Hebrew numbering

format="ა" letter-value="traditional" specifies Georgian numbering

format="α" letter-value="traditional" specifies "classical" Greek numbering

format="а" letter-value="traditional" specifies Old Slavic numbering

8 Repetition

<!-- Category: instruction -->
<xsl:for-each
 select = node-set-expression>
 <!-- Content: (xsl:sort*, template) -->
</xsl:for-each>

When the result has a known regular structure, it is useful to be able to specify directly the template for
selected nodes. The xsl:for-each instruction contains a template, which is instantiated for each node
selected by the expression specified by the select attribute. The select attribute is required. The expression
must evaluate to a node-set. The template is instantiated with the selected node as the current node, and
with a list of all of the selected nodes as the current node list. The nodes are processed in document order,
unless a sorting specification is present (see [10 Sorting]).

For example, given an XML document with this structure

<customers>
 <customer>
 <name>...</name>
 <order>...</order>
 <order>...</order>
 </customer>
 <customer>
 <name>...</name>
 <order>...</order>
 <order>...</order>
 </customer>
</customers>

the following would create an HTML document containing a table with a row for each customer element

<xsl:template match="/">
 <html>
 <head>
 <title>Customers</title>
 </head>
 <body>
 <table>
 <tbody>
 <xsl:for-each select="customers/customer">
 <tr>
 <th>
 <xsl:apply-templates select="name"/>
 </th>
 <xsl:for-each select="order">
 <td>
 <xsl:apply-templates/>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </body>
 </html>
</xsl:template>

9 Conditional Processing

There are two instructions in XSLT that support conditional processing in a template: xsl:if and xsl:choose.
The xsl:if instruction provides simple if-then conditionality; the xsl:choose instruction supports selection of
one choice when there are several possibilities.

9.1 Conditional Processing with xsl:if

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 163

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

31 of 62 04-08-24 12.58

<!-- Category: instruction -->
<xsl:if
 test = boolean-expression>
 <!-- Content: template -->
</xsl:if>

The xsl:if element has a test attribute, which specifies an expression. The content is a template. The
expression is evaluated and the resulting object is converted to a boolean as if by a call to the boolean
function. If the result is true, then the content template is instantiated; otherwise, nothing is created. In the
following example, the names in a group of names are formatted as a comma separated list:

<xsl:template match="namelist/name">
 <xsl:apply-templates/>
 <xsl:if test="not(position()=last())">, </xsl:if>
</xsl:template>

The following colors every other table row yellow:

<xsl:template match="item">
 <tr>
 <xsl:if test="position() mod 2 = 0">
 <xsl:attribute name="bgcolor">yellow</xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </tr>
</xsl:template>

9.2 Conditional Processing with xsl:choose

<!-- Category: instruction -->
<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

<xsl:when
 test = boolean-expression>
 <!-- Content: template -->
</xsl:when>

<xsl:otherwise>
 <!-- Content: template -->
</xsl:otherwise>

The xsl:choose element selects one among a number of possible alternatives. It consists of a sequence of
xsl:when elements followed by an optional xsl:otherwise element. Each xsl:when element has a single attribute,
test, which specifies an expression. The content of the xsl:when and xsl:otherwise elements is a template.
When an xsl:choose element is processed, each of the xsl:when elements is tested in turn, by evaluating the
expression and converting the resulting object to a boolean as if by a call to the boolean function. The
content of the first, and only the first, xsl:when element whose test is true is instantiated. If no xsl:when is true,
the content of the xsl:otherwise element is instantiated. If no xsl:when element is true, and no xsl:otherwise
element is present, nothing is created.

The following example enumerates items in an ordered list using arabic numerals, letters, or roman numerals
depending on the depth to which the ordered lists are nested.

<xsl:template match="orderedlist/listitem">
 <fo:list-item indent-start='2pi'>
 <fo:list-item-label>
 <xsl:variable name="level"
 select="count(ancestor::orderedlist) mod 3"/>
 <xsl:choose>
 <xsl:when test='$level=1'>
 <xsl:number format="i"/>
 </xsl:when>
 <xsl:when test='$level=2'>
 <xsl:number format="a"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:number format="1"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>. </xsl:text>
 </fo:list-item-label>
 <fo:list-item-body>
 <xsl:apply-templates/>
 </fo:list-item-body>
 </fo:list-item>
</xsl:template>

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

32 of 62 04-08-24 12.58

10 Sorting

<xsl:sort
 select = string-expression
 lang = { nmtoken }
 data-type = { "text" | "number" | qname-but-not-ncname }
 order = { "ascending" | "descending" }
 case-order = { "upper-first" | "lower-first" } />

Sorting is specified by adding xsl:sort elements as children of an xsl:apply-templates or xsl:for-each element.
The first xsl:sort child specifies the primary sort key, the second xsl:sort child specifies the secondary sort
key and so on. When an xsl:apply-templates or xsl:for-each element has one or more xsl:sort children, then
instead of processing the selected nodes in document order, it sorts the nodes according to the specified
sort keys and then processes them in sorted order. When used in xsl:for-each, xsl:sort elements must occur
first. When a template is instantiated by xsl:apply-templates and xsl:for-each, the current node list list
consists of the complete list of nodes being processed in sorted order.

xsl:sort has a select attribute whose value is an expression. For each node to be processed, the expression
is evaluated with that node as the current node and with the complete list of nodes being processed in
unsorted order as the current node list. The resulting object is converted to a string as if by a call to the
string function; this string is used as the sort key for that node. The default value of the select attribute is .,
which will cause the string-value of the current node to be used as the sort key.

This string serves as a sort key for the node. The following optional attributes on xsl:sort control how the list
of sort keys are sorted; the values of all of these attributes are interpreted as attribute value templates.

order specifies whether the strings should be sorted in ascending or descending order; ascending
specifies ascending order; descending specifies descending order; the default is ascending

lang specifies the language of the sort keys; it has the same range of values as xml:lang [XML]; if no
lang value is specified, the language should be determined from the system environment

data-type specifies the data type of the strings; the following values are allowed:

text specifies that the sort keys should be sorted lexicographically in the culturally correct
manner for the language specified by lang

number specifies that the sort keys should be converted to numbers and then sorted according to
the numeric value; the sort key is converted to a number as if by a call to the number function;
the lang attribute is ignored

a QName with a prefix is expanded into an expanded-name as described in [2.4 Qualified
Names]; the expanded-name identifies the data-type; the behavior in this case is not specified
by this document

The default value is text.

NOTE:The XSL Working Group plans that future versions of XSLT will leverage XML
Schemas to define further values for this attribute.

case-order has the value upper-first or lower-first; this applies when data-type="text", and specifies
that upper-case letters should sort before lower-case letters or vice-versa respectively. For example, if
lang="en", then A a B b are sorted with case-order="upper-first" and a A b B are sorted with
case-order="lower-first". The default value is language dependent.

NOTE:It is possible for two conforming XSLT processors not to sort exactly the same. Some
XSLT processors may not support some languages. Furthermore, there may be variations
possible in the sorting of any particular language that are not specified by the attributes on
xsl:sort, for example, whether Hiragana or Katakana is sorted first in Japanese. Future versions
of XSLT may provide additional attributes to provide control over these variations.
Implementations may also use implementation-specific namespaced attributes on xsl:sort for
this.

NOTE:It is recommended that implementers consult [UNICODE TR10] for information on

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 164

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

33 of 62 04-08-24 12.58

internationalized sorting.

The sort must be stable: in the sorted list of nodes, any sub list that has sort keys that all compare equal
must be in document order.

For example, suppose an employee database has the form

<employees>
 <employee>
 <name>
 <given>James</given>
 <family>Clark</family>
 </name>
 ...
 </employee>
</employees>

Then a list of employees sorted by name could be generated using:

<xsl:template match="employees">

 <xsl:apply-templates select="employee">
 <xsl:sort select="name/family"/>
 <xsl:sort select="name/given"/>
 </xsl:apply-templates>

</xsl:template>

<xsl:template match="employee">

 <xsl:value-of select="name/given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/family"/>

</xsl:template>

11 Variables and Parameters

<!-- Category: top-level-element -->
<!-- Category: instruction -->
<xsl:variable
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:variable>

<!-- Category: top-level-element -->
<xsl:param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:param>

A variable is a name that may be bound to a value. The value to which a variable is bound (the value of the
variable) can be an object of any of the types that can be returned by expressions. There are two elements
that can be used to bind variables: xsl:variable and xsl:param. The difference is that the value specified on
the xsl:param variable is only a default value for the binding; when the template or stylesheet within which the
xsl:param element occurs is invoked, parameters may be passed that are used in place of the default values.

Both xsl:variable and xsl:param have a required name attribute, which specifies the name of the variable. The
value of the name attribute is a QName, which is expanded as described in [2.4 Qualified Names].

For any use of these variable-binding elements, there is a region of the stylesheet tree within which the
binding is visible; within this region, any binding of the variable that was visible on the variable-binding
element itself is hidden. Thus, only the innermost binding of a variable is visible. The set of variable bindings
in scope for an expression consists of those bindings that are visible at the point in the stylesheet where the
expression occurs.

11.1 Result Tree Fragments

Variables introduce an additional data-type into the expression language. This additional data type is called
result tree fragment. A variable may be bound to a result tree fragment instead of one of the four basic
XPath data-types (string, number, boolean, node-set). A result tree fragment represents a fragment of the
result tree. A result tree fragment is treated equivalently to a node-set that contains just a single root node.
However, the operations permitted on a result tree fragment are a subset of those permitted on a node-set.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

34 of 62 04-08-24 12.58

An operation is permitted on a result tree fragment only if that operation would be permitted on a string (the
operation on the string may involve first converting the string to a number or boolean). In particular, it is not
permitted to use the /, //, and [] operators on result tree fragments. When a permitted operation is performed
on a result tree fragment, it is performed exactly as it would be on the equivalent node-set.

When a result tree fragment is copied into the result tree (see [11.3 Using Values of Variables and
Parameters with xsl:copy-of]), then all the nodes that are children of the root node in the equivalent
node-set are added in sequence to the result tree.

Expressions can only return values of type result tree fragment by referencing variables of type result tree
fragment or calling extension functions that return a result tree fragment or getting a system property whose
value is a result tree fragment.

11.2 Values of Variables and Parameters

A variable-binding element can specify the value of the variable in three alternative ways.

If the variable-binding element has a select attribute, then the value of the attribute must be an
expression and the value of the variable is the object that results from evaluating the expression. In
this case, the content must be empty.

If the variable-binding element does not have a select attribute and has non-empty content (i.e. the
variable-binding element has one or more child nodes), then the content of the variable-binding element
specifies the value. The content of the variable-binding element is a template, which is instantiated to
give the value of the variable. The value is a result tree fragment equivalent to a node-set containing
just a single root node having as children the sequence of nodes produced by instantiating the
template. The base URI of the nodes in the result tree fragment is the base URI of the variable-binding
element.

It is an error if a member of the sequence of nodes created by instantiating the template is an attribute
node or a namespace node, since a root node cannot have an attribute node or a namespace node as a
child. An XSLT processor may signal the error; if it does not signal the error, it must recover by not
adding the attribute node or namespace node.

If the variable-binding element has empty content and does not have a select attribute, then the value
of the variable is an empty string. Thus

<xsl:variable name="x"/>

is equivalent to

<xsl:variable name="x" select="''"/>

NOTE:When a variable is used to select nodes by position, be careful not to do:

<xsl:variable name="n">2</xsl:variable>
...
<xsl:value-of select="item[$n]"/>

This will output the value of the first item element, because the variable n will be bound to a result
tree fragment, not a number. Instead, do either

<xsl:variable name="n" select="2"/>
...
<xsl:value-of select="item[$n]"/>

or

<xsl:variable name="n">2</xsl:variable>
...
<xsl:value-of select="item[position()=$n]"/>

NOTE:One convenient way to specify the empty node-set as the default value of a parameter is:

<xsl:param name="x" select="/.."/>

11.3 Using Values of Variables and Parameters with xsl:copy-of

<!-- Category: instruction -->

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 165

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

35 of 62 04-08-24 12.58

<xsl:copy-of
 select = expression />

The xsl:copy-of element can be used to insert a result tree fragment into the result tree, without first
converting it to a string as xsl:value-of does (see [7.6.1 Generating Text with xsl:value-of]). The
required select attribute contains an expression. When the result of evaluating the expression is a result tree
fragment, the complete fragment is copied into the result tree. When the result is a node-set, all the nodes in
the set are copied in document order into the result tree; copying an element node copies the attribute nodes,
namespace nodes and children of the element node as well as the element node itself; a root node is copied
by copying its children. When the result is neither a node-set nor a result tree fragment, the result is
converted to a string and then inserted into the result tree, as with xsl:value-of.

11.4 Top-level Variables and Parameters

Both xsl:variable and xsl:param are allowed as top-level elements. A top-level variable-binding element
declares a global variable that is visible everywhere. A top-level xsl:param element declares a parameter to
the stylesheet; XSLT does not define the mechanism by which parameters are passed to the stylesheet. It is
an error if a stylesheet contains more than one binding of a top-level variable with the same name and same
import precedence. At the top-level, the expression or template specifying the variable value is evaluated
with the same context as that used to process the root node of the source document: the current node is the
root node of the source document and the current node list is a list containing just the root node of the source
document. If the template or expression specifying the value of a global variable x references a global
variable y, then the value for y must be computed before the value of x. It is an error if it is impossible to do
this for all global variable definitions; in other words, it is an error if the definitions are circular.

This example declares a global variable para-font-size, which it references in an attribute value template.

<xsl:variable name="para-font-size">12pt</xsl:variable>

<xsl:template match="para">
 <fo:block font-size="{$para-font-size}">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

11.5 Variables and Parameters within Templates

As well as being allowed at the top-level, both xsl:variable and xsl:param are also allowed in templates.
xsl:variable is allowed anywhere within a template that an instruction is allowed. In this case, the binding is
visible for all following siblings and their descendants. Note that the binding is not visible for the xsl:variable
element itself. xsl:param is allowed as a child at the beginning of an xsl:template element. In this context, the
binding is visible for all following siblings and their descendants. Note that the binding is not visible for the
xsl:param element itself.

A binding shadows another binding if the binding occurs at a point where the other binding is visible, and the
bindings have the same name. It is an error if a binding established by an xsl:variable or xsl:param element
within a template shadows another binding established by an xsl:variable or xsl:param element also within the
template. It is not an error if a binding established by an xsl:variable or xsl:param element in a template
shadows another binding established by an xsl:variable or xsl:param top-level element. Thus, the following is
an error:

<xsl:template name="foo">
<xsl:param name="x" select="1"/>
<xsl:variable name="x" select="2"/>
</xsl:template>

However, the following is allowed:

<xsl:param name="x" select="1"/>
<xsl:template name="foo">
<xsl:variable name="x" select="2"/>
</xsl:template>

NOTE:The nearest equivalent in Java to an xsl:variable element in a template is a final local
variable declaration with an initializer. For example,

<xsl:variable name="x" select="'value'"/>

has similar semantics to

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

36 of 62 04-08-24 12.58

final Object x = "value";

XSLT does not provide an equivalent to the Java assignment operator

x = "value";

because this would make it harder to create an implementation that processes a document other
than in a batch-like way, starting at the beginning and continuing through to the end.

11.6 Passing Parameters to Templates

<xsl:with-param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:with-param>

Parameters are passed to templates using the xsl:with-param element. The required name attribute specifies
the name of the parameter (the variable the value of whose binding is to be replaced). The value of the name
attribute is a QName, which is expanded as described in [2.4 Qualified Names]. xsl:with-param is allowed
within both xsl:call-template and xsl:apply-templates. The value of the parameter is specified in the same way
as for xsl:variable and xsl:param. The current node and current node list used for computing the value
specified by xsl:with-param element is the same as that used for the xsl:apply-templates or xsl:call-template
element within which it occurs. It is not an error to pass a parameter x to a template that does not have an
xsl:param element for x; the parameter is simply ignored.

This example defines a named template for a numbered-block with an argument to control the format of the
number.

<xsl:template name="numbered-block">
 <xsl:param name="format">1. </xsl:param>
 <fo:block>
 <xsl:number format="{$format}"/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:template match="ol//ol/li">
 <xsl:call-template name="numbered-block">
 <xsl:with-param name="format">a. </xsl:with-param>
 </xsl:call-template>
</xsl:template>

12 Additional Functions

This section describes XSLT-specific additions to the core XPath function library. Some of these additional
functions also make use of information specified by top-level elements in the stylesheet; this section also
describes these elements.

12.1 Multiple Source Documents

Function: node-set document(object, node-set?)

The document function allows access to XML documents other than the main source document.

When the document function has exactly one argument and the argument is a node-set, then the result is
the union, for each node in the argument node-set, of the result of calling the document function with the
first argument being the string-value of the node, and the second argument being a node-set with the node as
its only member. When the document function has two arguments and the first argument is a node-set, then
the result is the union, for each node in the argument node-set, of the result of calling the document
function with the first argument being the string-value of the node, and with the second argument being the
second argument passed to the document function.

When the first argument to the document function is not a node-set, the first argument is converted to a
string as if by a call to the string function. This string is treated as a URI reference; the resource identified
by the URI is retrieved. The data resulting from the retrieval action is parsed as an XML document and a tree
is constructed in accordance with the data model (see [3 Data Model]). If there is an error retrieving the
resource, then the XSLT processor may signal an error; if it does not signal an error, it must recover by
returning an empty node-set. One possible kind of retrieval error is that the XSLT processor does not support

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 166

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

37 of 62 04-08-24 12.58

the URI scheme used by the URI. An XSLT processor is not required to support any particular URI schemes.
The documentation for an XSLT processor should specify which URI schemes the XSLT processor supports.

If the URI reference does not contain a fragment identifier, then a node-set containing just the root node of
the document is returned. If the URI reference does contain a fragment identifier, the function returns a
node-set containing the nodes in the tree identified by the fragment identifier of the URI reference. The
semantics of the fragment identifier is dependent on the media type of the result of retrieving the URI. If there
is an error in processing the fragment identifier, the XSLT processor may signal the error; if it does not signal
the error, it must recover by returning an empty node-set. Possible errors include:

The fragment identifier identifies something that cannot be represented by an XSLT node-set (such as
a range of characters within a text node).

The XSLT processor does not support fragment identifiers for the media-type of the retrieval result. An
XSLT processor is not required to support any particular media types. The documentation for an XSLT
processor should specify for which media types the XSLT processor supports fragment identifiers.

The data resulting from the retrieval action is parsed as an XML document regardless of the media type of the
retrieval result; if the top-level media type is text, then it is parsed in the same way as if the media type were
text/xml; otherwise, it is parsed in the same way as if the media type were application/xml.

NOTE:Since there is no top-level xml media type, data with a media type other than text/xml or
application/xml may in fact be XML.

The URI reference may be relative. The base URI (see [3.2 Base URI]) of the node in the second argument
node-set that is first in document order is used as the base URI for resolving the relative URI into an absolute
URI. If the second argument is omitted, then it defaults to the node in the stylesheet that contains the
expression that includes the call to the document function. Note that a zero-length URI reference is a
reference to the document relative to which the URI reference is being resolved; thus document("") refers to
the root node of the stylesheet; the tree representation of the stylesheet is exactly the same as if the XML
document containing the stylesheet was the initial source document.

Two documents are treated as the same document if they are identified by the same URI. The URI used for
the comparison is the absolute URI into which any relative URI was resolved and does not include any
fragment identifier. One root node is treated as the same node as another root node if the two nodes are from
the same document. Thus, the following expression will always be true:

generate-id(document("foo.xml"))=generate-id(document("foo.xml"))

The document function gives rise to the possibility that a node-set may contain nodes from more than one
document. With such a node-set, the relative document order of two nodes in the same document is the
normal document order defined by XPath [XPath]. The relative document order of two nodes in different
documents is determined by an implementation-dependent ordering of the documents containing the two
nodes. There are no constraints on how the implementation orders documents other than that it must do so
consistently: an implementation must always use the same order for the same set of documents.

12.2 Keys

Keys provide a way to work with documents that contain an implicit cross-reference structure. The ID, IDREF
and IDREFS attribute types in XML provide a mechanism to allow XML documents to make their
cross-reference explicit. XSLT supports this through the XPath id function. However, this mechanism has a
number of limitations:

ID attributes must be declared as such in the DTD. If an ID attribute is declared as an ID attribute only in
the external DTD subset, then it will be recognized as an ID attribute only if the XML processor reads
the external DTD subset. However, XML does not require XML processors to read the external DTD,
and they may well choose not to do so, especially if the document is declared standalone="yes".

A document can contain only a single set of unique IDs. There cannot be separate independent sets of
unique IDs.

The ID of an element can only be specified in an attribute; it cannot be specified by the content of the
element, or by a child element.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

38 of 62 04-08-24 12.58

An ID is constrained to be an XML name. For example, it cannot contain spaces.

An element can have at most one ID.

At most one element can have a particular ID.

Because of these limitations XML documents sometimes contain a cross-reference structure that is not
explicitly declared by ID/IDREF/IDREFS attributes.

A key is a triple containing:

the node which has the key1.

the name of the key (an expanded-name)2.

the value of the key (a string)3.

A stylesheet declares a set of keys for each document using the xsl:key element. When this set of keys
contains a member with node x, name y and value z, we say that node x has a key with name y and value z.

Thus, a key is a kind of generalized ID, which is not subject to the same limitations as an XML ID:

Keys are declared in the stylesheet using xsl:key elements.

A key has a name as well as a value; each key name may be thought of as distinguishing a separate,
independent space of identifiers.

The value of a named key for an element may be specified in any convenient place; for example, in an
attribute, in a child element or in content. An XPath expression is used to specify where to find the
value for a particular named key.

The value of a key can be an arbitrary string; it is not constrained to be a name.

There can be multiple keys in a document with the same node, same key name, but different key
values.

There can be multiple keys in a document with the same key name, same key value, but different
nodes.

<!-- Category: top-level-element -->
<xsl:key
 name = qname
 match = pattern
 use = expression />

The xsl:key element is used to declare keys. The name attribute specifies the name of the key. The value of
the name attribute is a QName, which is expanded as described in [2.4 Qualified Names]. The match
attribute is a Pattern; an xsl:key element gives information about the keys of any node that matches the
pattern specified in the match attribute. The use attribute is an expression specifying the values of the key;
the expression is evaluated once for each node that matches the pattern. If the result is a node-set, then for
each node in the node-set, the node that matches the pattern has a key of the specified name whose value is
the string-value of the node in the node-set; otherwise, the result is converted to a string, and the node that
matches the pattern has a key of the specified name with value equal to that string. Thus, a node x has a key
with name y and value z if and only if there is an xsl:key element such that:

x matches the pattern specified in the match attribute of the xsl:key element;

the value of the name attribute of the xsl:key element is equal to y; and

when the expression specified in the use attribute of the xsl:key element is evaluated with x as the
current node and with a node list containing just x as the current node list resulting in an object u, then
either z is equal to the result of converting u to a string as if by a call to the string function, or u is a
node-set and z is equal to the string-value of one or more of the nodes in u.

Note also that there may be more than one xsl:key element that matches a given node; all of the matching
xsl:key elements are used, even if they do not have the same import precedence.

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 167

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

39 of 62 04-08-24 12.58

It is an error for the value of either the use attribute or the match attribute to contain a VariableReference.

Function: node-set key(string, object)

The key function does for keys what the id function does for IDs. The first argument specifies the name of
the key. The value of the argument must be a QName, which is expanded as described in [2.4 Qualified
Names]. When the second argument to the key function is of type node-set, then the result is the union of
the result of applying the key function to the string value of each of the nodes in the argument node-set.
When the second argument to key is of any other type, the argument is converted to a string as if by a call to
the string function; it returns a node-set containing the nodes in the same document as the context node
that have a value for the named key equal to this string.

For example, given a declaration

<xsl:key name="idkey" match="div" use="@id"/>

an expression key("idkey",@ref) will return the same node-set as id(@ref), assuming that the only ID attribute
declared in the XML source document is:

<!ATTLIST div id ID #IMPLIED>

and that the ref attribute of the current node contains no whitespace.

Suppose a document describing a function library uses a prototype element to define functions

<prototype name="key" return-type="node-set">
<arg type="string"/>
<arg type="object"/>
</prototype>

and a function element to refer to function names

<function>key</function>

Then the stylesheet could generate hyperlinks between the references and definitions as follows:

<xsl:key name="func" match="prototype" use="@name"/>

<xsl:template match="function">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="prototype">
<p>
Function:
...
</p>
</xsl:template>

The key can be used to retrieve a key from a document other than the document containing the context
node. For example, suppose a document contains bibliographic references in the form <bibref>XSLT</bibref>,
and there is a separate XML document bib.xml containing a bibliographic database with entries in the form:

<entry name="XSLT">...</entry>

Then the stylesheet could use the following to transform the bibref elements:

<xsl:key name="bib" match="entry" use="@name"/>

<xsl:template match="bibref">
 <xsl:variable name="name" select="."/>
 <xsl:for-each select="document('bib.xml')">
 <xsl:apply-templates select="key('bib',$name)"/>
 </xsl:for-each>
</xsl:template>

12.3 Number Formatting

Function: string format-number(number, string, string?)

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

40 of 62 04-08-24 12.58

The format-number function converts its first argument to a string using the format pattern string specified
by the second argument and the decimal-format named by the third argument, or the default decimal-format,
if there is no third argument. The format pattern string is in the syntax specified by the JDK 1.1
DecimalFormat class. The format pattern string is in a localized notation: the decimal-format determines what
characters have a special meaning in the pattern (with the exception of the quote character, which is not
localized). The format pattern must not contain the currency sign (#x00A4); support for this feature was
added after the initial release of JDK 1.1. The decimal-format name must be a QName, which is expanded as
described in [2.4 Qualified Names]. It is an error if the stylesheet does not contain a declaration of the
decimal-format with the specified expanded-name.

NOTE:Implementations are not required to use the JDK 1.1 implementation, nor are
implementations required to be implemented in Java.

NOTE:Stylesheets can use other facilities in XPath to control rounding.

<!-- Category: top-level-element -->
<xsl:decimal-format
 name = qname
 decimal-separator = char
 grouping-separator = char
 infinity = string
 minus-sign = char
 NaN = string
 percent = char
 per-mille = char
 zero-digit = char
 digit = char
 pattern-separator = char />

The xsl:decimal-format element declares a decimal-format, which controls the interpretation of a format
pattern used by the format-number function. If there is a name attribute, then the element declares a named
decimal-format; otherwise, it declares the default decimal-format. The value of the name attribute is a QName,
which is expanded as described in [2.4 Qualified Names]. It is an error to declare either the default
decimal-format or a decimal-format with a given name more than once (even with different import
precedence), unless it is declared every time with the same value for all attributes (taking into account any
default values).

The other attributes on xsl:decimal-format correspond to the methods on the JDK 1.1 DecimalFormatSymbols
class. For each get/set method pair there is an attribute defined for the xsl:decimal-format element.

The following attributes both control the interpretation of characters in the format pattern and specify
characters that may appear in the result of formatting the number:

decimal-separator specifies the character used for the decimal sign; the default value is the period
character (.)

grouping-separator specifies the character used as a grouping (e.g. thousands) separator; the default
value is the comma character (,)

percent specifies the character used as a percent sign; the default value is the percent character (%)

per-mille specifies the character used as a per mille sign; the default value is the Unicode per-mille
character (#x2030)

zero-digit specifies the character used as the digit zero; the default value is the digit zero (0)

The following attributes control the interpretation of characters in the format pattern:

digit specifies the character used for a digit in the format pattern; the default value is the number sign
character (#)

pattern-separator specifies the character used to separate positive and negative sub patterns in a
pattern; the default value is the semi-colon character (;)

The following attributes specify characters or strings that may appear in the result of formatting the number:

infinity specifies the string used to represent infinity; the default value is the string Infinity

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 168

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

41 of 62 04-08-24 12.58

NaN specifies the string used to represent the NaN value; the default value is the string NaN

minus-sign specifies the character used as the default minus sign; the default value is the
hyphen-minus character (-, #x2D)

12.4 Miscellaneous Additional Functions

Function: node-set current()

The current function returns a node-set that has the current node as its only member. For an outermost
expression (an expression not occurring within another expression), the current node is always the same as
the context node. Thus,

<xsl:value-of select="current()"/>

means the same as

<xsl:value-of select="."/>

However, within square brackets the current node is usually different from the context node. For example,

<xsl:apply-templates select="//glossary/item[@name=current()/@ref]"/>

will process all item elements that have a glossary parent element and that have a name attribute with value
equal to the value of the current node's ref attribute. This is different from

<xsl:apply-templates select="//glossary/item[@name=./@ref]"/>

which means the same as

<xsl:apply-templates select="//glossary/item[@name=@ref]"/>

and so would process all item elements that have a glossary parent element and that have a name attribute and
a ref attribute with the same value.

It is an error to use the current function in a pattern.

Function: string unparsed-entity-uri(string)

The unparsed-entity-uri returns the URI of the unparsed entity with the specified name in the same
document as the context node (see [3.3 Unparsed Entities]). It returns the empty string if there is no
such entity.

Function: string generate-id(node-set?)

The generate-id function returns a string that uniquely identifies the node in the argument node-set that is
first in document order. The unique identifier must consist of ASCII alphanumeric characters and must start
with an alphabetic character. Thus, the string is syntactically an XML name. An implementation is free to
generate an identifier in any convenient way provided that it always generates the same identifier for the
same node and that different identifiers are always generated from different nodes. An implementation is
under no obligation to generate the same identifiers each time a document is transformed. There is no
guarantee that a generated unique identifier will be distinct from any unique IDs specified in the source
document. If the argument node-set is empty, the empty string is returned. If the argument is omitted, it
defaults to the context node.

Function: object system-property(string)

The argument must evaluate to a string that is a QName. The QName is expanded into a name using the
namespace declarations in scope for the expression. The system-property function returns an object
representing the value of the system property identified by the name. If there is no such system property, the
empty string should be returned.

Implementations must provide the following system properties, which are all in the XSLT namespace:

xsl:version, a number giving the version of XSLT implemented by the processor; for XSLT processors
implementing the version of XSLT specified by this document, this is the number 1.0

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

42 of 62 04-08-24 12.58

xsl:vendor, a string identifying the vendor of the XSLT processor
xsl:vendor-url, a string containing a URL identifying the vendor of the XSLT processor; typically this is
the host page (home page) of the vendor's Web site.

13 Messages

<!-- Category: instruction -->
<xsl:message
 terminate = "yes" | "no">
 <!-- Content: template -->
</xsl:message>

The xsl:message instruction sends a message in a way that is dependent on the XSLT processor. The content
of the xsl:message instruction is a template. The xsl:message is instantiated by instantiating the content to
create an XML fragment. This XML fragment is the content of the message.

NOTE:An XSLT processor might implement xsl:message by popping up an alert box or by writing to
a log file.

If the terminate attribute has the value yes, then the XSLT processor should terminate processing after
sending the message. The default value is no.

One convenient way to do localization is to put the localized information (message text, etc.) in an XML
document, which becomes an additional input file to the stylesheet. For example, suppose messages for a
language L are stored in an XML file resources/L.xml in the form:

<messages>
 <message name="problem">A problem was detected.</message>
 <message name="error">An error was detected.</message>
</messages>

Then a stylesheet could use the following approach to localize messages:

<xsl:param name="lang" select="en"/>
<xsl:variable name="messages"
 select="document(concat('resources/', $lang, '.xml'))/messages"/>

<xsl:template name="localized-message">
 <xsl:param name="name"/>
 <xsl:message>
 <xsl:value-of select="$messages/message[@name=$name]"/>
 </xsl:message>
</xsl:template>

<xsl:template name="problem">
 <xsl:call-template name="localized-message"/>
 <xsl:with-param name="name">problem</xsl:with-param>
 </xsl:call-template>
</xsl:template>

14 Extensions

XSLT allows two kinds of extension, extension elements and extension functions.

This version of XSLT does not provide a mechanism for defining implementations of extensions. Therefore,
an XSLT stylesheet that must be portable between XSLT implementations cannot rely on particular
extensions being available. XSLT provides mechanisms that allow an XSLT stylesheet to determine whether
the XSLT processor by which it is being processed has implementations of particular extensions available,
and to specify what should happen if those extensions are not available. If an XSLT stylesheet is careful to
make use of these mechanisms, it is possible for it to take advantage of extensions and still work with any
XSLT implementation.

14.1 Extension Elements

The element extension mechanism allows namespaces to be designated as extension namespaces.
When a namespace is designated as an extension namespace and an element with a name from that
namespace occurs in a template, then the element is treated as an instruction rather than as a literal result
element. The namespace determines the semantics of the instruction.

NOTE:Since an element that is a child of an xsl:stylesheet element is not occurring in a template,
non-XSLT top-level elements are not extension elements as defined here, and nothing in this

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 169

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

43 of 62 04-08-24 12.58

section applies to them.

A namespace is designated as an extension namespace by using an extension-element-prefixes attribute on
an xsl:stylesheet element or an xsl:extension-element-prefixes attribute on a literal result element or extension
element. The value of both these attributes is a whitespace-separated list of namespace prefixes. The
namespace bound to each of the prefixes is designated as an extension namespace. It is an error if there is
no namespace bound to the prefix on the element bearing the extension-element-prefixes or
xsl:extension-element-prefixes attribute. The default namespace (as declared by xmlns) may be designated as
an extension namespace by including #default in the list of namespace prefixes. The designation of a
namespace as an extension namespace is effective within the subtree of the stylesheet rooted at the
element bearing the extension-element-prefixes or xsl:extension-element-prefixes attribute; a subtree rooted at
an xsl:stylesheet element does not include any stylesheets imported or included by children of that
xsl:stylesheet element.

If the XSLT processor does not have an implementation of a particular extension element available, then the
element-available function must return false for the name of the element. When such an extension
element is instantiated, then the XSLT processor must perform fallback for the element as specified in [15
Fallback]. An XSLT processor must not signal an error merely because a template contains an extension
element for which no implementation is available.

If the XSLT processor has an implementation of a particular extension element available, then the
element-available function must return true for the name of the element.

14.2 Extension Functions

If a FunctionName in a FunctionCall expression is not an NCName (i.e. if it contains a colon), then it is treated
as a call to an extension function. The FunctionName is expanded to a name using the namespace
declarations from the evaluation context.

If the XSLT processor does not have an implementation of an extension function of a particular name
available, then the function-available function must return false for that name. If such an extension
function occurs in an expression and the extension function is actually called, the XSLT processor must
signal an error. An XSLT processor must not signal an error merely because an expression contains an
extension function for which no implementation is available.

If the XSLT processor has an implementation of an extension function of a particular name available, then the
function-available function must return true for that name. If such an extension is called, then the XSLT
processor must call the implementation passing it the function call arguments; the result returned by the
implementation is returned as the result of the function call.

15 Fallback

<!-- Category: instruction -->
<xsl:fallback>
 <!-- Content: template -->
</xsl:fallback>

Normally, instantiating an xsl:fallback element does nothing. However, when an XSLT processor performs
fallback for an instruction element, if the instruction element has one or more xsl:fallback children, then the
content of each of the xsl:fallback children must be instantiated in sequence; otherwise, an error must be
signaled. The content of an xsl:fallback element is a template.

The following functions can be used with the xsl:choose and xsl:if instructions to explicitly control how a
stylesheet should behave if particular elements or functions are not available.

Function: boolean element-available(string)

The argument must evaluate to a string that is a QName. The QName is expanded into an expanded-name
using the namespace declarations in scope for the expression. The element-available function returns
true if and only if the expanded-name is the name of an instruction. If the expanded-name has a namespace
URI equal to the XSLT namespace URI, then it refers to an element defined by XSLT. Otherwise, it refers to
an extension element. If the expanded-name has a null namespace URI, the element-available function
will return false.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

44 of 62 04-08-24 12.58

Function: boolean function-available(string)

The argument must evaluate to a string that is a QName. The QName is expanded into an expanded-name
using the namespace declarations in scope for the expression. The function-available function returns
true if and only if the expanded-name is the name of a function in the function library. If the expanded-name
has a non-null namespace URI, then it refers to an extension function; otherwise, it refers to a function
defined by XPath or XSLT.

16 Output

<!-- Category: top-level-element -->
<xsl:output
 method = "xml" | "html" | "text" | qname-but-not-ncname
 version = nmtoken
 encoding = string
 omit-xml-declaration = "yes" | "no"
 standalone = "yes" | "no"
 doctype-public = string
 doctype-system = string
 cdata-section-elements = qnames
 indent = "yes" | "no"
 media-type = string />

An XSLT processor may output the result tree as a sequence of bytes, although it is not required to be able to
do so (see [17 Conformance]). The xsl:output element allows stylesheet authors to specify how they wish
the result tree to be output. If an XSLT processor outputs the result tree, it should do so as specified by the
xsl:output element; however, it is not required to do so.

The xsl:output element is only allowed as a top-level element.

The method attribute on xsl:output identifies the overall method that should be used for outputting the result
tree. The value must be a QName. If the QName does not have a prefix, then it identifies a method specified
in this document and must be one of xml, html or text. If the QName has a prefix, then the QName is expanded
into an expanded-name as described in [2.4 Qualified Names]; the expanded-name identifies the output
method; the behavior in this case is not specified by this document.

The default for the method attribute is chosen as follows. If

the root node of the result tree has an element child,

the expanded-name of the first element child of the root node (i.e. the document element) of the result
tree has local part html (in any combination of upper and lower case) and a null namespace URI, and

any text nodes preceding the first element child of the root node of the result tree contain only
whitespace characters,

then the default output method is html; otherwise, the default output method is xml. The default output method
should be used if there are no xsl:output elements or if none of the xsl:output elements specifies a value for
the method attribute.

The other attributes on xsl:output provide parameters for the output method. The following attributes are
allowed:

version specifies the version of the output method

indent specifies whether the XSLT processor may add additional whitespace when outputting the result
tree; the value must be yes or no

encoding specifies the preferred character encoding that the XSLT processor should use to encode
sequences of characters as sequences of bytes; the value of the attribute should be treated
case-insensitively; the value must contain only characters in the range #x21 to #x7E (i.e. printable
ASCII characters); the value should either be a charset registered with the Internet Assigned Numbers
Authority [IANA], [RFC2278] or start with X-

media-type specifies the media type (MIME content type) of the data that results from outputting the
result tree; the charset parameter should not be specified explicitly; instead, when the top-level media

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 170

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

45 of 62 04-08-24 12.58

type is text, a charset parameter should be added according to the character encoding actually used by
the output method

doctype-system specifies the system identifier to be used in the document type declaration

doctype-public specifies the public identifier to be used in the document type declaration

omit-xml-declaration specifies whether the XSLT processor should output an XML declaration; the value
must be yes or no

standalone specifies whether the XSLT processor should output a standalone document declaration; the
value must be yes or no

cdata-section-elements specifies a list of the names of elements whose text node children should be
output using CDATA sections

The detailed semantics of each attribute will be described separately for each output method for which it is
applicable. If the semantics of an attribute are not described for an output method, then it is not applicable to
that output method.

A stylesheet may contain multiple xsl:output elements and may include or import stylesheets that also
contain xsl:output elements. All the xsl:output elements occurring in a stylesheet are merged into a single
effective xsl:output element. For the cdata-section-elements attribute, the effective value is the union of the
specified values. For other attributes, the effective value is the specified value with the highest import
precedence. It is an error if there is more than one such value for an attribute. An XSLT processor may signal
the error; if it does not signal the error, if should recover by using the value that occurs last in the stylesheet.
The values of attributes are defaulted after the xsl:output elements have been merged; different output
methods may have different default values for an attribute.

16.1 XML Output Method

The xml output method outputs the result tree as a well-formed XML external general parsed entity. If the root
node of the result tree has a single element node child and no text node children, then the entity should also
be a well-formed XML document entity. When the entity is referenced within a trivial XML document wrapper
like this

<!DOCTYPE doc [
<!ENTITY e SYSTEM "entity-URI">
]>
<doc>&e;</doc>

where entity-URI is a URI for the entity, then the wrapper document as a whole should be a well-formed XML
document conforming to the XML Namespaces Recommendation [XML Names]. In addition, the output
should be such that if a new tree was constructed by parsing the wrapper as an XML document as specified
in [3 Data Model], and then removing the document element, making its children instead be children of the
root node, then the new tree would be the same as the result tree, with the following possible exceptions:

The order of attributes in the two trees may be different.

The new tree may contain namespace nodes that were not present in the result tree.

NOTE:An XSLT processor may need to add namespace declarations in the course of
outputting the result tree as XML.

If the XSLT processor generated a document type declaration because of the doctype-system attribute, then
the above requirements apply to the entity with the generated document type declaration removed.

The version attribute specifies the version of XML to be used for outputting the result tree. If the XSLT
processor does not support this version of XML, it should use a version of XML that it does support. The
version output in the XML declaration (if an XML declaration is output) should correspond to the version of
XML that the processor used for outputting the result tree. The value of the version attribute should match the
VersionNum production of the XML Recommendation [XML]. The default value is 1.0.

The encoding attribute specifies the preferred encoding to use for outputting the result tree. XSLT processors

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

46 of 62 04-08-24 12.58

are required to respect values of UTF-8 and UTF-16. For other values, if the XSLT processor does not support
the specified encoding it may signal an error; if it does not signal an error it should use UTF-8 or UTF-16 instead.
The XSLT processor must not use an encoding whose name does not match the EncName production of the
XML Recommendation [XML]. If no encoding attribute is specified, then the XSLT processor should use either
UTF-8 or UTF-16. It is possible that the result tree will contain a character that cannot be represented in the
encoding that the XSLT processor is using for output. In this case, if the character occurs in a context where
XML recognizes character references (i.e. in the value of an attribute node or text node), then the character
should be output as a character reference; otherwise (for example if the character occurs in the name of an
element) the XSLT processor should signal an error.

If the indent attribute has the value yes, then the xml output method may output whitespace in addition to the
whitespace in the result tree (possibly based on whitespace stripped from either the source document or the
stylesheet) in order to indent the result nicely; if the indent attribute has the value no, it should not output any
additional whitespace. The default value is no. The xml output method should use an algorithm to output
additional whitespace that ensures that the result if whitespace were to be stripped from the output using the
process described in [3.4 Whitespace Stripping] with the set of whitespace-preserving elements
consisting of just xsl:text would be the same when additional whitespace is output as when additional
whitespace is not output.

NOTE:It is usually not safe to use indent="yes" with document types that include element types
with mixed content.

The cdata-section-elements attribute contains a whitespace-separated list of QNames. Each QName is
expanded into an expanded-name using the namespace declarations in effect on the xsl:output element in
which the QName occurs; if there is a default namespace, it is used for QNames that do not have a prefix.
The expansion is performed before the merging of multiple xsl:output elements into a single effective
xsl:output element. If the expanded-name of the parent of a text node is a member of the list, then the text
node should be output as a CDATA section. For example,

<xsl:output cdata-section-elements="example"/>

would cause a literal result element written in the stylesheet as

<example><foo></example>

or as

<example><![CDATA[<foo>]]></example>

to be output as

<example><![CDATA[<foo>]]></example>

If the text node contains the sequence of characters]]>, then the currently open CDATA section should be
closed following the]] and a new CDATA section opened before the >. For example, a literal result element
written in the stylesheet as

<example>]]></example>

would be output as

<example><![CDATA[]]]]><![CDATA[>]]></example>

If the text node contains a character that is not representable in the character encoding being used to output
the result tree, then the currently open CDATA section should be closed before the character, the character
should be output using a character reference or entity reference, and a new CDATA section should be
opened for any further characters in the text node.

CDATA sections should not be used except for text nodes that the cdata-section-elements attribute explicitly
specifies should be output using CDATA sections.

The xml output method should output an XML declaration unless the omit-xml-declaration attribute has the
value yes. The XML declaration should include both version information and an encoding declaration. If the
standalone attribute is specified, it should include a standalone document declaration with the same value as
the value as the value of the standalone attribute. Otherwise, it should not include a standalone document

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 171

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

47 of 62 04-08-24 12.58

declaration; this ensures that it is both a XML declaration (allowed at the beginning of a document entity) and
a text declaration (allowed at the beginning of an external general parsed entity).

If the doctype-system attribute is specified, the xml output method should output a document type declaration
immediately before the first element. The name following <!DOCTYPE should be the name of the first element. If
doctype-public attribute is also specified, then the xml output method should output PUBLIC followed by the
public identifier and then the system identifier; otherwise, it should output SYSTEM followed by the system
identifier. The internal subset should be empty. The doctype-public attribute should be ignored unless the
doctype-system attribute is specified.

The media-type attribute is applicable for the xml output method. The default value for the media-type attribute is
text/xml.

16.2 HTML Output Method

The html output method outputs the result tree as HTML; for example,

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
 <html>
 <xsl:apply-templates/>
 </html>
</xsl:template>

...

</xsl:stylesheet>

The version attribute indicates the version of the HTML. The default value is 4.0, which specifies that the
result should be output as HTML conforming to the HTML 4.0 Recommendation [HTML].

The html output method should not output an element differently from the xml output method unless the
expanded-name of the element has a null namespace URI; an element whose expanded-name has a non-null
namespace URI should be output as XML. If the expanded-name of the element has a null namespace URI,
but the local part of the expanded-name is not recognized as the name of an HTML element, the element
should output in the same way as a non-empty, inline element such as span.

The html output method should not output an end-tag for empty elements. For HTML 4.0, the empty elements
are area, base, basefont, br, col, frame, hr, img, input, isindex, link, meta and param. For example, an element
written as
 or
</br> in the stylesheet should be output as
.

The html output method should recognize the names of HTML elements regardless of case. For example,
elements named br, BR or Br should all be recognized as the HTML br element and output without an end-tag.

The html output method should not perform escaping for the content of the script and style elements. For
example, a literal result element written in the stylesheet as

<script>if (a < b) foo()</script>

or

<script><![CDATA[if (a < b) foo()]]></script>

should be output as

<script>if (a < b) foo()</script>

The html output method should not escape < characters occurring in attribute values.

If the indent attribute has the value yes, then the html output method may add or remove whitespace as it
outputs the result tree, so long as it does not change how an HTML user agent would render the output. The
default value is yes.

The html output method should escape non-ASCII characters in URI attribute values using the method
recommended in Section B.2.1 of the HTML 4.0 Recommendation.

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

48 of 62 04-08-24 12.58

The html output method may output a character using a character entity reference, if one is defined for it in
the version of HTML that the output method is using.

The html output method should terminate processing instructions with > rather than ?>.

The html output method should output boolean attributes (that is attributes with only a single allowed value
that is equal to the name of the attribute) in minimized form. For example, a start-tag written in the stylesheet
as

<OPTION selected="selected">

should be output as

<OPTION selected>

The html output method should not escape a & character occurring in an attribute value immediately followed
by a { character (see Section B.7.1 of the HTML 4.0 Recommendation). For example, a start-tag written in the
stylesheet as

<BODY bgcolor='&{{randomrbg}};'>

should be output as

<BODY bgcolor='&{randomrbg};'>

The encoding attribute specifies the preferred encoding to be used. If there is a HEAD element, then the html
output method should add a META element immediately after the start-tag of the HEAD element specifying the
character encoding actually used. For example,

<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=EUC-JP">
...

It is possible that the result tree will contain a character that cannot be represented in the encoding that the
XSLT processor is using for output. In this case, if the character occurs in a context where HTML recognizes
character references, then the character should be output as a character entity reference or decimal numeric
character reference; otherwise (for example, in a script or style element or in a comment), the XSLT
processor should signal an error.

If the doctype-public or doctype-system attributes are specified, then the html output method should output a
document type declaration immediately before the first element. The name following <!DOCTYPE should be HTML
or html. If the doctype-public attribute is specified, then the output method should output PUBLIC followed by
the specified public identifier; if the doctype-system attribute is also specified, it should also output the
specified system identifier following the public identifier. If the doctype-system attribute is specified but the
doctype-public attribute is not specified, then the output method should output SYSTEM followed by the
specified system identifier.

The media-type attribute is applicable for the html output method. The default value is text/html.

16.3 Text Output Method

The text output method outputs the result tree by outputting the string-value of every text node in the result
tree in document order without any escaping.

The media-type attribute is applicable for the text output method. The default value for the media-type attribute
is text/plain.

The encoding attribute identifies the encoding that the text output method should use to convert sequences of
characters to sequences of bytes. The default is system-dependent. If the result tree contains a character
that cannot be represented in the encoding that the XSLT processor is using for output, the XSLT processor
should signal an error.

16.4 Disabling Output Escaping

Normally, the xml output method escapes & and < (and possibly other characters) when outputting text

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 172

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

49 of 62 04-08-24 12.58

nodes. This ensures that the output is well-formed XML. However, it is sometimes convenient to be able to
produce output that is almost, but not quite well-formed XML; for example, the output may include ill-formed
sections which are intended to be transformed into well-formed XML by a subsequent non-XML aware
process. For this reason, XSLT provides a mechanism for disabling output escaping. An xsl:value-of or
xsl:text element may have a disable-output-escaping attribute; the allowed values are yes or no; the default is
no; if the value is yes, then a text node generated by instantiating the xsl:value-of or xsl:text element should
be output without any escaping. For example,

<xsl:text disable-output-escaping="yes"><</xsl:text>

should generate the single character <.

It is an error for output escaping to be disabled for a text node that is used for something other than a text
node in the result tree. Thus, it is an error to disable output escaping for an xsl:value-of or xsl:text element
that is used to generate the string-value of a comment, processing instruction or attribute node; it is also an
error to convert a result tree fragment to a number or a string if the result tree fragment contains a text node
for which escaping was disabled. In both cases, an XSLT processor may signal the error; if it does not signal
the error, it must recover by ignoring the disable-output-escaping attribute.

The disable-output-escaping attribute may be used with the html output method as well as with the xml output
method. The text output method ignores the disable-output-escaping attribute, since it does not perform any
output escaping.

An XSLT processor will only be able to disable output escaping if it controls how the result tree is output. This
may not always be the case. For example, the result tree may be used as the source tree for another XSLT
transformation instead of being output. An XSLT processor is not required to support disabling output
escaping. If an xsl:value-of or xsl:text specifies that output escaping should be disabled and the XSLT
processor does not support this, the XSLT processor may signal an error; if it does not signal an error, it must
recover by not disabling output escaping.

If output escaping is disabled for a character that is not representable in the encoding that the XSLT
processor is using for output, then the XSLT processor may signal an error; if it does not signal an error, it
must recover by not disabling output escaping.

Since disabling output escaping may not work with all XSLT processors and can result in XML that is not
well-formed, it should be used only when there is no alternative.

17 Conformance

A conforming XSLT processor must be able to use a stylesheet to transform a source tree into a result tree
as specified in this document. A conforming XSLT processor need not be able to output the result in XML or in
any other form.

NOTE:Vendors of XSLT processors are strongly encouraged to provide a way to verify that their
processor is behaving conformingly by allowing the result tree to be output as XML or by providing
access to the result tree through a standard API such as the DOM or SAX.

A conforming XSLT processor must signal any errors except for those that this document specifically allows
an XSLT processor not to signal. A conforming XSLT processor may but need not recover from any errors
that it signals.

A conforming XSLT processor may impose limits on the processing resources consumed by the processing
of a stylesheet.

18 Notation

The specification of each XSLT-defined element type is preceded by a summary of its syntax in the form of a
model for elements of that element type. The meaning of syntax summary notation is as follows:

An attribute is required if and only if its name is in bold.

The string that occurs in the place of an attribute value specifies the allowed values of the attribute. If
this is surrounded by curly braces, then the attribute value is treated as an attribute value template,

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

50 of 62 04-08-24 12.58

and the string occurring within curly braces specifies the allowed values of the result of instantiating
the attribute value template. Alternative allowed values are separated by |. A quoted string indicates a
value equal to that specific string. An unquoted, italicized name specifies a particular type of value.

If the element is allowed not to be empty, then the element contains a comment specifying the allowed
content. The allowed content is specified in a similar way to an element type declaration in XML;
template means that any mixture of text nodes, literal result elements, extension elements, and XSLT
elements from the instruction category is allowed; top-level-elements means that any mixture of XSLT
elements from the top-level-element category is allowed.

The element is prefaced by comments indicating if it belongs to the instruction category or
top-level-element category or both. The category of an element just affects whether it is allowed in the
content of elements that allow a template or top-level-elements.

A References

A.1 Normative References

XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation. See
http://www.w3.org/TR/1998/REC-xml-19980210

XML Names
World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-names

XPath
World Wide Web Consortium. XML Path Language. W3C Recommendation. See
http://www.w3.org/TR/xpath

A.2 Other References

CSS2
World Wide Web Consortium. Cascading Style Sheets, level 2 (CSS2). W3C Recommendation. See
http://www.w3.org/TR/1998/REC-CSS2-19980512

DSSSL
International Organization for Standardization, International Electrotechnical Commission. ISO/IEC
10179:1996. Document Style Semantics and Specification Language (DSSSL). International Standard.

HTML
World Wide Web Consortium. HTML 4.0 specification. W3C Recommendation. See
http://www.w3.org/TR/REC-html40

IANA
Internet Assigned Numbers Authority. Character Sets. See
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

RFC2278
N. Freed, J. Postel. IANA Charset Registration Procedures. IETF RFC 2278. See
http://www.ietf.org/rfc/rfc2278.txt.

RFC2376
E. Whitehead, M. Murata. XML Media Types. IETF RFC 2376. See http://www.ietf.org/rfc/rfc2376.txt.

RFC2396
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax. IETF
RFC 2396. See http://www.ietf.org/rfc/rfc2396.txt.

UNICODE TR10
Unicode Consortium. Unicode Technical Report #10. Unicode Collation Algorithm. Unicode Technical
Report. See http://www.unicode.org/unicode/reports/tr10/index.html.

XHTML
World Wide Web Consortium. XHTML 1.0: The Extensible HyperText Markup Language. W3C Proposed
Recommendation. See http://www.w3.org/TR/xhtml1

XPointer
World Wide Web Consortium. XML Pointer Language (XPointer). W3C Working Draft. See
http://www.w3.org/TR/xptr

XML Stylesheet

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 173

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

51 of 62 04-08-24 12.58

World Wide Web Consortium. Associating stylesheets with XML documents. W3C Recommendation.
See http://www.w3.org/TR/xml-stylesheet

XSL
World Wide Web Consortium. Extensible Stylesheet Language (XSL). W3C Working Draft. See
http://www.w3.org/TR/WD-xsl

B Element Syntax Summary
<!-- Category: instruction -->
<xsl:apply-imports />

<!-- Category: instruction -->
<xsl:apply-templates
 select = node-set-expression
 mode = qname>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

<!-- Category: instruction -->
<xsl:attribute
 name = { qname }
 namespace = { uri-reference }>
 <!-- Content: template -->
</xsl:attribute>

<!-- Category: top-level-element -->
<xsl:attribute-set
 name = qname
 use-attribute-sets = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

<!-- Category: instruction -->
<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

<!-- Category: instruction -->
<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

<!-- Category: instruction -->
<xsl:comment>
 <!-- Content: template -->
</xsl:comment>

<!-- Category: instruction -->
<xsl:copy
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:copy>

<!-- Category: instruction -->
<xsl:copy-of
 select = expression />

<!-- Category: top-level-element -->
<xsl:decimal-format
 name = qname
 decimal-separator = char
 grouping-separator = char
 infinity = string
 minus-sign = char
 NaN = string
 percent = char
 per-mille = char
 zero-digit = char
 digit = char
 pattern-separator = char />

<!-- Category: instruction -->
<xsl:element
 name = { qname }
 namespace = { uri-reference }
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:element>

<!-- Category: instruction -->
<xsl:fallback>
 <!-- Content: template -->
</xsl:fallback>

<!-- Category: instruction -->
<xsl:for-each

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

52 of 62 04-08-24 12.58

 select = node-set-expression>
 <!-- Content: (xsl:sort*, template) -->
</xsl:for-each>

<!-- Category: instruction -->
<xsl:if
 test = boolean-expression>
 <!-- Content: template -->
</xsl:if>

<xsl:import
 href = uri-reference />

<!-- Category: top-level-element -->
<xsl:include
 href = uri-reference />

<!-- Category: top-level-element -->
<xsl:key
 name = qname
 match = pattern
 use = expression />

<!-- Category: instruction -->
<xsl:message
 terminate = "yes" | "no">
 <!-- Content: template -->
</xsl:message>

<!-- Category: top-level-element -->
<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

<!-- Category: instruction -->
<xsl:number
 level = "single" | "multiple" | "any"
 count = pattern
 from = pattern
 value = number-expression
 format = { string }
 lang = { nmtoken }
 letter-value = { "alphabetic" | "traditional" }
 grouping-separator = { char }
 grouping-size = { number } />

<xsl:otherwise>
 <!-- Content: template -->
</xsl:otherwise>

<!-- Category: top-level-element -->
<xsl:output
 method = "xml" | "html" | "text" | qname-but-not-ncname
 version = nmtoken
 encoding = string
 omit-xml-declaration = "yes" | "no"
 standalone = "yes" | "no"
 doctype-public = string
 doctype-system = string
 cdata-section-elements = qnames
 indent = "yes" | "no"
 media-type = string />

<!-- Category: top-level-element -->
<xsl:param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:param>

<!-- Category: top-level-element -->
<xsl:preserve-space
 elements = tokens />

<!-- Category: instruction -->
<xsl:processing-instruction
 name = { ncname }>
 <!-- Content: template -->
</xsl:processing-instruction>

<xsl:sort
 select = string-expression
 lang = { nmtoken }
 data-type = { "text" | "number" | qname-but-not-ncname }
 order = { "ascending" | "descending" }
 case-order = { "upper-first" | "lower-first" } />

<!-- Category: top-level-element -->
<xsl:strip-space
 elements = tokens />

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 174

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

53 of 62 04-08-24 12.58

<xsl:stylesheet
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:stylesheet>

<!-- Category: top-level-element -->
<xsl:template
 match = pattern
 name = qname
 priority = number
 mode = qname>
 <!-- Content: (xsl:param*, template) -->
</xsl:template>

<!-- Category: instruction -->
<xsl:text
 disable-output-escaping = "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

<xsl:transform
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:transform>

<!-- Category: instruction -->
<xsl:value-of
 select = string-expression
 disable-output-escaping = "yes" | "no" />

<!-- Category: top-level-element -->
<!-- Category: instruction -->
<xsl:variable
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:variable>

<xsl:when
 test = boolean-expression>
 <!-- Content: template -->
</xsl:when>

<xsl:with-param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:with-param>

C DTD Fragment for XSLT Stylesheets (Non-Normative)

NOTE:This DTD Fragment is not normative because XML 1.0 DTDs do not support XML
Namespaces and thus cannot correctly describe the allowed structure of an XSLT stylesheet.

The following entity can be used to construct a DTD for XSLT stylesheets that create instances of a
particular result DTD. Before referencing the entity, the stylesheet DTD must define a result-elements
parameter entity listing the allowed result element types. For example:

<!ENTITY % result-elements "
 | fo:inline-sequence
 | fo:block
">

Such result elements should be declared to have xsl:use-attribute-sets and xsl:extension-element-prefixes
attributes. The following entity declares the result-element-atts parameter for this purpose. The content that
XSLT allows for result elements is the same as it allows for the XSLT elements that are declared in the
following entity with a content model of %template;. The DTD may use a more restrictive content model than
%template; to reflect the constraints of the result DTD.

The DTD may define the non-xsl-top-level parameter entity to allow additional top-level elements from
namespaces other than the XSLT namespace.

The use of the xsl: prefix in this DTD does not imply that XSLT stylesheets are required to use this prefix.
Any of the elements declared in this DTD may have attributes whose name starts with xmlns: or is equal to

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

54 of 62 04-08-24 12.58

xmlns in addition to the attributes declared in this DTD.

<!ENTITY % char-instructions "
 | xsl:apply-templates
 | xsl:call-template
 | xsl:apply-imports
 | xsl:for-each
 | xsl:value-of
 | xsl:copy-of
 | xsl:number
 | xsl:choose
 | xsl:if
 | xsl:text
 | xsl:copy
 | xsl:variable
 | xsl:message
 | xsl:fallback
">

<!ENTITY % instructions "
 %char-instructions;
 | xsl:processing-instruction
 | xsl:comment
 | xsl:element
 | xsl:attribute
">

<!ENTITY % char-template "
 (#PCDATA
 %char-instructions;)*
">

<!ENTITY % template "
 (#PCDATA
 %instructions;
 %result-elements;)*
">

<!-- Used for the type of an attribute value that is a URI reference.-->
<!ENTITY % URI "CDATA">

<!-- Used for the type of an attribute value that is a pattern.-->
<!ENTITY % pattern "CDATA">

<!-- Used for the type of an attribute value that is an
 attribute value template.-->
<!ENTITY % avt "CDATA">

<!-- Used for the type of an attribute value that is a QName; the prefix
 gets expanded by the XSLT processor. -->
<!ENTITY % qname "NMTOKEN">

<!-- Like qname but a whitespace-separated list of QNames. -->
<!ENTITY % qnames "NMTOKENS">

<!-- Used for the type of an attribute value that is an expression.-->
<!ENTITY % expr "CDATA">

<!-- Used for the type of an attribute value that consists
 of a single character.-->
<!ENTITY % char "CDATA">

<!-- Used for the type of an attribute value that is a priority. -->
<!ENTITY % priority "NMTOKEN">

<!ENTITY % space-att "xml:space (default|preserve) #IMPLIED">

<!-- This may be overridden to customize the set of elements allowed
at the top-level. -->

<!ENTITY % non-xsl-top-level "">

<!ENTITY % top-level "
 (xsl:import*,
 (xsl:include
 | xsl:strip-space
 | xsl:preserve-space
 | xsl:output
 | xsl:key
 | xsl:decimal-format
 | xsl:attribute-set
 | xsl:variable
 | xsl:param
 | xsl:template
 | xsl:namespace-alias
 %non-xsl-top-level;)*)
">

<!ENTITY % top-level-atts '
 extension-element-prefixes CDATA #IMPLIED
 exclude-result-prefixes CDATA #IMPLIED
 id ID #IMPLIED
 version NMTOKEN #REQUIRED
 xmlns:xsl CDATA #FIXED "http://www.w3.org/1999/XSL/Transform"
 %space-att;

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 175

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

55 of 62 04-08-24 12.58

'>

<!-- This entity is defined for use in the ATTLIST declaration
for result elements. -->

<!ENTITY % result-element-atts '
 xsl:extension-element-prefixes CDATA #IMPLIED
 xsl:exclude-result-prefixes CDATA #IMPLIED
 xsl:use-attribute-sets %qnames; #IMPLIED
 xsl:version NMTOKEN #IMPLIED
'>

<!ELEMENT xsl:stylesheet %top-level;>
<!ATTLIST xsl:stylesheet %top-level-atts;>

<!ELEMENT xsl:transform %top-level;>
<!ATTLIST xsl:transform %top-level-atts;>

<!ELEMENT xsl:import EMPTY>
<!ATTLIST xsl:import href %URI; #REQUIRED>

<!ELEMENT xsl:include EMPTY>
<!ATTLIST xsl:include href %URI; #REQUIRED>

<!ELEMENT xsl:strip-space EMPTY>
<!ATTLIST xsl:strip-space elements CDATA #REQUIRED>

<!ELEMENT xsl:preserve-space EMPTY>
<!ATTLIST xsl:preserve-space elements CDATA #REQUIRED>

<!ELEMENT xsl:output EMPTY>
<!ATTLIST xsl:output
 method %qname; #IMPLIED
 version NMTOKEN #IMPLIED
 encoding CDATA #IMPLIED
 omit-xml-declaration (yes|no) #IMPLIED
 standalone (yes|no) #IMPLIED
 doctype-public CDATA #IMPLIED
 doctype-system CDATA #IMPLIED
 cdata-section-elements %qnames; #IMPLIED
 indent (yes|no) #IMPLIED
 media-type CDATA #IMPLIED
>

<!ELEMENT xsl:key EMPTY>
<!ATTLIST xsl:key
 name %qname; #REQUIRED
 match %pattern; #REQUIRED
 use %expr; #REQUIRED
>

<!ELEMENT xsl:decimal-format EMPTY>
<!ATTLIST xsl:decimal-format
 name %qname; #IMPLIED
 decimal-separator %char; "."
 grouping-separator %char; ","
 infinity CDATA "Infinity"
 minus-sign %char; "-"
 NaN CDATA "NaN"
 percent %char; "%"
 per-mille %char; "‰"
 zero-digit %char; "0"
 digit %char; "#"
 pattern-separator %char; ";"
>

<!ELEMENT xsl:namespace-alias EMPTY>
<!ATTLIST xsl:namespace-alias
 stylesheet-prefix CDATA #REQUIRED
 result-prefix CDATA #REQUIRED
>

<!ELEMENT xsl:template
 (#PCDATA
 %instructions;
 %result-elements;
 | xsl:param)*
>

<!ATTLIST xsl:template
 match %pattern; #IMPLIED
 name %qname; #IMPLIED
 priority %priority; #IMPLIED
 mode %qname; #IMPLIED
 %space-att;
>

<!ELEMENT xsl:value-of EMPTY>
<!ATTLIST xsl:value-of
 select %expr; #REQUIRED
 disable-output-escaping (yes|no) "no"
>

<!ELEMENT xsl:copy-of EMPTY>
<!ATTLIST xsl:copy-of select %expr; #REQUIRED>

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

56 of 62 04-08-24 12.58

<!ELEMENT xsl:number EMPTY>
<!ATTLIST xsl:number
 level (single|multiple|any) "single"
 count %pattern; #IMPLIED
 from %pattern; #IMPLIED
 value %expr; #IMPLIED
 format %avt; '1'
 lang %avt; #IMPLIED
 letter-value %avt; #IMPLIED
 grouping-separator %avt; #IMPLIED
 grouping-size %avt; #IMPLIED
>

<!ELEMENT xsl:apply-templates (xsl:sort|xsl:with-param)*>
<!ATTLIST xsl:apply-templates
 select %expr; "node()"
 mode %qname; #IMPLIED
>

<!ELEMENT xsl:apply-imports EMPTY>

<!-- xsl:sort cannot occur after any other elements or
any non-whitespace character -->

<!ELEMENT xsl:for-each
 (#PCDATA
 %instructions;
 %result-elements;
 | xsl:sort)*
>

<!ATTLIST xsl:for-each
 select %expr; #REQUIRED
 %space-att;
>

<!ELEMENT xsl:sort EMPTY>
<!ATTLIST xsl:sort
 select %expr; "."
 lang %avt; #IMPLIED
 data-type %avt; "text"
 order %avt; "ascending"
 case-order %avt; #IMPLIED
>

<!ELEMENT xsl:if %template;>
<!ATTLIST xsl:if
 test %expr; #REQUIRED
 %space-att;
>

<!ELEMENT xsl:choose (xsl:when+, xsl:otherwise?)>
<!ATTLIST xsl:choose %space-att;>

<!ELEMENT xsl:when %template;>
<!ATTLIST xsl:when
 test %expr; #REQUIRED
 %space-att;
>

<!ELEMENT xsl:otherwise %template;>
<!ATTLIST xsl:otherwise %space-att;>

<!ELEMENT xsl:attribute-set (xsl:attribute)*>
<!ATTLIST xsl:attribute-set
 name %qname; #REQUIRED
 use-attribute-sets %qnames; #IMPLIED
>

<!ELEMENT xsl:call-template (xsl:with-param)*>
<!ATTLIST xsl:call-template
 name %qname; #REQUIRED
>

<!ELEMENT xsl:with-param %template;>
<!ATTLIST xsl:with-param
 name %qname; #REQUIRED
 select %expr; #IMPLIED
>

<!ELEMENT xsl:variable %template;>
<!ATTLIST xsl:variable
 name %qname; #REQUIRED
 select %expr; #IMPLIED
>

<!ELEMENT xsl:param %template;>
<!ATTLIST xsl:param
 name %qname; #REQUIRED
 select %expr; #IMPLIED
>

<!ELEMENT xsl:text (#PCDATA)>
<!ATTLIST xsl:text
 disable-output-escaping (yes|no) "no"
>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 176

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

57 of 62 04-08-24 12.58

<!ELEMENT xsl:processing-instruction %char-template;>
<!ATTLIST xsl:processing-instruction
 name %avt; #REQUIRED
 %space-att;
>

<!ELEMENT xsl:element %template;>
<!ATTLIST xsl:element
 name %avt; #REQUIRED
 namespace %avt; #IMPLIED
 use-attribute-sets %qnames; #IMPLIED
 %space-att;
>

<!ELEMENT xsl:attribute %char-template;>
<!ATTLIST xsl:attribute
 name %avt; #REQUIRED
 namespace %avt; #IMPLIED
 %space-att;
>

<!ELEMENT xsl:comment %char-template;>
<!ATTLIST xsl:comment %space-att;>

<!ELEMENT xsl:copy %template;>
<!ATTLIST xsl:copy
 %space-att;
 use-attribute-sets %qnames; #IMPLIED
>

<!ELEMENT xsl:message %template;>
<!ATTLIST xsl:message
 %space-att;
 terminate (yes|no) "no"
>

<!ELEMENT xsl:fallback %template;>
<!ATTLIST xsl:fallback %space-att;>

D Examples (Non-Normative)

D.1 Document Example

This example is a stylesheet for transforming documents that conform to a simple DTD into XHTML [XHTML].
The DTD is:

<!ELEMENT doc (title, chapter*)>
<!ELEMENT chapter (title, (para|note)*, section*)>
<!ELEMENT section (title, (para|note)*)>
<!ELEMENT title (#PCDATA|emph)*>
<!ELEMENT para (#PCDATA|emph)*>
<!ELEMENT note (#PCDATA|emph)*>
<!ELEMENT emph (#PCDATA|emph)*>

The stylesheet is:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/TR/xhtml1/strict">

<xsl:strip-space elements="doc chapter section"/>
<xsl:output
 method="xml"
 indent="yes"
 encoding="iso-8859-1"
/>

<xsl:template match="doc">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
</xsl:template>

<xsl:template match="doc/title">
 <h1>
 <xsl:apply-templates/>
 </h1>
</xsl:template>

<xsl:template match="chapter/title">
 <h2>
 <xsl:apply-templates/>

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

58 of 62 04-08-24 12.58

 </h2>
</xsl:template>

<xsl:template match="section/title">
 <h3>
 <xsl:apply-templates/>
 </h3>
</xsl:template>

<xsl:template match="para">
 <p>
 <xsl:apply-templates/>
 </p>
</xsl:template>

<xsl:template match="note">
 <p class="note">
 NOTE:
 <xsl:apply-templates/>
 </p>
</xsl:template>

<xsl:template match="emph">

 <xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

With the following input document

<!DOCTYPE doc SYSTEM "doc.dtd">
<doc>
<title>Document Title</title>
<chapter>
<title>Chapter Title</title>
<section>
<title>Section Title</title>
<para>This is a test.</para>
<note>This is a note.</note>
</section>
<section>
<title>Another Section Title</title>
<para>This is <emph>another</emph> test.</para>
<note>This is another note.</note>
</section>
</chapter>
</doc>

it would produce the following result

<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns="http://www.w3.org/TR/xhtml1/strict">
<head>
<title>Document Title</title>
</head>
<body>
<h1>Document Title</h1>
<h2>Chapter Title</h2>
<h3>Section Title</h3>
<p>This is a test.</p>
<p class="note">
NOTE: This is a note.</p>
<h3>Another Section Title</h3>
<p>This is another test.</p>
<p class="note">
NOTE: This is another note.</p>
</body>
</html>

D.2 Data Example

This is an example of transforming some data represented in XML using three different XSLT stylesheets to
produce three different representations of the data, HTML, SVG and VRML.

The input data is:

<sales>

 <division id="North">
 <revenue>10</revenue>
 <growth>9</growth>
 <bonus>7</bonus>
 </division>

 <division id="South">
 <revenue>4</revenue>
 <growth>3</growth>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 177

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

59 of 62 04-08-24 12.58

 <bonus>4</bonus>
 </division>

 <division id="West">
 <revenue>6</revenue>
 <growth>-1.5</growth>
 <bonus>2</bonus>
 </division>

</sales>

The following stylesheet, which uses the simplified syntax described in [2.3 Literal Result Element as
Stylesheet], transforms the data into HTML:

<html xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 lang="en">
 <head>
 <title>Sales Results By Division</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Division</th>
 <th>Revenue</th>
 <th>Growth</th>
 <th>Bonus</th>
 </tr>
 <xsl:for-each select="sales/division">
 <!-- order the result by revenue -->
 <xsl:sort select="revenue"
 data-type="number"
 order="descending"/>
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>
 <td>
 <xsl:value-of select="revenue"/>
 </td>
 <td>
 <!-- highlight negative growth in red -->
 <xsl:if test="growth < 0">
 <xsl:attribute name="style">
 <xsl:text>color:red</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <xsl:value-of select="growth"/>
 </td>
 <td>
 <xsl:value-of select="bonus"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
</html>

The HTML output is:

<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Sales Results By Division</title>
</head>
<body>
<table border="1">
<tr>
<th>Division</th><th>Revenue</th><th>Growth</th><th>Bonus</th>
</tr>
<tr>
<td>North</td><td>10</td><td>9</td><td>7</td>
</tr>
<tr>
<td>West</td><td>6</td><td style="color:red">-1.5</td><td>2</td>
</tr>
<tr>
<td>South</td><td>4</td><td>3</td><td>4</td>
</tr>
</table>
</body>
</html>

The following stylesheet transforms the data into SVG:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/Graphics/SVG/SVG-19990812.dtd">

<xsl:output method="xml" indent="yes" media-type="image/svg"/>

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

60 of 62 04-08-24 12.58

<xsl:template match="/">

<svg width = "3in" height="3in">
 <g style = "stroke: #000000">
 <!-- draw the axes -->
 <line x1="0" x2="150" y1="150" y2="150"/>
 <line x1="0" x2="0" y1="0" y2="150"/>
 <text x="0" y="10">Revenue</text>
 <text x="150" y="165">Division</text>
 <xsl:for-each select="sales/division">
 <!-- define some useful variables -->

 <!-- the bar's x position -->
 <xsl:variable name="pos"
 select="(position()*40)-30"/>

 <!-- the bar's height -->
 <xsl:variable name="height"
 select="revenue*10"/>

 <!-- the rectangle -->
 <rect x="{$pos}" y="{150-$height}"
 width="20" height="{$height}"/>

 <!-- the text label -->
 <text x="{$pos}" y="165">
 <xsl:value-of select="@id"/>
 </text>

 <!-- the bar value -->
 <text x="{$pos}" y="{145-$height}">
 <xsl:value-of select="revenue"/>
 </text>
 </xsl:for-each>
 </g>
</svg>

</xsl:template>
</xsl:stylesheet>

The SVG output is:

<svg width="3in" height="3in"
 xmlns="http://www.w3.org/Graphics/SVG/svg-19990412.dtd">
 <g style="stroke: #000000">
 <line x1="0" x2="150" y1="150" y2="150"/>
 <line x1="0" x2="0" y1="0" y2="150"/>
 <text x="0" y="10">Revenue</text>
 <text x="150" y="165">Division</text>
 <rect x="10" y="50" width="20" height="100"/>
 <text x="10" y="165">North</text>
 <text x="10" y="45">10</text>
 <rect x="50" y="110" width="20" height="40"/>
 <text x="50" y="165">South</text>
 <text x="50" y="105">4</text>
 <rect x="90" y="90" width="20" height="60"/>
 <text x="90" y="165">West</text>
 <text x="90" y="85">6</text>
 </g>
</svg>

The following stylesheet transforms the data into VRML:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- generate text output as mime type model/vrml, using default charset -->
<xsl:output method="text" encoding="UTF-8" media-type="model/vrml"/>

 <xsl:template match="/">#VRML V2.0 utf8

externproto definition of a single bar element
EXTERNPROTO bar [
 field SFInt32 x
 field SFInt32 y
 field SFInt32 z
 field SFString name
]
 "http://www.vrml.org/WorkingGroups/dbwork/barProto.wrl"

inline containing the graph axes
Inline {
 url "http://www.vrml.org/WorkingGroups/dbwork/barAxes.wrl"
 }

 <xsl:for-each select="sales/division">
bar {
 x <xsl:value-of select="revenue"/>
 y <xsl:value-of select="growth"/>
 z <xsl:value-of select="bonus"/>
 name "<xsl:value-of select="@id"/>"
 }
 </xsl:for-each>

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 178

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

61 of 62 04-08-24 12.58

 </xsl:template>

</xsl:stylesheet>

The VRML output is:

#VRML V2.0 utf8

externproto definition of a single bar element
EXTERNPROTO bar [
 field SFInt32 x
 field SFInt32 y
 field SFInt32 z
 field SFString name
]
 "http://www.vrml.org/WorkingGroups/dbwork/barProto.wrl"

inline containing the graph axes
Inline {
 url "http://www.vrml.org/WorkingGroups/dbwork/barAxes.wrl"
 }

bar {
 x 10
 y 9
 z 7
 name "North"
 }

bar {
 x 4
 y 3
 z 4
 name "South"
 }

bar {
 x 6
 y -1.5
 z 2
 name "West"
 }

E Acknowledgements (Non-Normative)

The following have contributed to authoring this draft:

Daniel Lipkin, Saba
Jonathan Marsh, Microsoft
Henry Thompson, University of Edinburgh
Norman Walsh, Arbortext
Steve Zilles, Adobe

This specification was developed and approved for publication by the W3C XSL Working Group (WG). WG
approval of this specification does not necessarily imply that all WG members voted for its approval. The
current members of the XSL WG are:

Sharon Adler, IBM (Co-Chair); Anders Berglund, IBM; Perin Blanchard, Novell; Scott Boag, Lotus; Larry
Cable, Sun; Jeff Caruso, Bitstream; James Clark; Peter Danielsen, Bell Labs; Don Day, IBM; Stephen Deach,
Adobe; Dwayne Dicks, SoftQuad; Andrew Greene, Bitstream; Paul Grosso, Arbortext; Eduardo Gutentag,
Sun; Juliane Harbarth, Software AG; Mickey Kimchi, Enigma; Chris Lilley, W3C; Chris Maden, Exemplary
Technologies; Jonathan Marsh, Microsoft; Alex Milowski, Lexica; Steve Muench, Oracle; Scott Parnell,
Xerox; Vincent Quint, W3C; Dan Rapp, Novell; Gregg Reynolds, Datalogics; Jonathan Robie, Software AG;
Mark Scardina, Oracle; Henry Thompson, University of Edinburgh; Philip Wadler, Bell Labs; Norman Walsh,
Arbortext; Sanjiva Weerawarana, IBM; Steve Zilles, Adobe (Co-Chair)

F Changes from Proposed Recommendation (Non-Normative)

The following are the changes since the Proposed Recommendation:

The xsl:version attribute is required on a literal result element used as a stylesheet (see [2.3 Literal
Result Element as Stylesheet]).

The data-type attribute on xsl:sort can use a prefixed name to specify a data-type not defined by XSLT

XSL Transformations (XSLT) http://www.w3.org/TR/xslt

62 of 62 04-08-24 12.58

(see [10 Sorting]).

G Features under Consideration for Future Versions of XSLT
(Non-Normative)

The following features are under consideration for versions of XSLT after XSLT 1.0:

a conditional expression;

support for XML Schema datatypes and archetypes;

support for something like style rules in the original XSL submission;

an attribute to control the default namespace for names occurring in XSLT attributes;

support for entity references;

support for DTDs in the data model;

support for notations in the data model;

a way to get back from an element to the elements that reference it (e.g. by IDREF attributes);

an easier way to get an ID or key in another document;

support for regular expressions for matching against any or all of text nodes, attribute values, attribute
names, element type names;

case-insensitive comparisons;

normalization of strings before comparison, for example for compatibility characters;

a function string resolve(node-set) function that treats the value of the argument as a relative URI and
turns it into an absolute URI using the base URI of the node;

multiple result documents;

defaulting the select attribute on xsl:value-of to the current node;

an attribute on xsl:attribute to control how the attribute value is normalized;

additional attributes on xsl:sort to provide further control over sorting, such as relative order of scripts;

a way to put the text of a resource identified by a URI into the result tree;

allow unions in steps (e.g. foo/(bar|baz));

allow for result tree fragments all operations that are allowed for node-sets;

a way to group together consecutive nodes having duplicate subelements or attributes;

features to make handling of the HTML style attribute more convenient.

C
o
m

p
e
n
d
iu

m
 9

 p
a
g
e
 179

RSS 2.0 specification Page 1

RSS 2.0 at Harvard Law

Internet technology hosted by Berkman Center

Printable version of original Web page at http://cyber.law.harvard.edu/rss/rss.html

RSS 2.0 Specification

Tuesday, July 15, 2003

Contents

• What is RSS? .. 1

• Sample files... 1

• About this document ... 2

• Required channel elements ... 2

• Optional channel elements .. 2

• Elements of <item>... 6

• Comments ... 9

• Extending RSS .. 9

• Roadmap ... 10

• License and authorship.. 10

What is RSS?

RSS is a Web content syndication format.

Its name is an acronym for Really Simple Syndication.

RSS is a dialect of XML. All RSS files must conform to the XML 1.0 specification, as published

on the World Wide Web Consortium (W3C) website.

Sample files

http://cyber.law.harvard.edu/rss/rss.html#sampleFiles

Here are sample files for: RSS 0.91, 0.92 and 2.0.

Note that the sample files may point to documents and services that no longer exist. The 0.91

sample was created when the 0.91 docs were written. Maintaining a trail of samples seems like a

good idea.

RSS 2.0 specification Page 2

About this document

This document represents the status of RSS as of the Fall of 2002, version 2.0.1.

It incorporates all changes and additions, starting with the basic spec for RSS 0.91

(June 2000) and includes new features introduced in RSS 0.92 (December 2000)

and RSS 0.94 (August 2002).

Change notes are on http://cyber.law.harvard.edu/rss/rssChangeNotes.html

First we document the required and optional sub-elements of <channel>; and then document the

sub-elements of <item>. The final sections answer frequently asked questions, and provide a

roadmap for future evolution, and guidelines for extending RSS.

Required channel elements

Here's a list of the required channel elements, each with a brief description, an example, and where

available, a pointer to a more complete description.

Element Description Example

title The name of the channel. It's how people

refer to your service. If you have an

HTML website that contains the same

information as your RSS file, the title of

your channel should be the same as the

title of your website.

GoUpstate.com News Headlines

link The URL to the HTML website

corresponding to the channel.

http://www.goupstate.com/

description Phrase or sentence describing the channel. The latest news from

GoUpstate.com, a Spartanburg

Herald-Journal Web site.

Optional channel elements

Here's a list of optional channel elements.

Element Description Example

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 180

RSS 2.0 specification Page 3

language The language the channel is written in. This allows

aggregators to group all Italian language sites, for

example, on a single page. A list of allowable values for

this element, as provided by Netscape, is on

http://cyber.law.harvard.edu/rss/languages.html. You may

also use values defined by the W3C.

en-us

copyright Copyright notice for content in the channel. Copyright 2002, Spartanburg

Herald-Journal

managingEditor Email address for person responsible for editorial

content.

geo@herald.com (George Matesky)

webMaster Email address for person responsible for technical issues

relating to channel.

betty@herald.com (Betty Guernsey)

pubDate The publication date for the content in the channel. For

example, the New York Times publishes on a daily

basis, the publication date flips once every 24 hours.

That's when the pubDate of the channel changes. All

date-times in RSS conform to the Date and Time

Specification of RFC 822, with the exception that the

year may be expressed with two characters or four

characters (four preferred).

Sat, 07 Sep 2002 00:00:01 GMT

lastBuildDate The last time the content of the channel changed. Sat, 07 Sep 2002 09:42:31 GMT

category Specify one or more categories that the channel belongs

to. Follows the same rules as the <item>-level category

element. More info on page 7.

<category>Newspapers</category>

generator A string indicating the program used to generate the

channel.

MightyInHouse Content System

v2.3

docs A URL that points to the documentation for the format

used in the RSS file. It's probably a pointer to this page.

It's for people who might stumble across an RSS file on

a Web server 25 years from now and wonder what it is.

http://blogs.law.harvard.edu/tech/rss

cloud Allows processes to register with a cloud to be notified

of updates to the channel, implementing a lightweight

publish-subscribe protocol for RSS feeds. More info on

<cloud domain="rpc.sys.com"

port="80" path="/RPC2"

registerProcedure="pingMe"

RSS 2.0 specification Page 4

page 5 protocol="soap"/>

ttl ttl stands for time to live. It's a number of minutes that

indicates how long a channel can be cached before

refreshing from the source. More info on page 5.

<ttl>60</ttl>

image Specifies a GIF, JPEG or PNG image that can be

displayed with the channel. More info on page 4.

rating The PICS rating for the channel.

textInput Specifies a text input box that can be displayed with the

channel. More info on page 5.

skipHours A hint for aggregators telling them which hours they can

skip. More info on

http://cyber.law.harvard.edu/rss/skipHoursDays.html#skiphours

.

skipDays A hint for aggregators telling them which days they can

skip. More info on

http://cyber.law.harvard.edu/rss/skipHoursDays.html#skipdays.

<image> sub-element of <channel>

<image> is an optional sub-element of <channel>, which contains three required and three optional

sub-elements.

<url> is the URL of a GIF, JPEG or PNG image that represents the channel.

<title> describes the image, it's used in the ALT attribute of the HTML tag when the

channel is rendered in HTML.

<link> is the URL of the site, when the channel is rendered, the image is a link to the site. (Note, in

practice the image <title> and <link> should have the same value as the channel's <title> and

<link>.

Optional elements include <width> and <height>, numbers, indicating the width and height of the

image in pixels. <description> contains text that is included in the TITLE attribute of the link

formed around the image in the HTML rendering.

Maximum value for width is 144, default value is 88.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 181

RSS 2.0 specification Page 5

Maximum value for height is 400, default value is 31.

<cloud> sub-element of <channel>

<cloud> is an optional sub-element of <channel>.

It specifies a web service that supports the rssCloud interface which can be implemented in HTTP-

POST, XML-RPC or SOAP 1.1.

Its purpose is to allow processes to register with a cloud to be notified of updates to the channel,

implementing a lightweight publish-subscribe protocol for RSS feeds.

<cloud domain="rpc.sys.com" port="80" path="/RPC2"

registerProcedure="myCloud.rssPleaseNotify" protocol="xml-rpc" />

In this example, to request notification on the channel it appears in, you would send an XML-RPC

message to rpc.sys.com on port 80, with a path of /RPC2. The procedure to call is

myCloud.rssPleaseNotify.

A full explanation of this element and the rssCloud interface is on

http://cyber.law.harvard.edu/rss/soapMeetsRss.html#rsscloudInterface.

<ttl> sub-element of <channel>

<ttl> is an optional sub-element of <channel>.

ttl stands for time to live. It's a number of minutes that indicates how long a channel can be cached

before refreshing from the source. This makes it possible for RSS sources to be managed by a file-

sharing network such as Gnutella.

Example: <ttl>60</ttl>

<textInput> sub-element of <channel>

A channel may optionally contain a <textInput> sub-element, which contains four required sub-

elements.

<title> -- The label of the Submit button in the text input area.

<description> -- Explains the text input area.

<name> -- The name of the text object in the text input area.

<link> -- The URL of the CGI script that processes text input requests.

RSS 2.0 specification Page 6

The purpose of the <textInput> element is something of a mystery. You can use it to specify a

search engine box. Or to allow a reader to provide feedback. Most aggregators ignore it.

Elements of <item>

A channel may contain any number of <item>s. An item may represent a "story" -- much like a

story in a newspaper or magazine; if so its description is a synopsis of the story, and the link points

to the full story. An item may also be complete in itself, if so, the description contains the text

(entity-encoded HTML is allowed; see examples), and the link and title may be omitted. All

elements of an item are optional, however at least one of title or description must be present.

Element Description Example

title The title of the item. Venice Film Festival Tries to Quit Sinking

link The URL of the item. http://nytimes.com/2004/12/07FEST.html

description The item synopsis. Some of the most heated chatter at the Venice

Film Festival this week was about the way that

the arrival of the stars at the Palazzo del

Cinema was being staged.

author Email address of the author of

the item. More.

oprah\@oxygen.net

category Includes the item in one or more

categories. More.

comments URL of a page for comments

relating to the item. More.

http://www.myblog.org/cgi-local/mt/mt-

comments.cgi?entry_id=290

enclosure Describes a media object that is

attached to the item. More.

guid A string that uniquely identifies

the item. More.

http://inessential.com/2002/09/01.php#a2

pubDate Indicates when the item was

published. More.

Sun, 19 May 2002 15:21:36 GMT

source The RSS channel that the item

came from. More.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 182

RSS 2.0 specification Page 7

<source> sub-element of <item>

<source> is an optional sub-element of <item>.

Its value is the name of the RSS channel that the item came from, derived from its <title>. It has

one required attribute, url, which links to the XMLization of the source.

<source url="http://www.tomalak.org/links2.xml">Tomalak's Realm</source>

The purpose of this element is to propagate credit for links, to publicize the sources of news items.

It can be used in the Post command of an aggregator. It should be generated automatically when

forwarding an item from an aggregator to a weblog authoring tool.

<enclosure> sub-element of <item>

<enclosure> is an optional sub-element of <item>.

It has three required attributes. url says where the enclosure is located, length says how big it is in

bytes, and type says what its type is, a standard MIME type.

The url must be an http url.

<enclosure url="http://www.scripting.com/mp3s/weatherReportSuite.mp3"

length="12216320" type="audio/mpeg" />

A use-case narrative for this element is on http://www.thetwowayweb.com/payloadsforrss.

<category> sub-element of <item>

<category> is an optional sub-element of <item>.

It has one optional attribute, domain, a string that identifies a categorization taxonomy.

The value of the element is a forward-slash-separated string that identifies a hierarchic location in

the indicated taxonomy. Processors may establish conventions for the interpretation of categories.

Two examples are provided below:

<category>Grateful Dead</category>

<category domain="http://www.fool.com/cusips">MSFT</category>

You may include as many category elements as you need to, for different domains, and to have an

item cross-referenced in different parts of the same domain.

<pubDate> sub-element of <item>

RSS 2.0 specification Page 8

<pubDate> is an optional sub-element of <item>.

Its value is a date, indicating when the item was published. If it's a date in the future, aggregators

may choose to not display the item until that date.

<pubDate>Sun, 19 May 2002 15:21:36 GMT</pubDate>

<guid> sub-element of <item>

<guid> is an optional sub-element of <item>.

guid stands for globally unique identifier. It's a string that uniquely identifies the item. When

present, an aggregator may choose to use this string to determine if an item is new.

<guid>http://some.server.com/weblogItem3207</guid>

There are no rules for the syntax of a guid. Aggregators must view them as a string. It's up to the

source of the feed to establish the uniqueness of the string.

If the guid element has an attribute named "isPermaLink" with a value of true, the reader may

assume that it is a permalink to the item, that is, a url that can be opened in a Web browser, that

points to the full item described by the <item> element. An example:

<guid isPermaLink="true">http://inessential.com/2002/09/01.php#a2</guid>

isPermaLink is optional, its default value is true. If its value is false, the guid may not be assumed

to be a url, or a url to anything in particular.

<comments> sub-element of <item>

<comments> is an optional sub-element of <item>.

If present, it is the url of the comments page for the item.

<comments>http://ekzemplo.com/entry/4403/comments</comments>

More about comments http://cyber.law.harvard.edu/rss/weblogComments.html.

<author> sub-element of <item>

<author> is an optional sub-element of <item>.

It's the email address of the author of the item. For newspapers and magazines syndicating via

RSS, the author is the person who wrote the article that the <item> describes. For collaborative

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 183

RSS 2.0 specification Page 9

weblogs, the author of the item might be different from the managing editor or webmaster. For a

weblog authored by a single individual it would make sense to omit the <author> element.

<author>lawyer@boyer.net (Lawyer Boyer)</author>

Comments

RSS places restrictions on the first non-whitespace characters of the data in <link> and <url>

elements. The data in these elements must begin with an IANA-registered URI scheme, such as

http://, https://, news://, mailto: and ftp://. Prior to RSS 2.0, the specification only allowed http://

and ftp://, however, in practice other URI schemes were in use by content developers and

supported by aggregators. Aggregators may have limits on the URI schemes they support. Content

developers should not assume that all aggregators support all schemes.

In RSS 0.91, various elements are restricted to 500 or 100 characters. There can be no more than

15 <item>s in a 0.91 <channel>. There are no string-length or XML-level limits in RSS 0.92 and

greater. Processors may impose their own limits, and generators may have preferences that say no

more than a certain number of <item>s can appear in a channel, or that strings are limited in length.

In RSS 2.0, a provision is made for linking a channel to its identifier in a cataloging system, using

the channel-level category feature, described above. For example, to link a channel to its Syndic8

identifier, include a category element as a sub-element of <channel>, with domain "Syndic8", and

value the identifier for your channel in the Syndic8 database. The appropriate category element for

Scripting News would be <category domain="Syndic8">1765</category>.

A frequently asked question about <guid>s is how do they compare to <link>s. Aren't they the

same thing? Yes, in some content systems, and no in others. In some systems, <link> is a

permalink to a weblog item. However, in other systems, each <item> is a synopsis of a longer

article, <link> points to the article, and <guid> is the permalink to the weblog entry. In all cases,

it's recommended that you provide the guid, and if possible make it a permalink. This enables

aggregators to not repeat items, even if there have been editing changes.

If you have questions about the RSS 2.0 format, please post them on the RSS2-Support mail list,

hosted by Sjoerd Visscher. This is not a debating list, but serves as a support resource for users,

authors and developers who are creating and using content in RSS 2.0 format.

Extending RSS

RSS originated in 1999, and has strived to be a simple, easy to understand format, with relatively

modest goals. After it became a popular format, developers wanted to extend it using modules

defined in namespaces, as specified by the W3C.

RSS 2.0 specification Page 10

RSS 2.0 adds that capability, following a simple rule. A RSS feed may contain elements not

described on this page, only if those elements are defined in a namespace.

The elements defined in this document are not themselves members of a namespace, so that RSS

2.0 can remain compatible with previous versions in the following sense -- a version 0.91 or 0.92

file is also a valid 2.0 file. If the elements of RSS 2.0 were in a namespace, this constraint would

break, a version 0.9x file would not be a valid 2.0 file.

Roadmap

RSS is by no means a perfect format, but it is very popular and widely supported. Having a settled

spec is something RSS has needed for a long time. The purpose of this work is to help it become a

unchanging thing, to foster growth in the market that is developing around it, and to clear the path

for innovation in new syndication formats. Therefore, the RSS spec is, for all practical purposes,

frozen at version 2.0.1. We anticipate possible 2.0.2 or 2.0.3 versions, etc. only for the purpose of

clarifying the specification, not for adding new features to the format. Subsequent work should

happen in modules, using namespaces, and in completely new syndication formats, with new

names.

License and authorship

RSS 2.0 is offered by the Berkman Center for Internet & Society at Harvard Law School under the

terms of the Attribution/Share Alike Creative Commons license. The author of this document is

Dave Winer, founder of UserLand software, and fellow at Berkman Center.

Unless otherwise labeled by its originating author, the content found on this

site is made available under the terms of an Attribution/Share Alike Creative

Commons license, with the exception that no rights are granted -- since they are not ours to grant

-- in any logo, graphic design, trademarks or trade names, including the Harvard name. Last

update: 4/29/07; 7:33:52 AM.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 184

Network Working Group Y. Goland
Request for Comments: 2518 Microsoft
Category: Standards Track E. Whitehead

UC Irvine
A. Faizi

Netscape
Novell

D. Jensen
Novell

February 1999

Goland, et al. Standards Track [Page 1]

HTTP Extensions for Distributed Authoring -- WEBDAV

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and
requests discussion and suggestions for improvements. Please refer to the current edition of the
"Internet Official Protocol Standards" (STD 1) for the standardization state and status of this
protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This document specifies a set of methods, headers, and content-types ancillary to HTTP/1.1 for the
management of resource properties, creation and management of resource collections, namespace
manipulation, and resource locking (collision avoidance).

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 2]

Contents

Status of this Memo.. 1
Abstract ... 1
Contents... 2

1 Introduction .. 6

2 Notational Conventions.. 7

3 Terminology .. 7

4 Data Model for Resource Properties... 8
4.1 The Resource Property Model .. 8
4.2 Existing Metadata Proposals .. 8
4.3 Properties and HTTP Headers .. 8
4.4 Property Values .. 9
4.5 Property Names .. 9
4.6 Media Independent Links ... 9

5 Collections of Web Resources.. 9
5.1 HTTP URL Namespace Model .. 10
5.2 Collection Resources .. 10
5.3 Creation and Retrieval of Collection Resources... 11
5.4 Source Resources and Output Resources.. 11

6 Locking .. 12
6.1 Exclusive Vs. Shared Locks ... 12
6.2 Required Support.. 12
6.3 Lock Tokens ... 13
6.4 opaquelocktoken Lock Token URI Scheme ... 13

6.4.1 Node Field Generation Without the IEEE 802 Address ... 13
6.5 Lock Capability Discovery... 14
6.6 Active Lock Discovery... 15
6.7 Usage Considerations ... 15

7 Write Lock .. 16
7.1 Methods Restricted by Write Locks ... 16
7.2 Write Locks and Lock Tokens.. 16
7.3 Write Locks and Properties .. 16
7.4 Write Locks and Null Resources .. 16
7.5 Write Locks and Collections .. 16
7.6 Write Locks and the If Request Header.. 17

7.6.1 Example - Write Lock .. 17
7.7 Write Locks and COPY/MOVE ... 17
7.8 Refreshing Write Locks.. 18

8 HTTP Methods for Distributed Authoring .. 19

8.1 PROPFIND ... 19
8.1.1 Example - Retrieving Named Properties .. 20
8.1.2 Example - Using allprop to Retrieve All Properties ... 21
8.1.3 Example - Using propname to Retrieve all Property Names .. 23

8.2 PROPPATCH ... 24
8.2.1 Status Codes for use with 207 (Multi-Status) ... 24
8.2.2 Example - PROPPATCH.. 25

8.3 MKCOL Method .. 26
8.3.1 Request ... 26

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 185

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 3]

8.3.2 Status Codes ... 26
8.3.3 Example - MKCOL .. 26

8.4 GET, HEAD for Collections .. 27

8.5 POST for Collections.. 27

8.6 DELETE .. 27
8.6.1 DELETE for Non-Collection Resources .. 27
8.6.2 DELETE for Collections .. 27

8.7 PUT .. 28
8.7.1 PUT for Non-Collection Resources.. 28
8.7.2 PUT for Collections.. 28

8.8 COPY Method .. 29
8.8.1 COPY for HTTP/1.1 resources... 29
8.8.2 COPY for Properties... 29
8.8.3 COPY for Collections... 29
8.8.4 COPY and the Overwrite Header ... 30
8.8.5 Status Codes ... 30
8.8.6 Example - COPY with Overwrite... 31
8.8.7 Example - COPY with No Overwrite ... 31
8.8.8 Example - COPY of a Collection ... 31

8.9 MOVE Method ... 32
8.9.1 MOVE for Properties.. 32
8.9.2 MOVE for Collections.. 32
8.9.3 MOVE and the Overwrite Header .. 33
8.9.4 Status Codes ... 33
8.9.5 Example - MOVE of a Non-Collection .. 33
8.9.6 Example - MOVE of a Collection .. 34

8.10 LOCK Method .. 34
8.10.1 Operation .. 34
8.10.2 The Effect of Locks on Properties and Collections .. 35
8.10.3 Locking Replicated Resources.. 35
8.10.4 Depth and Locking ... 35
8.10.5 Interaction with other Methods... 35
8.10.6 Lock Compatibility Table... 35
8.10.7 Status Codes ... 36
8.10.8 Example - Simple Lock Request .. 36
8.10.9 Example - Refreshing a Write Lock ... 37
8.10.10 Example - Multi-Resource Lock Request... 38

8.11 UNLOCK Method .. 39
8.11.1 Example - UNLOCK .. 39

9 HTTP Headers for Distributed Authoring... 40
9.1 DAV Header... 40
9.2 Depth Header.. 40
9.3 Destination Header ... 41
9.4 If Header... 41

9.4.1 No-tag-list Production .. 41
9.4.2 Tagged-list Production ... 41
9.4.3 not Production .. 42
9.4.4 Matching Function.. 42
9.4.5 If Header and Non-DAV Compliant Proxies.. 42

9.5 Lock-Token Header.. 43
9.6 Overwrite Header ... 43

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 4]

9.7 Status-URI Response Header ... 43
9.8 Timeout Request Header .. 43

10 Status Code Extensions to HTTP/1.1 .. 45
10.1 102 Processing.. 45
10.2 207 Multi-Status ... 45
10.3 422 Unprocessable Entity... 45
10.4 423 Locked ... 45
10.5 424 Failed Dependency .. 45
10.6 507 Insufficient Storage.. 45

11 Multi-Status Response.. 46

12 XML Element Definitions .. 46
12.1 activelock XML Element.. 46

12.1.1 depth XML Element ... 46
12.1.2 locktoken XML Element .. 46
12.1.3 timeout XML Element.. 46

12.2 collection XML Element .. 47
12.3 href XML Element.. 47
12.4 link XML Element.. 47

12.4.1 dst XML Element ... 47
12.4.2 src XML Element ... 47

12.5 lockentry XML Element ... 47
12.6 lockinfo XML Element... 48
12.7 lockscope XML Element .. 48

12.7.1 exclusive XML Element ... 48
12.7.2 shared XML Element.. 48

12.8 locktype XML Element .. 48
12.8.1 write XML Element.. 48

12.9 multistatus XML Element... 49
12.9.1 response XML Element .. 49
12.9.2 responsedescription XML Element .. 49

12.10 owner XML Element .. 50
12.11 prop XML element ... 50
12.12 propertybehavior XML element ... 50

12.12.1 keepalive XML element ... 50
12.12.2 omit XML element ... 51

12.13 propertyupdate XML element... 51
12.13.1 remove XML element... 51
12.13.2 set XML element .. 51

12.14 propfind XML Element .. 52
12.14.1 allprop XML Element... 52
12.14.2 propname XML Element .. 52

13 DAV Properties... 53
13.1 creationdate Property.. 53
13.2 displayname Property ... 53
13.3 getcontentlanguage Property .. 53
13.4 getcontentlength Property... 53
13.5 getcontenttype Property.. 54
13.6 getetag Property.. 54
13.7 getlastmodified Property... 54
13.8 lockdiscovery Property ... 54

13.8.1 Example - Retrieving the lockdiscovery Property .. 55
13.9 resourcetype Property ... 55
13.10 source Property... 56

13.10.1 Example - A source Property.. 56
13.11 supportedlock Property... 56

13.11.1 Example - Retrieving the supportedlock Property.. 57

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 186

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 5]

14 Instructions for Processing XML in DAV .. 58

15 DAV Compliance Classes... 58
15.1 Class 1 .. 58
15.2 Class 2 .. 58

16 Internationalization Considerations ... 59

17 Security Considerations ... 60
17.1 Authentication of Clients.. 60
17.2 Denial of Service .. 60
17.3 Security through Obscurity... 60
17.4 Privacy Issues Connected to Locks .. 60
17.5 Privacy Issues Connected to Properties .. 61
17.6 Reduction of Security due to Source Link.. 61
17.7 Implications of XML External Entities .. 61
17.8 Risks Connected with Lock Tokens ... 61

18 IANA Considerations ... 62

19 Intellectual Property .. 63

20 Acknowledgements ... 63

21 References ... 64
21.1 Normative References .. 64
21.2 Informational References.. 65

22 Authors' Addresses... 66

23 Appendices .. 67
23.1 Appendix 1 - WebDAV Document Type Definition.. 67

23.2 Appendix 2 - ISO 8601 Date and Time Profile .. 68

23.3 Appendix 3 - Notes on Processing XML Elements .. 69
23.3.1 Notes on Empty XML Elements... 69
23.3.2 Notes on Illegal XML Processing... 69

23.4 Appendix 4 -- XML Namespaces for WebDAV .. 70
23.4.1 Introduction .. 70
23.4.2 Meaning of Qualified Names.. 70

24 Full Copyright Statement ... 71

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 6]

1 Introduction

This document describes an extension to the HTTP/1.1 protocol that allows clients to perform
remote web content authoring operations. This extension provides a coherent set of methods,
headers, request entity body formats, and response entity body formats that provide operations for:

Properties: The ability to create, remove, and query information about Web pages, such as their
authors, creation dates, etc. Also, the ability to link pages of any media type to related pages.

Collections: The ability to create sets of documents and to retrieve a hierarchical membership
listing (like a directory listing in a file system).

Locking: The ability to keep more than one person from working on a document at the same time.
This prevents the “lost update problem,” in which modifications are lost as first one author then
another writes changes without merging the other author's changes.

Namespace Operations: The ability to instruct the server to copy and move Web resources.

Requirements and rationale for these operations are described in a companion document,
“Requirements for a Distributed Authoring and Versioning Protocol for the World Wide Web”
[RFC2291].

The sections below provide a detailed introduction to resource properties (section 4), collections of
resources (section 5), and locking operations (section 6). These sections introduce the abstractions
manipulated by the WebDAV-specific HTTP methods described in section 8, “HTTP Methods for
Distributed Authoring”.

In HTTP/1.1, method parameter information was exclusively encoded in HTTP headers. Unlike
HTTP/1.1, WebDAV encodes method parameter information either in an Extensible Markup
Language (XML) [REC-XML] request entity body, or in an HTTP header. The use of XML to
encode method parameters was motivated by the ability to add extra XML elements to existing
structures, providing extensibility; and by XML's ability to encode information in ISO 10646
character sets, providing internationalization support. As a rule of thumb, parameters are encoded in
XML entity bodies when they have unbounded length, or when they may be shown to a human user
and hence require encoding in an ISO 10646 character set. Otherwise, parameters are encoded
within HTTP headers. Section 9 describes the new HTTP headers used with WebDAV methods.

In addition to encoding method parameters, XML is used in WebDAV to encode the responses
from methods, providing the extensibility and internationalization advantages of XML for method
output, as well as input.

XML elements used in this specification are defined in section 12.

The XML namespace extension (Appendix 4) is also used in this specification in order to allow for
new XML elements to be added without fear of colliding with other element names.

While the status codes provided by HTTP/1.1 are sufficient to describe most error conditions
encountered by WebDAV methods, there are some errors that do not fall neatly into the existing
categories. New status codes developed for the WebDAV methods are defined in section 10. Since
some WebDAV methods may operate over many resources, the Multi-Status response has been
introduced to return status information for multiple resources. The Multi-Status response is
described in section 11.

WebDAV employs the property mechanism to store information about the current state of the
resource. For example, when a lock is taken out on a resource, a lock information property
describes the current state of the lock. Section 13 defines the properties used within the WebDAV
specification.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 187

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 7]

Finishing off the specification are sections on what it means to be compliant with this specification
(section 15), on internationalization support (section 16), and on security (section 17).

2 Notational Conventions

Since this document describes a set of extensions to the HTTP/1.1 protocol, the augmented BNF
used herein to describe protocol elements is exactly the same as described in section 2.1 of
[RFC2068]. Since this augmented BNF uses the basic production rules provided in section 2.2 of
[RFC2068], these rules apply to this document as well.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [RFC2119].

3 Terminology

URI/URL - A Uniform Resource Identifier and Uniform Resource Locator, respectively. These
terms (and the distinction between them) are defined in [RFC2396].

Collection - A resource that contains a set of URIs, termed member URIs, which identify member
resources and meets the requirements in section 5 of this specification.

Member URI - A URI which is a member of the set of URIs contained by a collection.

Internal Member URI - A Member URI that is immediately relative to the URI of the collection (the
definition of immediately relative is given in section 5.2).

Property - A name/value pair that contains descriptive information about a resource.

Live Property - A property whose semantics and syntax are enforced by the server. For example,
the live “getcontentlength” property has its value, the length of the entity returned by a GET
request, automatically calculated by the server.

Dead Property - A property whose semantics and syntax are not enforced by the server. The server
only records the value of a dead property; the client is responsible for maintaining the consistency
of the syntax and semantics of a dead property.

Null Resource - A resource which responds with a 404 (Not Found) to any HTTP/1.1 or DAV
method except for PUT, MKCOL, OPTIONS and LOCK. A NULL resource MUST NOT appear
as a member of its parent collection.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 8]

4 Data Model for Resource Properties

4.1 The Resource Property Model

Properties are pieces of data that describe the state of a resource. Properties are data about data.

Properties are used in distributed authoring environments to provide for efficient discovery and
management of resources. For example, a 'subject' property might allow for the indexing of all
resources by their subject, and an 'author' property might allow for the discovery of what authors
have written which documents.

The DAV property model consists of name/value pairs. The name of a property identifies the
property's syntax and semantics, and provides an address by which to refer to its syntax and
semantics.

There are two categories of properties: “live” and “dead”. A live property has its syntax and
semantics enforced by the server. Live properties include cases where a) the value of a property is
read-only, maintained by the server, and b) the value of the property is maintained by the client, but
the server performs syntax checking on submitted values. All instances of a given live property
MUST comply with the definition associated with that property name. A dead property has its
syntax and semantics enforced by the client; the server merely records the value of the property
verbatim.

4.2 Existing Metadata Proposals

Properties have long played an essential role in the maintenance of large document repositories, and
many current proposals contain some notion of a property, or discuss web metadata more generally.
These include PICS [REC-PICS], PICS-NG, XML, Web Collections, and several proposals on
representing relationships within HTML. Work on PICS-NG and Web Collections has been
subsumed by the Resource Description Framework (RDF) metadata activity of the World Wide
Web Consortium. RDF consists of a network-based data model and an XML representation of that
model.

Some proposals come from a digital library perspective. These include the Dublin Core [RFC2413]
metadata set and the Warwick Framework [WF], a container architecture for different metadata
schemas. The literature includes many examples of metadata, including MARC [USMARC], a
bibliographic metadata format, and a technical report bibliographic format employed by the Dienst
system [RFC1807]. Additionally, the proceedings from the first IEEE Metadata conference describe
many community-specific metadata sets.

Participants of the 1996 Metadata II Workshop in Warwick, UK [WF], noted that “new metadata
sets will develop as the networked infrastructure matures” and “different communities will propose,
design, and be responsible for different types of metadata.” These observations can be corroborated
by noting that many community-specific sets of metadata already exist, and there is significant
motivation for the development of new forms of metadata as many communities increasingly make
their data available in digital form, requiring a metadata format to assist data location and
cataloging.

4.3 Properties and HTTP Headers

Properties already exist, in a limited sense, in HTTP message headers. However, in distributed
authoring environments a relatively large number of properties are needed to describe the state of a
resource, and setting/returning them all through HTTP headers is inefficient. Thus a mechanism is
needed which allows a principal to identify a set of properties in which the principal is interested
and to set or retrieve just those properties.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 188

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 9]

4.4 Property Values

The value of a property when expressed in XML MUST be well formed.

XML has been chosen because it is a flexible, self-describing, structured data format that supports
rich schema definitions, and because of its support for multiple character sets. XML's self-
describing nature allows any property's value to be extended by adding new elements. Older clients
will not break when they encounter extensions because they will still have the data specified in the
original schema and will ignore elements they do not understand. XML's support for multiple
character sets allows any human-readable property to be encoded and read in a character set
familiar to the user. XML's support for multiple human languages, using the “xml:lang” attribute,
handles cases where the same character set is employed by multiple human languages.

4.5 Property Names

A property name is a universally unique identifier that is associated with a schema that provides
information about the syntax and semantics of the property.

Because a property's name is universally unique, clients can depend upon consistent behavior for a
particular property across multiple resources, on the same and across different servers, so long as
that property is “live” on the resources in question, and the implementation of the live property is
faithful to its definition.

The XML namespace mechanism, which is based on URIs [RFC2396], is used to name properties
because it prevents namespace collisions and provides for varying degrees of administrative
control.

The property namespace is flat; that is, no hierarchy of properties is explicitly recognized. Thus, if
a property A and a property A/B exist on a resource, there is no recognition of any relationship
between the two properties. It is expected that a separate specification will eventually be produced
which will address issues relating to hierarchical properties.

Finally, it is not possible to define the same property twice on a single resource, as this would cause
a collision in the resource's property namespace.

4.6 Media Independent Links

Although HTML resources support links to other resources, the Web needs more general support
for links between resources of any media type (media types are also known as MIME types, or
content types). WebDAV provides such links. A WebDAV link is a special type of property value,
formally defined in section 12.4, that allows typed connections to be established between resources
of any media type. The property value consists of source and destination Uniform Resource
Identifiers (URIs); the property name identifies the link type.

5 Collections of Web Resources

This section provides a description of a new type of Web resource, the collection, and discusses its
interactions with the HTTP URL namespace. The purpose of a collection resource is to model
collection-like objects (e.g., file system directories) within a server's namespace.

All DAV compliant resources MUST support the HTTP URL namespace model specified herein.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 10]

5.1 HTTP URL Namespace Model

The HTTP URL namespace is a hierarchical namespace where the hierarchy is delimited with the
“/” character.

An HTTP URL namespace is said to be consistent if it meets the following conditions: for every
URL in the HTTP hierarchy there exists a collection that contains that URL as an internal member.
The root, or top-level collection of the namespace under consideration is exempt from the previous
rule.

Neither HTTP/1.1 nor WebDAV require that the entire HTTP URL namespace be consistent.
However, certain WebDAV methods are prohibited from producing results that cause namespace
inconsistencies.

Although implicit in [RFC2068] and [RFC2396], any resource, including collection resources,
MAY be identified by more than one URI. For example, a resource could be identified by multiple
HTTP URLs.

5.2 Collection Resources

A collection is a resource whose state consists of at least a list of internal member URIs and a set of
properties, but which may have additional state such as entity bodies returned by GET. An internal
member URI MUST be immediately relative to a base URI of the collection. That is, the internal
member URI is equal to a containing collection's URI plus an additional segment for non-collection
resources, or additional segment plus trailing slash “/” for collection resources, where segment is
defined in section 3.3 of [RFC2396].

Any given internal member URI MUST only belong to the collection once, i.e., it is illegal to have
multiple instances of the same URI in a collection. Properties defined on collections behave exactly
as do properties on non-collection resources.

For all WebDAV compliant resources A and B, identified by URIs U and V, for which U is
immediately relative to V, B MUST be a collection that has U as an internal member URI. So, if the
resource with URL http://foo.com/bar/blah is WebDAV compliant and if the resource with URL
http://foo.com/bar/ is WebDAV compliant then the resource with URL http://foo.com/bar/ must be
a collection and must contain URL http://foo.com/bar/blah as an internal member.

Collection resources MAY list the URLs of non-WebDAV compliant children in the HTTP URL
namespace hierarchy as internal members but are not required to do so. For example, if the resource
with URL http://foo.com/bar/blah is not WebDAV compliant and the URL http://foo.com/bar/
identifies a collection then URL http://foo.com/bar/blah may or may not be an internal member of
the collection with URL http://foo.com/bar/.

If a WebDAV compliant resource has no WebDAV compliant children in the HTTP URL
namespace hierarchy then the WebDAV compliant resource is not required to be a collection.

There is a standing convention that when a collection is referred to by its name without a trailing
slash, the trailing slash is automatically appended. Due to this, a resource may accept a URI
without a trailing “/” to point to a collection. In this case it SHOULD return a content-location
header in the response pointing to the URI ending with the “/”. For example, if a client invokes a
method on http://foo.bar/blah (no trailing slash), the resource http://foo.bar/blah/ (trailing slash)
may respond as if the operation were invoked on it, and should return a content-location header
with http://foo.bar/blah/ in it. In general clients SHOULD use the “/” form of collection names.

A resource MAY be a collection but not be WebDAV compliant. That is, the resource may comply
with all the rules set out in this specification regarding how a collection is to behave without
necessarily supporting all methods that a WebDAV compliant resource is required to support. In
such a case the resource may return the DAV:resourcetype property with the value DAV:collection
but MUST NOT return a DAV header containing the value “1” on an OPTIONS response.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 189

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 11]

5.3 Creation and Retrieval of Collection Resources

This document specifies the MKCOL method to create new collection resources, rather than using
the existing HTTP/1.1 PUT or POST method, for the following reasons:

In HTTP/1.1, the PUT method is defined to store the request body at the location specified by the
Request-URI. While a description format for a collection can readily be constructed for use with
PUT, the implications of sending such a description to the server are undesirable. For example, if a
description of a collection that omitted some existing resources were PUT to a server, this might be
interpreted as a command to remove those members. This would extend PUT to perform DELETE
functionality, which is undesirable since it changes the semantics of PUT, and makes it difficult to
control DELETE functionality with an access control scheme based on methods.

While the POST method is sufficiently open-ended that a “create a collection” POST command
could be constructed, this is undesirable because it would be difficult to separate access control for
collection creation from other uses of POST.

The exact definition of the behavior of GET and PUT on collections is defined later in this
document.

5.4 Source Resources and Output Resources

For many resources, the entity returned by a GET method exactly matches the persistent state of the
resource, for example, a GIF file stored on a disk. For this simple case, the URI at which a resource
is accessed is identical to the URI at which the source (the persistent state) of the resource is
accessed. This is also the case for HTML source files that are not processed by the server prior to
transmission.

However, the server can sometimes process HTML resources before they are transmitted as a return
entity body. For example, a server-side-include directive within an HTML file might instruct a
server to replace the directive with another value, such as the current date. In this case, what is
returned by GET (HTML plus date) differs from the persistent state of the resource (HTML plus
directive). Typically there is no way to access the HTML resource containing the unprocessed
directive.

Sometimes the entity returned by GET is the output of a data-producing process that is described by
one or more source resources (that may not even have a location in the URI namespace). A single
data-producing process may dynamically generate the state of a potentially large number of output
resources. An example of this is a CGI script that describes a “finger” gateway process that maps
part of the namespace of a server into finger requests, such as
http://www.foo.bar.org/finger_gateway/user@host.

In the absence of distributed authoring capabilities, it is acceptable to have no mapping of source
resource(s) to the URI namespace. In fact, preventing access to the source resource(s) has desirable
security benefits. However, if remote editing of the source resource(s) is desired, the source
resource(s) should be given a location in the URI namespace. This source location should not be
one of the locations at which the generated output is retrievable, since in general it is impossible for
the server to differentiate requests for source resources from requests for process output resources.
There is often a many-to-many relationship between source resources and output resources.

On WebDAV compliant servers the URI of the source resource(s) may be stored in a link on the
output resource with type DAV:source (see section 13.10 for a description of the source link
property). Storing the source URIs in links on the output resources places the burden of
discovering the source on the authoring client. Note that the value of a source link is not
guaranteed to point to the correct source. Source links may break or incorrect values may be
entered. Also note that not all servers will allow the client to set the source link value. For example
a server which generates source links on the fly for its CGI files will most likely not allow a client
to set the source link value.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 12]

6 Locking

The ability to lock a resource provides a mechanism for serializing access to that resource. Using a
lock, an authoring client can provide a reasonable guarantee that another principal will not modify a
resource while it is being edited. In this way, a client can prevent the “lost update” problem.

This specification allows locks to vary over two client-specified parameters, the number of
principals involved (exclusive vs. shared) and the type of access to be granted. This document
defines locking for only one access type, write. However, the syntax is extensible, and permits the
eventual specification of locking for other access types.

6.1 Exclusive Vs. Shared Locks

The most basic form of lock is an exclusive lock. This is a lock where the access right in question
is only granted to a single principal. The need for this arbitration results from a desire to avoid
having to merge results.

However, there are times when the goal of a lock is not to exclude others from exercising an access
right but rather to provide a mechanism for principals to indicate that they intend to exercise their
access rights. Shared locks are provided for this case. A shared lock allows multiple principals to
receive a lock. Hence any principal with appropriate access can get the lock.

With shared locks there are two trust sets that affect a resource. The first trust set is created by
access permissions. Principals who are trusted, for example, may have permission to write to the
resource. Among those who have access permission to write to the resource, the set of principals
who have taken out a shared lock also must trust each other, creating a (typically) smaller trust set
within the access permission write set.

Starting with every possible principal on the Internet, in most situations the vast majority of these
principals will not have write access to a given resource. Of the small number who do have write
access, some principals may decide to guarantee their edits are free from overwrite conflicts by
using exclusive write locks. Others may decide they trust their collaborators will not overwrite
their work (the potential set of collaborators being the set of principals who have write permission)
and use a shared lock, which informs their collaborators that a principal may be working on the
resource.

The WebDAV extensions to HTTP do not need to provide all of the communications paths
necessary for principals to coordinate their activities. When using shared locks, principals may use
any out of band communication channel to coordinate their work (e.g., face-to-face interaction,
written notes, post-it notes on the screen, telephone conversation, Email, etc.) The intent of a
shared lock is to let collaborators know who else may be working on a resource.

Shared locks are included because experience from web distributed authoring systems has indicated
that exclusive locks are often too rigid. An exclusive lock is used to enforce a particular editing
process: take out an exclusive lock, read the resource, perform edits, write the resource, release the
lock. This editing process has the problem that locks are not always properly released, for example
when a program crashes, or when a lock owner leaves without unlocking a resource. While both
timeouts and administrative action can be used to remove an offending lock, neither mechanism
may be available when needed; the timeout may be long or the administrator may not be available.

6.2 Required Support

A WebDAV compliant server is not required to support locking in any form. If the server does
support locking it may choose to support any combination of exclusive and shared locks for any
access types.

The reason for this flexibility is that locking policy strikes to the very heart of the resource
management and versioning systems employed by various storage repositories. These repositories

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 190

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 13]

require control over what sort of locking will be made available. For example, some repositories
only support shared write locks while others only provide support for exclusive write locks while
yet others use no locking at all. As each system is sufficiently different to merit exclusion of
certain locking features, this specification leaves locking as the sole axis of negotiation within
WebDAV.

6.3 Lock Tokens

A lock token is a type of state token, represented as a URI, which identifies a particular lock. A
lock token is returned by every successful LOCK operation in the lockdiscovery property in the
response body, and can also be found through lock discovery on a resource.

Lock token URIs MUST be unique across all resources for all time. This uniqueness constraint
allows lock tokens to be submitted across resources and servers without fear of confusion.

This specification provides a lock token URI scheme called opaquelocktoken that meets the
uniqueness requirements. However resources are free to return any URI scheme so long as it meets
the uniqueness requirements.

Having a lock token provides no special access rights. Anyone can find out anyone else's lock token
by performing lock discovery. Locks MUST be enforced based upon whatever authentication
mechanism is used by the server, not based on the secrecy of the token values.

6.4 opaquelocktoken Lock Token URI Scheme

The opaquelocktoken URI scheme is designed to be unique across all resources for all time. Due to
this uniqueness quality, a client may submit an opaque lock token in an If header on a resource
other than the one that returned it.

All resources MUST recognize the opaquelocktoken scheme and, at minimum, recognize that the
lock token does not refer to an outstanding lock on the resource.

In order to guarantee uniqueness across all resources for all time the opaquelocktoken requires the
use of the Universal Unique Identifier (UUID) mechanism, as described in [ISO-11578].

Opaquelocktoken generators, however, have a choice of how they create these tokens. They can
either generate a new UUID for every lock token they create or they can create a single UUID and
then add extension characters. If the second method is selected then the program generating the
extensions MUST guarantee that the same extension will never be used twice with the associated
UUID.

OpaqueLockToken-URI = "opaquelocktoken:" UUID [Extension] ; The UUID
production is the string representation of a UUID, as defined in [ISO-
11578]. Note that white space (LWS) is not allowed between elements of
this production.

Extension = path ; path is defined in section 3.2.1 of RFC 2068 [RFC2068]

6.4.1 Node Field Generation Without the IEEE 802 Address

UUIDs, as defined in [ISO-11578], contain a “node” field that contains one of the IEEE 802
addresses for the server machine. As noted in section 17.8, there are several security risks
associated with exposing a machine's IEEE 802 address. This section provides an alternate
mechanism for generating the “node” field of a UUID which does not employ an IEEE 802 address.
WebDAV servers MAY use this algorithm for creating the node field when generating UUIDs. The
text in this section is originally from an Internet-Draft by Paul Leach and Rich Salz, who are noted
here to properly attribute their work.

The ideal solution is to obtain a 47 bit cryptographic quality random number, and use it as the low
47 bits of the node ID, with the most significant bit of the first octet of the node ID set to 1. This bit

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 14]

is the unicast/multicast bit, which will never be set in IEEE 802 addresses obtained from network
cards; hence, there can never be a conflict between UUIDs generated by machines with and without
network cards.

If a system does not have a primitive to generate cryptographic quality random numbers, then in
most systems there are usually a fairly large number of sources of randomness available from which
one can be generated. Such sources are system specific, but often include:

 - the percent of memory in use
 - the size of main memory in bytes
 - the amount of free main memory in bytes
 - the size of the paging or swap file in bytes
 - free bytes of paging or swap file
 - the total size of user virtual address space in bytes
 - the total available user address space bytes
 - the size of boot disk drive in bytes
 - the free disk space on boot drive in bytes
 - the current time
 - the amount of time since the system booted
 - the individual sizes of files in various system directories
 - the creation, last read, and modification times of files in
 various system directories
 - the utilization factors of various system resources (heap, etc.)
 - current mouse cursor position
 - current caret position
 - current number of running processes, threads
 - handles or IDs of the desktop window and the active window
 - the value of stack pointer of the caller
 - the process and thread ID of caller
 - various processor architecture specific performance counters
 (instructions executed, cache misses, TLB misses)

(Note that it is precisely the above kinds of sources of randomness that are used to seed
cryptographic quality random number generators on systems without special hardware for their
construction.)

In addition, items such as the computer's name and the name of the operating system, while not
strictly speaking random, will help differentiate the results from those obtained by other systems.

The exact algorithm to generate a node ID using these data is system specific, because both the data
available and the functions to obtain them are often very system specific. However, assuming that
one can concatenate all the values from the randomness sources into a buffer, and that a
cryptographic hash function such as MD5 is available, then any 6 bytes of the MD5 hash of the
buffer, with the multicast bit (the high bit of the first byte) set will be an appropriately random node
ID.

Other hash functions, such as SHA-1, can also be used. The only requirement is that the result be
suitably random _ in the sense that the outputs from a set uniformly distributed inputs are
themselves uniformly distributed, and that a single bit change in the input can be expected to cause
half of the output bits to change.

6.5 Lock Capability Discovery

Since server lock support is optional, a client trying to lock a resource on a server can either try the
lock and hope for the best, or perform some form of discovery to determine what lock capabilities
the server supports. This is known as lock capability discovery. Lock capability discovery differs
from discovery of supported access control types, since there may be access control types without
corresponding lock types. A client can determine what lock types the server supports by retrieving
the supportedlock property.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 191

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 15]

Any DAV compliant resource that supports the LOCK method MUST support the supportedlock
property.

6.6 Active Lock Discovery

If another principal locks a resource that a principal wishes to access, it is useful for the second
principal to be able to find out who the first principal is. For this purpose the lockdiscovery
property is provided. This property lists all outstanding locks, describes their type, and where
available, provides their lock token.

Any DAV compliant resource that supports the LOCK method MUST support the lockdiscovery
property.

6.7 Usage Considerations

Although the locking mechanisms specified here provide some help in preventing lost updates, they
cannot guarantee that updates will never be lost. Consider the following scenario:

Two clients A and B are interested in editing the resource 'index.html'. Client A is an HTTP client
rather than a WebDAV client, and so does not know how to perform locking.

Client A doesn't lock the document, but does a GET and begins editing.
Client B does LOCK, performs a GET and begins editing.
Client B finishes editing, performs a PUT, then an UNLOCK.
Client A performs a PUT, overwriting and losing all of B's changes.

There are several reasons why the WebDAV protocol itself cannot prevent this situation. First, it
cannot force all clients to use locking because it must be compatible with HTTP clients that do not
comprehend locking. Second, it cannot require servers to support locking because of the variety of
repository implementations, some of which rely on reservations and merging rather than on locking.
Finally, being stateless, it cannot enforce a sequence of operations like LOCK / GET / PUT /
UNLOCK.

WebDAV servers that support locking can reduce the likelihood that clients will accidentally
overwrite each other's changes by requiring clients to lock resources before modifying them. Such
servers would effectively prevent HTTP 1.0 and HTTP 1.1 clients from modifying resources.

WebDAV clients can be good citizens by using a lock / retrieve / write /unlock sequence of
operations (at least by default) whenever they interact with a WebDAV server that supports
locking.

HTTP 1.1 clients can be good citizens, avoiding overwriting other clients' changes, by using entity
tags in If-Match headers with any requests that would modify resources.

Information managers may attempt to prevent overwrites by implementing client-side procedures
requiring locking before modifying WebDAV resources.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 16]

7 Write Lock

This section describes the semantics specific to the write lock type. The write lock is a specific
instance of a lock type, and is the only lock type described in this specification.

7.1 Methods Restricted by Write Locks

A write lock MUST prevent a principal without the lock from successfully executing a PUT, POST,
PROPPATCH, LOCK, UNLOCK, MOVE, DELETE, or MKCOL on the locked resource. All
other current methods, GET in particular, function independently of the lock.

Note, however, that as new methods are created it will be necessary to specify how they interact
with a write lock.

7.2 Write Locks and Lock Tokens

A successful request for an exclusive or shared write lock MUST result in the generation of a
unique lock token associated with the requesting principal. Thus if five principals have a shared
write lock on the same resource there will be five lock tokens, one for each principal.

7.3 Write Locks and Properties

While those without a write lock may not alter a property on a resource it is still possible for the
values of live properties to change, even while locked, due to the requirements of their schemas.
Only dead properties and live properties defined to respect locks are guaranteed not to change while
write locked.

7.4 Write Locks and Null Resources

It is possible to assert a write lock on a null resource in order to lock the name.

A write locked null resource, referred to as a lock-null resource, MUST respond with a 404 (Not
Found) or 405 (Method Not Allowed) to any HTTP/1.1 or DAV methods except for PUT,
MKCOL, OPTIONS, PROPFIND, LOCK, and UNLOCK. A lock-null resource MUST appear as a
member of its parent collection. Additionally the lock-null resource MUST have defined on it all
mandatory DAV properties. Most of these properties, such as all the get* properties, will have no
value as a lock-null resource does not support the GET method. Lock-Null resources MUST have
defined values for lockdiscovery and supportedlock properties.

Until a method such as PUT or MKCOL is successfully executed on the lock-null resource the
resource MUST stay in the lock-null state. However, once a PUT or MKCOL is successfully
executed on a lock-null resource the resource ceases to be in the lock-null state.

If the resource is unlocked, for any reason, without a PUT, MKCOL, or similar method having been
successfully executed upon it then the resource MUST return to the null state.

7.5 Write Locks and Collections

A write lock on a collection, whether created by a “Depth: 0” or “Depth: infinity” lock request,
prevents the addition or removal of member URIs of the collection by non-lock owners. As a
consequence, when a principal issues a PUT or POST request to create a new resource under a URI
which needs to be an internal member of a write locked collection to maintain HTTP namespace
consistency, or issues a DELETE to remove a resource which has a URI which is an existing
internal member URI of a write locked collection, this request MUST fail if the principal does not
have a write lock on the collection.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 192

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 17]

However, if a write lock request is issued to a collection containing member URIs identifying
resources that are currently locked in a manner which conflicts with the write lock, the request
MUST fail with a 423 (Locked) status code.

If a lock owner causes the URI of a resource to be added as an internal member URI of a locked
collection then the new resource MUST be automatically added to the lock. This is the only
mechanism that allows a resource to be added to a write lock. Thus, for example, if the collection
/a/b/ is write locked and the resource /c is moved to /a/b/c then resource /a/b/c will be added to the
write lock.

7.6 Write Locks and the If Request Header

If a user agent is not required to have knowledge about a lock when requesting an operation on a
locked resource, the following scenario might occur. Program A, run by User A, takes out a write
lock on a resource. Program B, also run by User A, has no knowledge of the lock taken out by
Program A, yet performs a PUT to the locked resource. In this scenario, the PUT succeeds because
locks are associated with a principal, not a program, and thus program B, because it is acting with
principal A’s credential, is allowed to perform the PUT. However, had program B known about the
lock, it would not have overwritten the resource, preferring instead to present a dialog box
describing the conflict to the user. Due to this scenario, a mechanism is needed to prevent different
programs from accidentally ignoring locks taken out by other programs with the same
authorization.

In order to prevent these collisions a lock token MUST be submitted by an authorized principal in
the If header for all locked resources that a method may interact with or the method MUST fail.
For example, if a resource is to be moved and both the source and destination are locked then two
lock tokens must be submitted, one for the source and the other for the destination.

7.6.1 Example - Write Lock

>>Request

COPY /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html
If: <http://www.ics.uci.edu/users/f/fielding/index.html>
 (<opaquelocktoken:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>)

>>Response

HTTP/1.1 204 No Content

In this example, even though both the source and destination are locked, only one lock token must
be submitted, for the lock on the destination. This is because the source resource is not modified by
a COPY, and hence unaffected by the write lock. In this example, user agent authentication has
previously occurred via a mechanism outside the scope of the HTTP protocol, in the underlying
transport layer.

7.7 Write Locks and COPY/MOVE

A COPY method invocation MUST NOT duplicate any write locks active on the source. However,
as previously noted, if the COPY copies the resource into a collection that is locked with “Depth:
infinity”, then the resource will be added to the lock.

A successful MOVE request on a write locked resource MUST NOT move the write lock with the
resource. However, the resource is subject to being added to an existing lock at the destination, as
specified in section 7.5. For example, if the MOVE makes the resource a child of a collection that is
locked with “Depth: infinity”, then the resource will be added to that collection's lock. Additionally,

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 18]

if a resource locked with “Depth: infinity” is moved to a destination that is within the scope of the
same lock (e.g., within the namespace tree covered by the lock), the moved resource will again be a
added to the lock. In both these examples, as specified in section 7.6, an If header must be
submitted containing a lock token for both the source and destination.

7.8 Refreshing Write Locks

A client MUST NOT submit the same write lock request twice. Note that a client is always aware it
is resubmitting the same lock request because it must include the lock token in the If header in order
to make the request for a resource that is already locked.

However, a client may submit a LOCK method with an If header but without a body. This form of
LOCK MUST only be used to “refresh” a lock. Meaning, at minimum, that any timers associated
with the lock MUST be re-set.

A server may return a Timeout header with a lock refresh that is different than the Timeout header
returned when the lock was originally requested. Additionally clients may submit Timeout headers
of arbitrary value with their lock refresh requests. Servers, as always, may ignore Timeout headers
submitted by the client.

If an error is received in response to a refresh LOCK request the client SHOULD assume that the
lock was not refreshed.C

o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 193

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 19]

8 HTTP Methods for Distributed Authoring

The following new HTTP methods use XML as a request and response format. All DAV compliant
clients and resources MUST use XML parsers that are compliant with [REC-XML]. All XML used
in either requests or responses MUST be, at minimum, well formed. If a server receives ill-formed
XML in a request it MUST reject the entire request with a 400 (Bad Request). If a client receives
ill-formed XML in a response then it MUST NOT assume anything about the outcome of the
executed method and SHOULD treat the server as malfunctioning.

8.1 PROPFIND

The PROPFIND method retrieves properties defined on the resource identified by the Request-URI,
if the resource does not have any internal members, or on the resource identified by the Request-
URI and potentially its member resources, if the resource is a collection that has internal member
URIs. All DAV compliant resources MUST support the PROPFIND method and the propfind
XML element (section 12.14) along with all XML elements defined for use with that element.

A client may submit a Depth header with a value of “0”, “1”, or “infinity” with a PROPFIND on a
collection resource with internal member URIs. DAV compliant servers MUST support the “0”,
“1” and “infinity” behaviors. By default, the PROPFIND method without a Depth header MUST act
as if a “Depth: infinity” header was included.

A client may submit a propfind XML element in the body of the request method describing what
information is being requested. It is possible to request particular property values, all property
values, or a list of the names of the resource’s properties. A client may choose not to submit a
request body. An empty PROPFIND request body MUST be treated as a request for the names and
values of all properties.

All servers MUST support returning a response of content type text/xml or application/xml that
contains a multistatus XML element that describes the results of the attempts to retrieve the various
properties.

If there is an error retrieving a property then a proper error result MUST be included in the
response. A request to retrieve the value of a property which does not exist is an error and MUST
be noted, if the response uses a multistatus XML element, with a response XML element which
contains a 404 (Not Found) status value.

Consequently, the multistatus XML element for a collection resource with member URIs MUST
include a response XML element for each member URI of the collection, to whatever depth was
requested. Each response XML element MUST contain an href XML element that gives the URI of
the resource on which the properties in the prop XML element are defined. Results for a
PROPFIND on a collection resource with internal member URIs are returned as a flat list whose
order of entries is not significant.

In the case of allprop and propname, if a principal does not have the right to know whether a
particular property exists then the property should be silently excluded from the response.

The results of this method SHOULD NOT be cached.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 20]

8.1.1 Example - Retrieving Na med Properties

>>Request

PROPFIND /file HTTP/1.1
Host: www.foo.bar
Content-type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:">

<D:prop xmlns:R="http://www.foo.bar/boxschema/">
<R:bigbox/>
<R:author/>
<R:DingALing/>
<R:Random/>

</D:prop>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:">

<D:response>
<D:href>http://www.foo.bar/file</D:href>
<D:propstat>

<D:prop xmlns:R="http://www.foo.bar/boxschema/">
<R:bigbox>

 <R:BoxType>Box type A</R:BoxType>
</R:bigbox>
<R:author>

<R:Name>J.J. Johnson</R:Name>
</R:author>

</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>
<D:propstat>

<D:prop><R:DingALing/><R:Random/></D:prop>
<D:status>HTTP/1.1 403 Forbidden</D:status>
<D:responsedescription> The user does not have

access to the DingALing property.
</D:responsedescription>

</D:propstat>
</D:response>
<D:responsedescription> There has been an access violation

error. </D:responsedescription>
</D:multistatus>

In this example, PROPFIND is executed on a non-collection resource http://www.foo.bar/file. The
propfind XML element specifies the name of four properties whose values are being requested. In
this case only two properties were returned, since the principal issuing the request did not have
sufficient access rights to see the third and fourth properties.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 194

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 21]

8.1.2 Example - Using allprop to Retrieve All Properties

>>Request

PROPFIND /container/ HTTP/1.1
Host: www.foo.bar
Depth: 1
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:">

<D:allprop/>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.foo.bar/container/</D:href>
 <D:propstat>
 <D:prop xmlns:R="http://www.foo.bar/boxschema/">
 <R:bigbox>
 <R:BoxType>Box type A</R:BoxType>
 </R:bigbox>
 <R:author>
 <R:Name>Hadrian</R:Name>
 </R:author>
 <D:creationdate>
 1997-12-01T17:42:21-08:00
 </D:creationdate>
 <D:displayname>
 Example collection
 </D:displayname>
 <D:resourcetype><D:collection/></D:resourcetype>
 <D:supportedlock>
 <D:lockentry>
 <D:lockscope><D:exclusive/></D:lockscope>
 <D:locktype><D:write/></D:locktype>
 </D:lockentry>
 <D:lockentry>
 <D:lockscope><D:shared/></D:lockscope>
 <D:locktype><D:write/></D:locktype>
 </D:lockentry>

 </D:supportedlock>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://www.foo.bar/container/front.html</D:href>
 <D:propstat>
 <D:prop xmlns:R="http://www.foo.bar/boxschema/">
 <R:bigbox>
 <R:BoxType>Box type B</R:BoxType>
 </R:bigbox>
 <D:creationdate>
 1997-12-01T18:27:21-08:00
 </D:creationdate>
 <D:displayname>
 Example HTML resource
 </D:displayname>

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 22]

 <D:getcontentlength>
 4525
 </D:getcontentlength>
 <D:getcontenttype>
 text/html
 </D:getcontenttype>
 <D:getetag>
 zzyzx
 </D:getetag>
 <D:getlastmodified>
 Monday, 12-Jan-98 09:25:56 GMT
 </D:getlastmodified>
 <D:resourcetype/>
 <D:supportedlock>
 <D:lockentry>
 <D:lockscope><D:exclusive/></D:lockscope>
 <D:locktype><D:write/></D:locktype>
 </D:lockentry>
 <D:lockentry>
 <D:lockscope><D:shared/></D:lockscope>
 <D:locktype><D:write/></D:locktype>
 </D:lockentry>
 </D:supportedlock>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
</D:multistatus>

In this example, PROPFIND was invoked on the resource http://www.foo.bar/container/ with a
Depth header of 1, meaning the request applies to the resource and its children, and a propfind
XML element containing the allprop XML element, meaning the request should return the name
and value of all properties defined on each resource.

The resource http://www.foo.bar/container/ has six properties defined on it:

http://www.foo.bar/boxschema/bigbox, http://www.foo.bar/boxschema/author, DAV:creationdate,
DAV:displayname, DAV:resourcetype, and DAV:supportedlock.

The last four properties are WebDAV-specific, defined in section 13. Since GET is not supported
on this resource, the get* properties (e.g., getcontentlength) are not defined on this resource. The
DAV-specific properties assert that “container” was created on December 1, 1997, at 5:42:21PM, in
a time zone 8 hours west of GMT (creationdate), has a name of “Example collection”
(displayname), a collection resource type (resourcetype), and supports exclusive write and shared
write locks (supportedlock).

The resource http://www.foo.bar/container/front.html has nine properties defined on it:

http://www.foo.bar/boxschema/bigbox (another instance of the “bigbox” property type),
DAV:creationdate, DAV:displayname, DAV:getcontentlength, DAV:getcontenttype, DAV:getetag,
DAV:getlastmodified, DAV:resourcetype, and DAV:supportedlock.

The DAV-specific properties assert that “front.html” was created on December 1, 1997, at
6:27:21PM, in a time zone 8 hours west of GMT (creationdate), has a name of “Example HTML
resource” (displayname), a content length of 4525 bytes (getcontentlength), a MIME type of
“text/html” (getcontenttype), an entity tag of “zzyzx” (getetag), was last modified on Monday,
January 12, 1998, at 09:25:56 GMT (getlastmodified), has an empty resource type, meaning that it
is not a collection (resourcetype), and supports both exclusive write and shared write locks
(supportedlock).

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 195

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 23]

8.1.3 Example - Using propna me to Retrieve all Property Names

>>Request

PROPFIND /container/ HTTP/1.1
Host: www.foo.bar
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<propfind xmlns="DAV:">

<propname/>
</propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<multistatus xmlns="DAV:">

<response>
<href>http://www.foo.bar/container/</href>
<propstat>

<prop xmlns:R="http://www.foo.bar/boxschema/">
<R:bigbox/>
<R:author/>
<creationdate/>
<displayname/>
<resourcetype/>
<supportedlock/>

</prop>
<status>HTTP/1.1 200 OK</status>

</propstat>
</response>
<response>

<href>http://www.foo.bar/container/front.html</href>
<propstat>

<prop xmlns:R="http://www.foo.bar/boxschema/">
<R:bigbox/>
<creationdate/>
<displayname/>
<getcontentlength/>
<getcontenttype/>
<getetag/>
<getlastmodified/>
<resourcetype/>
<supportedlock/>

</prop>
<status>HTTP/1.1 200 OK</status>

</propstat>
</response>

</multistatus>

In this example, PROPFIND is invoked on the collection resource http://www.foo.bar/container/,
with a propfind XML element containing the propname XML element, meaning the name of all
properties should be returned. Since no Depth header is present, it assumes its default value of
“infinity”, meaning the name of the properties on the collection and all its progeny should be
returned.

Consistent with the previous example, resource http://www.foo.bar/container/ has six properties
defined on it, http://www.foo.bar/boxschema/bigbox, http://www.foo.bar/boxschema/author,
DAV:creationdate, DAV:displayname, DAV:resourcetype, and DAV:supportedlock.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 24]

The resource http://www.foo.bar/container/index.html, a member of the “container” collection, has
nine properties defined on it, http://www.foo.bar/boxschema/bigbox, DAV:creationdate,
DAV:displayname, DAV:getcontentlength, DAV:getcontenttype, DAV:getetag,
DAV:getlastmodified, DAV:resourcetype, and DAV:supportedlock.

This example also demonstrates the use of XML namespace scoping, and the default namespace.
Since the “xmlns” attribute does not contain an explicit “shorthand name” (prefix) letter, the
namespace applies by default to all enclosed elements. Hence, all elements which do not explicitly
state the namespace to which they belong are members of the “DAV:” namespace schema.

8.2 PROPPATCH

The PROPPATCH method processes instructions specified in the request body to set and/or remove
properties defined on the resource identified by the Request-URI.

All DAV compliant resources MUST support the PROPPATCH method and MUST process
instructions that are specified using the propertyupdate, set, and remove XML elements of the DAV
schema. Execution of the directives in this method is, of course, subject to access control
constraints. DAV compliant resources SHOULD support the setting of arbitrary dead properties.

The request message body of a PROPPATCH method MUST contain the propertyupdate XML
element. Instruction processing MUST occur in the order instructions are received (i.e., from top to
bottom). Instructions MUST either all be executed or none executed. Thus if any error occurs
during processing all executed instructions MUST be undone and a proper error result returned.
Instruction processing details can be found in the definition of the set and remove instructions in
section 12.13.

8.2.1 Status Codes for use with 207 (Multi-Status)

The following are examples of response codes one would expect to be used in a 207 (Multi-Status)
response for this method. Note, however, that unless explicitly prohibited any 2/3/4/5xx series
response code may be used in a 207 (Multi-Status) response.

200 (OK) - The command succeeded. As there can be a mixture of sets and removes in a body, a
201 (Created) seems inappropriate.

403 (Forbidden) - The client, for reasons the server chooses not to specify, cannot alter one of the
properties.

409 (Conflict) - The client has provided a value whose semantics are not appropriate for the
property. This includes trying to set read-only properties.

423 (Locked) - The specified resource is locked and the client either is not a lock owner or the lock
type requires a lock token to be submitted and the client did not submit it.

507 (Insufficient Storage) - The server did not have sufficient space to record the property.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 196

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 25]

8.2.2 Example - PROPPATCH

>>Request

PROPPATCH /bar.html HTTP/1.1
Host: www.foo.com
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propertyupdate xmlns:D="DAV:"
xmlns:Z="http://www.w3.com/standards/z39.50/">

<D:set>
<D:prop>

<Z:authors>
<Z:Author>Jim Whitehead</Z:Author>
<Z:Author>Roy Fielding</Z:Author>

</Z:authors>
</D:prop>

</D:set>
<D:remove>

<D:prop><Z:Copyright-Owner/></D:prop>
</D:remove>

</D:propertyupdate>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:"
xmlns:Z="http://www.w3.com/standards/z39.50">

<D:response>
<D:href>http://www.foo.com/bar.html</D:href>
<D:propstat>

<D:prop><Z:Authors/></D:prop>
<D:status>HTTP/1.1 424 Failed Dependency</D:status>

</D:propstat>
<D:propstat>

<D:prop><Z:Copyright-Owner/></D:prop>
<D:status>HTTP/1.1 409 Conflict</D:status>

</D:propstat>
<D:responsedescription> Copyright Owner can not be deleted

or altered.</D:responsedescription>
</D:response>

</D:multistatus>

In this example, the client requests the server to set the value of the
http://www.w3.com/standards/z39.50/Authors property, and to remove the property
http://www.w3.com/standards/z39.50/Copyright-Owner. Since the Copyright-Owner property
could not be removed, no property modifications occur. The 424 (Failed Dependency) status code
for the Authors property indicates this action would have succeeded if it were not for the conflict
with removing the Copyright-Owner property.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 26]

8.3 MKCOL Method

The MKCOL method is used to create a new collection. All DAV compliant resources MUST
support the MKCOL method.

8.3.1 Request

MKCOL creates a new collection resource at the location specified by the Request-URI. If the
resource identified by the Request-URI is non-null then the MKCOL MUST fail. During MKCOL
processing, a server MUST make the Request-URI a member of its parent collection, unless the
Request-URI is “/”. If no such ancestor exists, the method MUST fail. When the MKCOL
operation creates a new collection resource, all ancestors MUST already exist, or the method
MUST fail with a 409 (Conflict) status code. For example, if a request to create collection /a/b/c/d/
is made, and neither /a/b/ nor /a/b/c/ exists, the request must fail.

When MKCOL is invoked without a request body, the newly created collection SHOULD have no
members.

A MKCOL request message may contain a message body. The behavior of a MKCOL request
when the body is present is limited to creating collections, members of a collection, bodies of
members and properties on the collections or members. If the server receives a MKCOL request
entity type it does not support or understand it MUST respond with a 415 (Unsupported Media
Type) status code. The exact behavior of MKCOL for various request media types is undefined in
this document, and will be specified in separate documents.

8.3.2 Status Codes

Responses from a MKCOL request MUST NOT be cached as MKCOL has non-idempotent
semantics.

201 (Created) - The collection or structured resource was created in its entirety.

403 (Forbidden) - This indicates at least one of two conditions: 1) the server does not allow the
creation of collections at the given location in its namespace, or 2) the parent collection of the
Request-URI exists but cannot accept members.

405 (Method Not Allowed) - MKCOL can only be executed on a deleted/non-existent resource.

409 (Conflict) - A collection cannot be made at the Request-URI until one or more intermediate
collections have been created.

415 (Unsupported Media Type)- The server does not support the request type of the body.

507 (Insufficient Storage) - The resource does not have sufficient space to record the state of the
resource after the execution of this method.

8.3.3 Example - MKCOL

This example creates a collection called /webdisc/xfiles/ on the server www.server.org.

>>Request

MKCOL /webdisc/xfiles/ HTTP/1.1
Host: www.server.org

>>Response

HTTP/1.1 201 Created

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 197

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 27]

8.4 GET, HEAD for Collections

The semantics of GET are unchanged when applied to a collection, since GET is defined as,
“retrieve whatever information (in the form of an entity) is identified by the Request-URI”
[RFC2068]. GET when applied to a collection may return the contents of an “index.html” resource,
a human-readable view of the contents of the collection, or something else altogether. Hence it is
possible that the result of a GET on a collection will bear no correlation to the membership of the
collection.

Similarly, since the definition of HEAD is a GET without a response message body, the semantics
of HEAD are unmodified when applied to collection resources.

8.5 POST for Collections

Since by definition the actual function performed by POST is determined by the server and often
depends on the particular resource, the behavior of POST when applied to collections cannot be
meaningfully modified because it is largely undefined. Thus the semantics of POST are
unmodified when applied to a collection.

8.6 DELETE

8.6.1 DELETE for Non-Collec tion Resources

If the DELETE method is issued to a non-collection resource whose URIs are an internal member
of one or more collections, then during DELETE processing a server MUST remove any URI for
the resource identified by the Request-URI from collections which contain it as a member.

8.6.2 DELETE for Collections

The DELETE method on a collection MUST act as if a “Depth: infinity” header was used on it. A
client MUST NOT submit a Depth header with a DELETE on a collection with any value but
infinity.

DELETE instructs that the collection specified in the Request-URI and all resources identified by
its internal member URIs are to be deleted.

If any resource identified by a member URI cannot be deleted then all of the member's ancestors
MUST NOT be deleted, so as to maintain namespace consistency.

Any headers included with DELETE MUST be applied in processing every resource to be deleted.

When the DELETE method has completed processing it MUST result in a consistent namespace.

If an error occurs with a resource other than the resource identified in the Request-URI then the
response MUST be a 207 (Multi-Status). 424 (Failed Dependency) errors SHOULD NOT be in the
207 (Multi-Status). They can be safely left out because the client will know that the ancestors of a
resource could not be deleted when the client receives an error for the ancestor's progeny.
Additionally 204 (No Content) errors SHOULD NOT be returned in the 207 (Multi-Status). The
reason for this prohibition is that 204 (No Content) is the default success code.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 28]

8.6.2.1 Example - DELETE

>>Request

DELETE /container/ HTTP/1.1
Host: www.foo.bar

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<d:multistatus xmlns:d="DAV:">

<d:response>
<d:href>http://www.foo.bar/container/resource3</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>

</d:response>
</d:multistatus>

In this example the attempt to delete http://www.foo.bar/container/resource3 failed because it is
locked, and no lock token was submitted with the request. Consequently, the attempt to delete
http://www.foo.bar/container/ also failed. Thus the client knows that the attempt to delete
http://www.foo.bar/container/ must have also failed since the parent can not be deleted unless its
child has also been deleted. Even though a Depth header has not been included, a depth of infinity
is assumed because the method is on a collection.

8.7 PUT

8.7.1 PUT for Non-Collection Resources

A PUT performed on an existing resource replaces the GET response entity of the resource.
Properties defined on the resource may be recomputed during PUT processing but are not otherwise
affected. For example, if a server recognizes the content type of the request body, it may be able to
automatically extract information that could be profitably exposed as properties.

A PUT that would result in the creation of a resource without an appropriately scoped parent
collection MUST fail with a 409 (Conflict).

8.7.2 PUT for Collections

As defined in the HTTP/1.1 specification [RFC2068], the “PUT method requests that the enclosed
entity be stored under the supplied Request-URI.” Since submission of an entity representing a
collection would implicitly encode creation and deletion of resources, this specification
intentionally does not define a transmission format for creating a collection using PUT. Instead, the
MKCOL method is defined to create collections.

When the PUT operation creates a new non-collection resource all ancestors MUST already exist.
If all ancestors do not exist, the method MUST fail with a 409 (Conflict) status code. For example,
if resource /a/b/c/d.html is to be created and /a/b/c/ does not exist, then the request must fail.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 198

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 29]

8.8 COPY Method

The COPY method creates a duplicate of the source resource, identified by the Request-URI, in the
destination resource, identified by the URI in the Destination header. The Destination header
MUST be present. The exact behavior of the COPY method depends on the type of the source
resource.

All WebDAV compliant resources MUST support the COPY method. However, support for the
COPY method does not guarantee the ability to copy a resource. For example, separate programs
may control resources on the same server. As a result, it may not be possible to copy a resource to
a location that appears to be on the same server.

8.8.1 COPY for HTTP/1.1 res ources

When the source resource is not a collection the result of the COPY method is the creation of a new
resource at the destination whose state and behavior match that of the source resource as closely as
possible. After a successful COPY invocation, all properties on the source resource MUST be
duplicated on the destination resource, subject to modifying headers and XML elements, following
the definition for copying properties. Since the environment at the destination may be different
than at the source due to factors outside the scope of control of the server, such as the absence of
resources required for correct operation, it may not be possible to completely duplicate the behavior
of the resource at the destination. Subsequent alterations to the destination resource will not modify
the source resource. Subsequent alterations to the source resource will not modify the destination
resource.

8.8.2 COPY for Properties

The following section defines how properties on a resource are handled during a COPY operation.

Live properties SHOULD be duplicated as identically behaving live properties at the destination
resource. If a property cannot be copied live, then its value MUST be duplicated, octet-for-octet, in
an identically named, dead property on the destination resource subject to the effects of the
propertybehavior XML element.

The propertybehavior XML element can specify that properties are copied on best effort, that all
live properties must be successfully copied or the method must fail, or that a specified list of live
properties must be successfully copied or the method must fail. The propertybehavior XML element
is defined in section 12.12.

8.8.3 COPY for Collections

The COPY method on a collection without a Depth header MUST act as if a Depth header with
value “infinity” was included. A client may submit a Depth header on a COPY on a collection with
a value of “0” or “infinity”. DAV compliant servers MUST support the “0” and “infinity” Depth
header behaviors.

A COPY of depth infinity instructs that the collection resource identified by the Request-URI is to
be copied to the location identified by the URI in the Destination header, and all its internal member
resources are to be copied to a location relative to it, recursively through all levels of the collection
hierarchy.

A COPY of “Depth: 0” only instructs that the collection and its properties but not resources
identified by its internal member URIs, are to be copied.

Any headers included with a COPY MUST be applied in processing every resource to be copied
with the exception of the Destination header.

The Destination header only specifies the destination URI for the Request-URI. When applied to
members of the collection identified by the Request-URI the value of Destination is to be modified

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 30]

to reflect the current location in the hierarchy. So, if the Request-URI is /a/ with Host header value
http://fun.com/ and the Destination is http://fun.com/b/ then when http://fun.com/a/c/d is processed
it must use a Destination of http://fun.com/b/c/d.

When the COPY method has completed processing it MUST have created a consistent namespace
at the destination (see section 5.1 for the definition of namespace consistency). However, if an
error occurs while copying an internal collection, the server MUST NOT copy any resources
identified by members of this collection (i.e., the server must skip this subtree), as this would create
an inconsistent namespace. After detecting an error, the COPY operation SHOULD try to finish as
much of the original copy operation as possible (i.e., the server should still attempt to copy other
subtrees and their members, that are not descendents of an error-causing collection). So, for
example, if an infinite depth copy operation is performed on collection /a/, which contains
collections /a/b/ and /a/c/, and an error occurs copying /a/b/, an attempt should still be made to copy
/a/c/. Similarly, after encountering an error copying a non-collection resource as part of an infinite
depth copy, the server SHOULD try to finish as much of the original copy operation as possible.

If an error in executing the COPY method occurs with a resource other than the resource identified
in the Request-URI then the response MUST be a 207 (Multi-Status).

The 424 (Failed Dependency) status code SHOULD NOT be returned in the 207 (Multi-Status)
response from a COPY method. These responses can be safely omitted because the client will
know that the progeny of a resource could not be copied when the client receives an error for the
parent. Additionally 201 (Created)/204 (No Content) status codes SHOULD NOT be returned as
values in 207 (Multi-Status) responses from COPY methods. They, too, can be safely omitted
because they are the default success codes.

8.8.4 COPY and the Overwrit e Header

If a resource exists at the destination and the Overwrite header is “T” then prior to performing the
copy the server MUST perform a DELETE with “Depth: infinity” on the destination resource. If
the Overwrite header is set to “F” then the operation will fail.

8.8.5 Status Codes

201 (Created) - The source resource was successfully copied. The copy operation resulted in the
creation of a new resource.

204 (No Content) - The source resource was successfully copied to a pre-existing destination
resource.

403 (Forbidden) – The source and destination URIs are the same.

409 (Conflict) – A resource cannot be created at the destination until one or more intermediate
collections have been created.

412 (Precondition Failed) - The server was unable to maintain the liveness of the properties listed in
the propertybehavior XML element or the Overwrite header is “F” and the state of the destination
resource is non-null.

423 (Locked) - The destination resource was locked.

502 (Bad Gateway) - This may occur when the destination is on another server and the destination
server refuses to accept the resource.

507 (Insufficient Storage) - The destination resource does not have sufficient space to record the
state of the resource after the execution of this method.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 199

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 31]

8.8.6 Example - COPY with Overwrite

This example shows resource http://www.ics.uci.edu/~fielding/index.html being copied to the
location http://www.ics.uci.edu/users/f/fielding/index.html. The 204 (No Content) status code
indicates the existing resource at the destination was overwritten.

>>Request

COPY /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

HTTP/1.1 204 No Content

8.8.7 Example - COPY with N o Overwrite

The following example shows the same copy operation being performed, but with the Overwrite
header set to “F.” A response of 412 (Precondition Failed) is returned because the destination
resource has a non-null state.

>>Request

COPY /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html
Overwrite: F

>>Response

HTTP/1.1 412 Precondition Failed

8.8.8 Example - COPY of a C ollection

>>Request

COPY /container/ HTTP/1.1
Host: www.foo.bar
Destination: http://www.foo.bar/othercontainer/
Depth: infinity
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<d:propertybehavior xmlns:d="DAV:">

<d:keepalive>*</d:keepalive>
</d:propertybehavior>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:multistatus xmlns:d="DAV:">
<d:response>

<d:href>http://www.foo.bar/othercontainer/R2/</d:href>
<d:status>HTTP/1.1 412 Precondition Failed</d:status>

</d:response>
</d:multistatus>

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 32]

The Depth header is unnecessary as the default behavior of COPY on a collection is to act as if a
“Depth: infinity” header had been submitted. In this example most of the resources, along with the
collection, were copied successfully. However the collection R2 failed, most likely due to a
problem with maintaining the liveness of properties (this is specified by the propertybehavior XML
element). Because there was an error copying R2, none of R2's members were copied. However
no errors were listed for those members due to the error minimization rules given in section 8.8.3.

8.9 MOVE Method

The MOVE operation on a non-collection resource is the logical equivalent of a copy (COPY),
followed by consistency maintenance processing, followed by a delete of the source, where all three
actions are performed atomically. The consistency maintenance step allows the server to perform
updates caused by the move, such as updating all URIs other than the Request-URI which identify
the source resource, to point to the new destination resource. Consequently, the Destination header
MUST be present on all MOVE methods and MUST follow all COPY requirements for the COPY
part of the MOVE method. All DAV compliant resources MUST support the MOVE method.
However, support for the MOVE method does not guarantee the ability to move a resource to a
particular destination.

For example, separate programs may actually control different sets of resources on the same server.
Therefore, it may not be possible to move a resource within a namespace that appears to belong to
the same server.

If a resource exists at the destination, the destination resource will be DELETEd as a side-effect of
the MOVE operation, subject to the restrictions of the Overwrite header.

8.9.1 MOVE for Properties

The behavior of properties on a MOVE, including the effects of the propertybehavior XML
element, MUST be the same as specified in section 8.8.2.

8.9.2 MOVE for Collections

A MOVE with “Depth: infinity” instructs that the collection identified by the Request-URI be
moved to the URI specified in the Destination header, and all resources identified by its internal
member URIs are to be moved to locations relative to it, recursively through all levels of the
collection hierarchy.

The MOVE method on a collection MUST act as if a “Depth: infinity” header was used on it. A
client MUST NOT submit a Depth header on a MOVE on a collection with any value but “infinity”.

Any headers included with MOVE MUST be applied in processing every resource to be moved
with the exception of the Destination header.

The behavior of the Destination header is the same as given for COPY on collections.

When the MOVE method has completed processing it MUST have created a consistent namespace
at both the source and destination (see section 5.1 for the definition of namespace consistency).
However, if an error occurs while moving an internal collection, the server MUST NOT move any
resources identified by members of the failed collection (i.e., the server must skip the error-causing
subtree), as this would create an inconsistent namespace. In this case, after detecting the error, the
move operation SHOULD try to finish as much of the original move as possible (i.e., the server
should still attempt to move other subtrees and the resources identified by their members, that are
not descendents of an error-causing collection). So, for example, if an infinite depth move is
performed on collection /a/, which contains collections /a/b/ and /a/c/, and an error occurs moving
/a/b/, an attempt should still be made to try moving /a/c/. Similarly, after encountering an error
moving a non-collection resource as part of an infinite depth move, the server SHOULD try to
finish as much of the original move operation as possible.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 200

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 33]

If an error occurs with a resource other than the resource identified in the Request-URI then the
response MUST be a 207 (Multi-Status).

The 424 (Failed Dependency) status code SHOULD NOT be returned in the 207 (Multi-Status)
response from a MOVE method. These errors can be safely omitted because the client will know
that the progeny of a resource could not be moved when the client receives an error for the parent.
Additionally 201 (Created)/204 (No Content) responses SHOULD NOT be returned as values in
207 (Multi-Status) responses from a MOVE. These responses can be safely omitted because they
are the default success codes.

8.9.3 MOVE and the Overwri te Header

If a resource exists at the destination and the Overwrite header is “T” then prior to performing the
move the server MUST perform a DELETE with “Depth: infinity” on the destination resource. If
the Overwrite header is set to “F” then the operation will fail.

8.9.4 Status Codes

201 (Created) - The source resource was successfully moved, and a new resource was created at the
destination.

204 (No Content) - The source resource was successfully moved to a pre-existing destination
resource.

403 (Forbidden) – The source and destination URIs are the same.

409 (Conflict) – A resource cannot be created at the destination until one or more intermediate
collections have been created.

412 (Precondition Failed) - The server was unable to maintain the liveness of the properties listed in
the propertybehavior XML element or the Overwrite header is “F” and the state of the destination
resource is non-null.

423 (Locked) - The source or the destination resource was locked.

502 (Bad Gateway) - This may occur when the destination is on another server and the destination
server refuses to accept the resource.

8.9.5 Example - MOVE of a Non-Collection

This example shows resource http://www.ics.uci.edu/~fielding/index.html being moved to the
location http://www.ics.uci.edu/users/f/fielding/index.html. The contents of the destination resource
would have been overwritten if the destination resource had been non-null. In this case, since there
was nothing at the destination resource, the response code is 201 (Created).

>>Request

MOVE /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

HTTP/1.1 201 Created
Location: http://www.ics.uci.edu/users/f/fielding/index.html

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 34]

8.9.6 Example - MOVE of a Collection

>>Request

MOVE /container/ HTTP/1.1
Host: www.foo.bar
Destination: http://www.foo.bar/othercontainer/
Overwrite: F
If: (<opaquelocktoken:fe184f2e-6eec-41d0-c765-01adc56e6bb4>)
 (<opaquelocktoken:e454f3f3-acdc-452a-56c7-00a5c91e4b77>)
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<d:propertybehavior xmlns:d='DAV:'>

<d:keepalive>*</d:keepalive>
</d:propertybehavior>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<d:multistatus xmlns:d='DAV:'>

<d:response>
<d:href>http://www.foo.bar/othercontainer/C2/</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>

</d:response>
</d:multistatus>

In this example the client has submitted a number of lock tokens with the request. A lock token
will need to be submitted for every resource, both source and destination, anywhere in the scope of
the method, that is locked. In this case the proper lock token was not submitted for the destination
http://www.foo.bar/othercontainer/C2/. This means that the resource /container/C2/ could not be
moved. Because there was an error copying /container/C2/, none of /container/C2's members were
copied. However no errors were listed for those members due to the error minimization rules given
in section 8.8.3. User agent authentication has previously occurred via a mechanism outside the
scope of the HTTP protocol, in an underlying transport layer.

8.10 LOCK Method

The following sections describe the LOCK method, which is used to take out a lock of any access
type. These sections on the LOCK method describe only those semantics that are specific to the
LOCK method and are independent of the access type of the lock being requested.

Any resource which supports the LOCK method MUST, at minimum, support the XML request and
response formats defined herein.

8.10.1 Operation

A LOCK method invocation creates the lock specified by the lockinfo XML element on the
Request-URI. Lock method requests SHOULD have a XML request body which contains an owner
XML element for this lock request, unless this is a refresh request. The LOCK request may have a
Timeout header.

Clients MUST assume that locks may arbitrarily disappear at any time, regardless of the value
given in the Timeout header. The Timeout header only indicates the behavior of the server if
“extraordinary” circumstances do not occur. For example, an administrator may remove a lock at
any time or the system may crash in such a way that it loses the record of the lock's existence. The
response MUST contain the value of the lockdiscovery property in a prop XML element.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 201

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 35]

In order to indicate the lock token associated with a newly created lock, a Lock-Token response
header MUST be included in the response for every successful LOCK request for a new lock. Note
that the Lock-Token header would not be returned in the response for a successful refresh LOCK
request because a new lock was not created.

8.10.2 The Effect of Locks on Properties and Collections

The scope of a lock is the entire state of the resource, including its body and associated properties.
As a result, a lock on a resource MUST also lock the resource's properties.

For collections, a lock also affects the ability to add or remove members. The nature of the effect
depends upon the type of access control involved.

8.10.3 Locking Replicated Resources

A resource may be made available through more than one URI. However locks apply to resources,
not URIs. Therefore a LOCK request on a resource MUST NOT succeed if can not be honored by
all the URIs through which the resource is addressable.

8.10.4 Depth and Locking

The Depth header may be used with the LOCK method. Values other than 0 or infinity MUST
NOT be used with the Depth header on a LOCK method. All resources that support the LOCK
method MUST support the Depth header.

A Depth header of value 0 means to just lock the resource specified by the Request-URI.

If the Depth header is set to infinity then the resource specified in the Request-URI along with all
its internal members, all the way down the hierarchy, are to be locked. A successful result MUST
return a single lock token which represents all the resources that have been locked. If an UNLOCK
is successfully executed on this token, all associated resources are unlocked. If the lock cannot be
granted to all resources, a 409 (Conflict) status code MUST be returned with a response entity body
containing a multistatus XML element describing which resource(s) prevented the lock from being
granted. Hence, partial success is not an option. Either the entire hierarchy is locked or no
resources are locked.

If no Depth header is submitted on a LOCK request then the request MUST act as if a
“Depth:infinity” had been submitted.

8.10.5 Interaction with other M ethods

The interaction of a LOCK with various methods is dependent upon the lock type. However,
independent of lock type, a successful DELETE of a resource MUST cause all of its locks to be
removed.

8.10.6 Lock Compatibility Tab le

The table below describes the behavior that occurs when a lock request is made on a resource.

CURRENT LOCK STATE/ LOCK
REQUEST

SHARED
LOCK

EXCLUSIVE
LOCK

None True True
Shared Lock True False
Exclusive Lock False False*

Legend: True = lock may be granted. False = lock MUST NOT be granted. *=It is illegal for a
principal to request the same lock twice.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 36]

The current lock state of a resource is given in the leftmost column, and lock requests are listed in
the first row. The intersection of a row and column gives the result of a lock request. For example,
if a shared lock is held on a resource, and an exclusive lock is requested, the table entry is “false”,
indicating the lock must not be granted.

8.10.7 Status Codes

200 (OK) - The lock request succeeded and the value of the lockdiscovery property is included in
the body.

412 (Precondition Failed) - The included lock token was not enforceable on this resource or the
server could not satisfy the request in the lockinfo XML element.

423 (Locked) - The resource is locked, so the method has been rejected.

8.10.8 Example - Simple Lock R equest

>>Request

LOCK /workspace/webdav/proposal.doc HTTP/1.1
Host: webdav.sb.aol.com
Timeout: Infinite, Second-4100000000
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx
Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

<?xml version="1.0" encoding="utf-8" ?>
<D:lockinfo xmlns:D='DAV:'>

<D:lockscope><D:exclusive/></D:lockscope>
<D:locktype><D:write/></D:locktype>
<D:owner>

<D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
</D:owner>

</D:lockinfo>

>>Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:prop xmlns:D="DAV:">

<D:lockdiscovery>
<D:activelock>

<D:locktype><D:write/></D:locktype>
<D:lockscope><D:exclusive/></D:lockscope>
<D:depth>Infinity</D:depth>
<D:owner>

<D:href>
http://www.ics.uci.edu/~ejw/contact.html
</D:href>

</D:owner>
<D:timeout>Second-604800</D:timeout>
<D:locktoken>

<D:href>
opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4

</D:href>
</D:locktoken>

</D:activelock>
</D:lockdiscovery>

</D:prop>

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 202

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 37]

This example shows the successful creation of an exclusive write lock on resource
http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The resource
http://www.ics.uci.edu/~ejw/contact.html contains contact information for the owner of the lock.
The server has an activity-based timeout policy in place on this resource, which causes the lock to
automatically be removed after 1 week (604800 seconds). Note that the nonce, response, and
opaque fields have not been calculated in the Authorization request header.

8.10.9 Example - Refreshing a Write Lock

>>Request

LOCK /workspace/webdav/proposal.doc HTTP/1.1
Host: webdav.sb.aol.com
Timeout: Infinite, Second-4100000000
If: (<opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4>)
Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

>>Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:prop xmlns:D="DAV:">

<D:lockdiscovery>
<D:activelock>

<D:locktype><D:write/></D:locktype>
<D:lockscope><D:exclusive/></D:lockscope>
<D:depth>Infinity</D:depth>
<D:owner>

<D:href>
http://www.ics.uci.edu/~ejw/contact.html
</D:href>

</D:owner>
<D:timeout>Second-604800</D:timeout>
<D:locktoken>

<D:href>
opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4

</D:href>
</D:locktoken>

</D:activelock>
</D:lockdiscovery>

</D:prop>

This request would refresh the lock, resetting any time outs. Notice that the client asked for an
infinite time out but the server choose to ignore the request. In this example, the nonce, response,
and opaque fields have not been calculated in the Authorization request header.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 38]

8.10.10 Example - Multi-Resour ce Lock Request

>>Request

LOCK /webdav/ HTTP/1.1
Host: webdav.sb.aol.com
Timeout: Infinite, Second-4100000000
Depth: infinity
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx
Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

<?xml version="1.0" encoding="utf-8" ?>
<D:lockinfo xmlns:D="DAV:">

<D:locktype><D:write/></D:locktype>
<D:lockscope><D:exclusive/></D:lockscope>
<D:owner>

<D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
</D:owner>

</D:lockinfo>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:">

<D:response>
<D:href>http://webdav.sb.aol.com/webdav/secret</D:href>
<D:status>HTTP/1.1 403 Forbidden</D:status>

</D:response>
<D:response>

<D:href>http://webdav.sb.aol.com/webdav/</D:href>
<D:propstat>

<D:prop><D:lockdiscovery/></D:prop>
<D:status>HTTP/1.1 424 Failed Dependency</D:status>

</D:propstat>
</D:response>

</D:multistatus>

This example shows a request for an exclusive write lock on a collection and all its children. In this
request, the client has specified that it desires an infinite length lock, if available, otherwise a
timeout of 4.1 billion seconds, if available. The request entity body contains the contact information
for the principal taking out the lock, in this case a web page URL.

The error is a 403 (Forbidden) response on the resource http://webdav.sb.aol.com/webdav/secret.
Because this resource could not be locked, none of the resources were locked. Note also that the
lockdiscovery property for the Request-URI has been included as required. In this example the
lockdiscovery property is empty which means that there are no outstanding locks on the resource.

In this example, the nonce, response, and opaque fields have not been calculated in the
Authorization request header.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 203

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 39]

8.11 UNLOCK Method

The UNLOCK method removes the lock identified by the lock token in the Lock-Token request
header from the Request-URI, and all other resources included in the lock. If all resources which
have been locked under the submitted lock token can not be unlocked then the UNLOCK request
MUST fail.

Any DAV compliant resource which supports the LOCK method MUST support the UNLOCK
method.

8.11.1 Example - UNLOCK

>>Request

UNLOCK /workspace/webdav/info.doc HTTP/1.1
Host: webdav.sb.aol.com
Lock-Token: <opaquelocktoken:a515cfa4-5da4-22e1-f5b5-00a0451e6bf7>
Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

>>Response

HTTP/1.1 204 No Content

In this example, the lock identified by the lock token “opaquelocktoken:a515cfa4-5da4-22e1-f5b5-
00a0451e6bf7” is successfully removed from the resource
http://webdav.sb.aol.com/workspace/webdav/info.doc. If this lock included more than just one
resource, the lock is removed from all resources included in the lock. The 204 (No Content) status
code is used instead of 200 (OK) because there is no response entity body.

In this example, the nonce, response, and opaque fields have not been calculated in the
Authorization request header.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 40]

9 HTTP Headers for Distributed Authoring

9.1 DAV Header

DAV = "DAV" ":" "1" ["," "2"] ["," 1#extend]

This header indicates that the resource supports the DAV schema and protocol as specified. All
DAV compliant resources MUST return the DAV header on all OPTIONS responses.

The value is a list of all compliance classes that the resource supports. Note that above a comma
has already been added to the 2. This is because a resource can not be level 2 compliant unless it is
also level 1 compliant. Please refer to section 15 for more details. In general, however, support for
one compliance class does not entail support for any other.

9.2 Depth Header

Depth = "Depth" ":" ("0" | "1" | "infinity")

The Depth header is used with methods executed on resources which could potentially have internal
members to indicate whether the method is to be applied only to the resource (“Depth: 0”), to the
resource and its immediate children, (“Depth: 1”), or the resource and all its progeny (“Depth:
infinity”).

The Depth header is only supported if a method's definition explicitly provides for such support.

The following rules are the default behavior for any method that supports the Depth header. A
method may override these defaults by defining different behavior in its definition.

Methods which support the Depth header may choose not to support all of the header's values and
may define, on a case by case basis, the behavior of the method if a Depth header is not present. For
example, the MOVE method only supports “Depth: infinity” and if a Depth header is not present
will act as if a “Depth: infinity” header had been applied.

Clients MUST NOT rely upon methods executing on members of their hierarchies in any particular
order or on the execution being atomic unless the particular method explicitly provides such
guarantees.

Upon execution, a method with a Depth header will perform as much of its assigned task as
possible and then return a response specifying what it was able to accomplish and what it failed to
do.

So, for example, an attempt to COPY a hierarchy may result in some of the members being copied
and some not.

Any headers on a method that has a defined interaction with the Depth header MUST be applied to
all resources in the scope of the method except where alternative behavior is explicitly defined. For
example, an If-Match header will have its value applied against every resource in the method's
scope and will cause the method to fail if the header fails to match.

If a resource, source or destination, within the scope of the method with a Depth header is locked in
such a way as to prevent the successful execution of the method, then the lock token for that
resource MUST be submitted with the request in the If request header.

The Depth header only specifies the behavior of the method with regards to internal children. If a
resource does not have internal children then the Depth header MUST be ignored.

Please note, however, that it is always an error to submit a value for the Depth header that is not
allowed by the method's definition. Thus submitting a “Depth: 1” on a COPY, even if the resource

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 204

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 41]

does not have internal members, will result in a 400 (Bad Request). The method should fail not
because the resource doesn't have internal members, but because of the illegal value in the header.

9.3 Destination Header

Destination = "Destination" ":" absoluteURI

The Destination header specifies the URI which identifies a destination resource for methods such
as COPY and MOVE, which take two URIs as parameters. Note that the absoluteURI production is
defined in [RFC2396].

9.4 If Header

If = "If" ":" (1*No-tag-list | 1*Tagged-list)
No-tag-list = List
Tagged-list = Resource 1*List
Resource = Coded-URL
List = "(" 1*(["Not"](State-token | "[" entity-tag "]")) ")"
State-token = Coded-URL
Coded-URL = "<" absoluteURI ">"

The If header is intended to have similar functionality to the If-Match header defined in section
14.25 of [RFC2068]. However the If header is intended for use with any URI which represents
state information, referred to as a state token, about a resource as well as ETags. A typical example
of a state token is a lock token, and lock tokens are the only state tokens defined in this
specification.

All DAV compliant resources MUST honor the If header.

The If header's purpose is to describe a series of state lists. If the state of the resource to which the
header is applied does not match any of the specified state lists then the request MUST fail with a
412 (Precondition Failed). If one of the described state lists matches the state of the resource then
the request may succeed.

Note that the absoluteURI production is defined in [RFC2396].

9.4.1 No-tag-list Production

The No-tag-list production describes a series of state tokens and ETags. If multiple No-tag-list
productions are used then one only needs to match the state of the resource for the method to be
allowed to continue.

If a method, due to the presence of a Depth or Destination header, is applied to multiple resources
then the No-tag-list production MUST be applied to each resource the method is applied to.

9.4.1.1 Example - No-tag-list If Header

If: (<locktoken:a-write-lock-token> ["I am an ETag"]) (["I am another
ETag"])

The previous header would require that any resources within the scope of the method must either be
locked with the specified lock token and in the state identified by the “I am an ETag” ETag or in the
state identified by the second ETag “I am another ETag”. To put the matter more plainly one can
think of the previous If header as being in the form (or (and <locktoken:a-write-lock-token> [“I am
an ETag”]) (and [“I am another ETag”])).

9.4.2 Tagged-list Production

The tagged-list production scopes a list production. That is, it specifies that the lists following the
resource specification only apply to the specified resource. The scope of the resource production

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 42]

begins with the list production immediately following the resource production and ends with the
next resource production, if any.

When the If header is applied to a particular resource, the Tagged-list productions MUST be
searched to determine if any of the listed resources match the operand resource(s) for the current
method. If none of the resource productions match the current resource then the header MUST be
ignored. If one of the resource productions does match the name of the resource under
consideration then the list productions following the resource production MUST be applied to the
resource in the manner specified in the previous section.

The same URI MUST NOT appear more than once in a resource production in an If header.

9.4.2.1 Example - Tagged List If header

COPY /resource1 HTTP/1.1
Host: www.foo.bar
Destination: http://www.foo.bar/resource2
If: <http://www.foo.bar/resource1> (<locktoken:a-write-lock-token>
[W/"A weak ETag"]) (["strong ETag"])
<http://www.bar.bar/random>(["another strong ETag"])

In this example http://www.foo.bar/resource1 is being copied to http://www.foo.bar/resource2.
When the method is first applied to http://www.foo.bar/resource1, resource1 must be in the state
specified by "(<locktoken:a-write-lock-token> [W/"A weak ETag"]) (["strong ETag"])", that is, it
either must be locked with a lock token of "locktoken:a-write-lock-token" and have a weak entity
tag W/"A weak ETag" or it must have a strong entity tag "strong ETag".

That is the only success condition since the resource http://www.bar.bar/random never has the
method applied to it (the only other resource listed in the If header) and
http://www.foo.bar/resource2 is not listed in the If header.

9.4.3 not Production

Every state token or ETag is either current, and hence describes the state of a resource, or is not
current, and does not describe the state of a resource. The boolean operation of matching a state
token or ETag to the current state of a resource thus resolves to a true or false value. The not
production is used to reverse that value. The scope of the not production is the state-token or
entity-tag immediately following it.

If: (Not <locktoken:write1> <locktoken:write2>)

When submitted with a request, this If header requires that all operand resources must not be locked
with locktoken:write1 and must be locked with locktoken:write2.

9.4.4 Matching Function

When performing If header processing, the definition of a matching state token or entity tag is as
follows.

Matching entity tag: Where the entity tag matches an entity tag associated with that resource.

Matching state token: Where there is an exact match between the state token in the If header and
any state token on the resource.

9.4.5 If Header and Non-DAV Compliant Proxies

Non-DAV compliant proxies will not honor the If header, since they will not understand the If
header, and HTTP requires non-understood headers to be ignored. When communicating with
HTTP/1.1 proxies, the “Cache-Control: no-cache” request header MUST be used so as to prevent

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 205

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 43]

the proxy from improperly trying to service the request from its cache. When dealing with
HTTP/1.0 proxies the “Pragma: no-cache” request header MUST be used for the same reason.

9.5 Lock-Token Header

Lock-Token = "Lock-Token" ":" Coded-URL

The Lock-Token request header is used with the UNLOCK method to identify the lock to be
removed. The lock token in the Lock-Token request header MUST identify a lock that contains the
resource identified by Request-URI as a member.

The Lock-Token response header is used with the LOCK method to indicate the lock token created
as a result of a successful LOCK request to create a new lock.

9.6 Overwrite Header

Overwrite = "Overwrite" ":" ("T" | "F")

The Overwrite header specifies whether the server should overwrite the state of a non-null
destination resource during a COPY or MOVE. A value of “F” states that the server must not
perform the COPY or MOVE operation if the state of the destination resource is non-null. If the
overwrite header is not included in a COPY or MOVE request then the resource MUST treat the
request as if it has an overwrite header of value “T”. While the Overwrite header appears to
duplicate the functionality of the If-Match: * header of HTTP/1.1, If-Match applies only to the
Request-URI, and not to the Destination of a COPY or MOVE.

If a COPY or MOVE is not performed due to the value of the Overwrite header, the method MUST
fail with a 412 (Precondition Failed) status code.

All DAV compliant resources MUST support the Overwrite header.

9.7 Status-URI Response Header

The Status-URI response header may be used with the 102 (Processing) status code to inform the
client as to the status of a method.

Status-URI = "Status-URI" ":" *(Status-Code Coded-URL) ; Status-Code is
defined in 6.1.1 of [RFC2068]

The URIs listed in the header are source resources which have been affected by the outstanding
method. The status code indicates the resolution of the method on the identified resource. So, for
example, if a MOVE method on a collection is outstanding and a 102 (Processing) response with a
Status-URI response header is returned, the included URIs will indicate resources that have had
move attempted on them and what the result was.

9.8 Timeout Request Header

TimeOut = "Timeout" ":" 1#TimeType
TimeType = ("Second-" DAVTimeOutVal | "Infinite" | Other)
DAVTimeOutVal = 1*digit
Other = "Extend" field-value ; See section 4.2 of [RFC2068]

Clients may include Timeout headers in their LOCK requests. However, the server is not required
to honor or even consider these requests. Clients MUST NOT submit a Timeout request header
with any method other than a LOCK method.

A Timeout request header MUST contain at least one TimeType and may contain multiple
TimeType entries. The purpose of listing multiple TimeType entries is to indicate multiple different
values and value types that are acceptable to the client. The client lists the TimeType entries in
order of preference.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 44]

Timeout response values MUST use a Second value, Infinite, or a TimeType the client has
indicated familiarity with. The server may assume a client is familiar with any TimeType
submitted in a Timeout header.

The “Second” TimeType specifies the number of seconds that will elapse between granting of the
lock at the server, and the automatic removal of the lock. The timeout value for TimeType
“Second” MUST NOT be greater than 2^32-1.

The timeout counter SHOULD be restarted any time an owner of the lock sends a method to any
member of the lock, including unsupported methods, or methods which are unsuccessful. However
the lock MUST be refreshed if a refresh LOCK method is successfully received.

If the timeout expires then the lock may be lost. Specifically, if the server wishes to harvest the
lock upon time-out, the server SHOULD act as if an UNLOCK method was executed by the server
on the resource using the lock token of the timed-out lock, performed with its override authority.
Thus logs should be updated with the disposition of the lock, notifications should be sent, etc., just
as they would be for an UNLOCK request.

Servers are advised to pay close attention to the values submitted by clients, as they will be
indicative of the type of activity the client intends to perform. For example, an applet running in a
browser may need to lock a resource, but because of the instability of the environment within which
the applet is running, the applet may be turned off without warning. As a result, the applet is likely
to ask for a relatively small timeout value so that if the applet dies, the lock can be quickly
harvested. However, a document management system is likely to ask for an extremely long timeout
because its user may be planning on going off-line.

A client MUST NOT assume that just because the time-out has expired the lock has been lost.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 206

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 45]

10 Status Code Extensions to HTTP/1.1

The following status codes are added to those defined in HTTP/1.1 [RFC2068].

10.1 102 Processing

The 102 (Processing) status code is an interim response used to inform the client that the server has
accepted the complete request, but has not yet completed it. This status code SHOULD only be
sent when the server has a reasonable expectation that the request will take significant time to
complete. As guidance, if a method is taking longer than 20 seconds (a reasonable, but arbitrary
value) to process the server SHOULD return a 102 (Processing) response. The server MUST send a
final response after the request has been completed.

Methods can potentially take a long period of time to process, especially methods that support the
Depth header. In such cases the client may time-out the connection while waiting for a response.
To prevent this the server may return a 102 (Processing) status code to indicate to the client that the
server is still processing the method.

10.2 207 Multi-Status

The 207 (Multi-Status) status code provides status for multiple independent operations (see section
11 for more information).

10.3 422 Unprocessable Entity

The 422 (Unprocessable Entity) status code means the server understands the content type of the
request entity (hence a 415(Unsupported Media Type) status code is inappropriate), and the syntax
of the request entity is correct (thus a 400 (Bad Request) status code is inappropriate) but was
unable to process the contained instructions. For example, this error condition may occur if an
XML request body contains well-formed (i.e., syntactically correct), but semantically erroneous
XML instructions.

10.4 423 Locked

The 423 (Locked) status code means the source or destination resource of a method is locked.

10.5 424 Failed Dependency

The 424 (Failed Dependency) status code means that the method could not be performed on the
resource because the requested action depended on another action and that action failed. For
example, if a command in a PROPPATCH method fails then, at minimum, the rest of the
commands will also fail with 424 (Failed Dependency).

10.6 507 Insufficient Storage

The 507 (Insufficient Storage) status code means the method could not be performed on the
resource because the server is unable to store the representation needed to successfully complete the
request. This condition is considered to be temporary. If the request which received this status
code was the result of a user action, the request MUST NOT be repeated until it is requested by a
separate user action.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 46]

11 Multi-Status Response

The default 207 (Multi-Status) response body is a text/xml or application/xml HTTP entity that
contains a single XML element called multistatus, which contains a set of XML elements called
response which contain 200, 300, 400, and 500 series status codes generated during the method
invocation. 100 series status codes SHOULD NOT be recorded in a response XML element.

12 XML Element Definitions

In the section below, the final line of each section gives the element type declaration using the
format defined in [REC-XML]. The “Value” field, where present, specifies further restrictions on
the allowable contents of the XML element using BNF (i.e., to further restrict the values of a
PCDATA element).

12.1 activelock XML Element

Name: activelock
Namespace: DAV:
Purpose: Describes a lock on a resource.

<!ELEMENT activelock (lockscope, locktype, depth, owner?, timeout?,
locktoken?) >

12.1.1 depth XML Element

Name: depth
Namespace: DAV:
Purpose: The value of the Depth header.
Value: "0" | "1" | "infinity"

<!ELEMENT depth (#PCDATA) >

12.1.2 locktoken XML Element

Name: locktoken
Namespace: DAV:
Purpose: The lock token associated with a lock.
Description: The href contains one or more opaque lock token URIs which all refer to the same

lock (i.e., the OpaqueLockToken-URI production in section 6.4).

<!ELEMENT locktoken (href+) >

12.1.3 timeout XML Element

Name: timeout
Namespace: DAV:
Purpose: The timeout associated with a lock
Value: TimeType ;Defined in section 9.8

<!ELEMENT timeout (#PCDATA) >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 207

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 47]

12.2 collection XML Element

Name: collection
Namespace: DAV:
Purpose: Identifies the associated resource as a collection. The resourcetype property of a

collection resource MUST have this value.

<!ELEMENT collection EMPTY >

12.3 href XML Element

Name: href
Namespace: DAV:
Purpose: Identifies the content of the element as a URI.
Value: URI ; See section 3.2.1 of [RFC2068]

<!ELEMENT href (#PCDATA)>

12.4 link XML Element

Name: link
Namespace: DAV:
Purpose: Identifies the property as a link and contains the source and destination of that link.
Description: The link XML element is used to provide the sources and destinations of a link.

The name of the property containing the link XML element provides the type of the
link. Link is a multi-valued element, so multiple links may be used together to
indicate multiple links with the same type. The values in the href XML elements
inside the src and dst XML elements of the link XML element MUST NOT be
rejected if they point to resources which do not exist.

<!ELEMENT link (src+, dst+) >

12.4.1 dst XML Element

Name: dst
Namespace: DAV:
Purpose: Indicates the destination of a link
Value: URI

<!ELEMENT dst (#PCDATA) >

12.4.2 src XML Element

Name: src
Namespace: DAV:
Purpose: Indicates the source of a link.
Value: URI

<!ELEMENT src (#PCDATA) >

12.5 lockentry XML Element

Name: lockentry
Namespace: DAV:
Purpose: Defines the types of locks that can be used with the resource.

<!ELEMENT lockentry (lockscope, locktype) >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 48]

12.6 lockinfo XML Element

Name: lockinfo
Namespace: DAV:
Purpose: The lockinfo XML element is used with a LOCK method to specify the type of

lock the client wishes to have created.

<!ELEMENT lockinfo (lockscope, locktype, owner?) >

12.7 lockscope XML Element

Name: lockscope
Namespace: DAV:
Purpose: Specifies whether a lock is an exclusive lock, or a shared lock.

<!ELEMENT lockscope (exclusive | shared) >

12.7.1 exclusive XML Element

Name: exclusive
Namespace: DAV:
Purpose: Specifies an exclusive lock

<!ELEMENT exclusive EMPTY >

12.7.2 shared XML Element

Name: shared
Namespace: DAV:
Purpose: Specifies a shared lock

<!ELEMENT shared EMPTY >

12.8 locktype XML Element

Name: locktype
Namespace: DAV:
Purpose: Specifies the access type of a lock. At present, this specification only defines one

lock type, the write lock.

<!ELEMENT locktype (write) >

12.8.1 write XML Element

Name: write
Namespace: DAV:
Purpose: Specifies a write lock.

<!ELEMENT write EMPTY >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 208

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 49]

12.9 multistatus XML Element

Name: multistatus
Namespace: DAV:
Purpose: Contains multiple response messages.
Description: The responsedescription at the top level is used to provide a general message

describing the overarching nature of the response. If this value is available an
application may use it instead of presenting the individual response descriptions
contained within the responses.

<!ELEMENT multistatus (response+, responsedescription?) >

12.9.1 response XML Element

Name: response
Namespace: DAV:
Purpose: Holds a single response describing the effect of a method on resource and/or its

properties.
Description: A particular href MUST NOT appear more than once as the child of a response

XML element under a multistatus XML element. This requirement is necessary in
order to keep processing costs for a response to linear time. Essentially, this
prevents having to search in order to group together all the responses by href.
There are, however, no requirements regarding ordering based on href values.

<!ELEMENT response (href, ((href*, status)|(propstat+)),
responsedescription?) >

12.9.1.1 propstat XML Element

Name: propstat
Namespace: DAV:
Purpose: Groups together a prop and status element that is associated with a particular href

element.
Description: The propstat XML element MUST contain one prop XML element and one status

XML element. The contents of the prop XML element MUST only list the names
of properties to which the result in the status element applies.

<!ELEMENT propstat (prop, status, responsedescription?) >

12.9.1.2 status XML Element

Name: status
Namespace: DAV:
Purpose: Holds a single HTTP status-line
Value: status-line ;status-line defined in [RFC2068]

<!ELEMENT status (#PCDATA) >

12.9.2 responsedescription XML Element

Name: responsedescription
Namespace: DAV:
Purpose: Contains a message that can be displayed to the user explaining the nature of the

response.
Description: This XML element provides information suitable to be presented to a user.

<!ELEMENT responsedescription (#PCDATA) >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 50]

12.10 owner XML Element

Name: owner
Namespace: DAV:
Purpose: Provides information about the principal taking out a lock.
Description: The owner XML element provides information sufficient for either directly

contacting a principal (such as a telephone number or Email URI), or for
discovering the principal (such as the URL of a homepage) who owns a lock.

<!ELEMENT owner ANY>

12.11 prop XML element

Name: prop
Namespace: DAV:
Purpose: Contains properties related to a resource.
Description: The prop XML element is a generic container for properties defined on resources.

All elements inside a prop XML element MUST define properties related to the
resource. No other elements may be used inside of a prop element.

<!ELEMENT prop ANY>

12.12 propertybehavior XML element

Name: propertybehavior
Namespace: DAV:
Purpose: Specifies how properties are handled during a COPY or MOVE.
Description: The propertybehavior XML element specifies how properties are handled during a

COPY or MOVE. If this XML element is not included in the request body then the
server is expected to act as defined by the default property handling behavior of the
associated method. All WebDAV compliant resources MUST support the
propertybehavior XML element.

<!ELEMENT propertybehavior (omit | keepalive) >

12.12.1 keepalive XML element

Name: keepalive
Namespace: DAV:
Purpose: Specifies requirements for the copying/moving of live properties.
Description: If a list of URIs is included as the value of keepalive then the named properties

MUST be “live” after they are copied (moved) to the destination resource of a
COPY (or MOVE). If the value “*” is given for the keepalive XML element, this
designates that all live properties on the source resource MUST be live on the
destination. If the requirements specified by the keepalive element can not be
honored then the method MUST fail with a 412 (Precondition Failed). All DAV
compliant resources MUST support the keepalive XML element for use with the
COPY and MOVE methods.

Value: "*" ; #PCDATA value can only be "*"

<!ELEMENT keepalive (#PCDATA | href+) >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 209

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 51]

12.12.2 omit XML element

Name: omit
Namespace: DAV:
Purpose: The omit XML element instructs the server that it should use best effort to copy

properties but a failure to copy a property MUST NOT cause the method to fail.
Description: The default behavior for a COPY or MOVE is to copy/move all properties or fail

the method. In certain circumstances, such as when a server copies a resource over
another protocol such as FTP, it may not be possible to copy/move the properties
associated with the resource. Thus any attempt to copy/move over FTP would
always have to fail because properties could not be moved over, even as dead
properties. All DAV compliant resources MUST support the omit XML element
on COPY/MOVE methods.

<!ELEMENT omit EMPTY >

12.13 propertyupdate XML element

Name: propertyupdate
Namespace: DAV:
Purpose: Contains a request to alter the properties on a resource.
Description: This XML element is a container for the information required to modify the

properties on the resource. This XML element is multi-valued.

<!ELEMENT propertyupdate (remove | set)+ >

12.13.1 remove XML element

Name: remove
Namespace: DAV:
Purpose: Lists the DAV properties to be removed from a resource.
Description: Remove instructs that the properties specified in prop should be removed.

Specifying the removal of a property that does not exist is not an error. All the
XML elements in a prop XML element inside of a remove XML element MUST be
empty, as only the names of properties to be removed are required.

<!ELEMENT remove (prop) >

12.13.2 set XML element

Name: set
Namespace: DAV:
Purpose: Lists the DAV property values to be set for a resource.
Description: The set XML element MUST contain only a prop XML element. The elements

contained by the prop XML element inside the set XML element MUST specify the
name and value of properties that are set on the resource identified by Request-
URI. If a property already exists then its value is replaced. Language tagging
information in the property's value (in the “xml:lang” attribute, if present) MUST
be persistently stored along with the property, and MUST be subsequently
retrievable using PROPFIND.

<!ELEMENT set (prop) >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 52]

12.14 propfind XML Element

Name: propfind
Namespace: DAV:
Purpose: Specifies the properties to be returned from a PROPFIND method. Two special

elements are specified for use with propfind, allprop and propname. If prop is used
inside propfind it MUST only contain property names, not values.

<!ELEMENT propfind (allprop | propname | prop) >

12.14.1 allprop XML Element

Name: allprop
Namespace: DAV:
Purpose: The allprop XML element specifies that all property names and values on the

resource are to be returned.

<!ELEMENT allprop EMPTY >

12.14.2 propname XML Elemen t

Name: propname
Namespace: DAV:
Purpose: The propname XML element specifies that only a list of property names on the

resource is to be returned.

<!ELEMENT propname EMPTY >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 210

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 53]

13 DAV Properties

For DAV properties, the name of the property is also the same as the name of the XML element that
contains its value. In the section below, the final line of each section gives the element type
declaration using the format defined in [REC-XML]. The “Value” field, where present, specifies
further restrictions on the allowable contents of the XML element using BNF (i.e., to further restrict
the values of a PCDATA element).

13.1 creationdate Property

Name: creationdate
Namespace: DAV:
Purpose: Records the time and date the resource was created.
Value: date-time ; See Appendix 2
Description: The creationdate property should be defined on all DAV compliant resources. If

present, it contains a timestamp of the moment when the resource was created (i.e.,
the moment it had non-null state).

<!ELEMENT creationdate (#PCDATA) >

13.2 displayname Property

Name: displayname
Namespace: DAV:
Purpose: Provides a name for the resource that is suitable for presentation to a user.
Description: The displayname property should be defined on all DAV compliant resources. If

present, the property contains a description of the resource that is suitable for
presentation to a user.

<!ELEMENT displayname (#PCDATA) >

13.3 getcontentlanguage Property

Name: getcontentlanguage
Namespace: DAV:
Purpose: Contains the Content-Language header returned by a GET without accept headers
Description: The getcontentlanguage property MUST be defined on any DAV compliant

resource that returns the Content-Language header on a GET.
Value: language-tag ;language-tag is defined in section 14.13 of [RFC2068]

<!ELEMENT getcontentlanguage (#PCDATA) >

13.4 getcontentlength Property

Name: getcontentlength
Namespace: DAV:
Purpose: Contains the Content-Length header returned by a GET without accept headers.
Description: The getcontentlength property MUST be defined on any DAV compliant resource

that returns the Content-Length header in response to a GET.
Value: content-length ; see section 14.14 of [RFC2068]

<!ELEMENT getcontentlength (#PCDATA) >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 54]

13.5 getcontenttype Property

Name: getcontenttype
Namespace: DAV:
Purpose: Contains the Content-Type header returned by a GET without accept headers.
Description: This getcontenttype property MUST be defined on any DAV compliant resource

that returns the Content-Type header in response to a GET.
Value: media-type ; defined in section 3.7 of [RFC2068]

<!ELEMENT getcontenttype (#PCDATA) >

13.6 getetag Property

Name: getetag
Namespace: DAV:
Purpose: Contains the ETag header returned by a GET without accept headers.
Description: The getetag property MUST be defined on any DAV compliant resource that

returns the Etag header.
Value: entity-tag ; defined in section 3.11 of [RFC2068]

<!ELEMENT getetag (#PCDATA) >

13.7 getlastmodified Property

Name: getlastmodified
Namespace: DAV:
Purpose: Contains the Last-Modified header returned by a GET method without accept

headers.
Description: Note that the last-modified date on a resource may reflect changes in any part of the

state of the resource, not necessarily just a change to the response to the GET
method. For example, a change in a property may cause the last-modified date to
change. The getlastmodified property MUST be defined on any DAV compliant
resource that returns the Last-Modified header in response to a GET.

Value: HTTP-date ; defined in section 3.3.1 of [RFC2068]

<!ELEMENT getlastmodified (#PCDATA) >

13.8 lockdiscovery Property

Name: lockdiscovery
Namespace: DAV:
Purpose: Describes the active locks on a resource
Description: The lockdiscovery property returns a listing of who has a lock, what type of lock he

has, the timeout type and the time remaining on the timeout, and the associated lock
token. The server is free to withhold any or all of this information if the requesting
principal does not have sufficient access rights to see the requested data.

<!ELEMENT lockdiscovery (activelock)* >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 211

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 55]

13.8.1 Example - Retrieving the lockdiscovery Property

>>Request

PROPFIND /container/ HTTP/1.1
Host: www.foo.bar
Content-Length: xxxx
Content-Type: text/xml; charset="utf-8"

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D='DAV:'>

<D:prop><D:lockdiscovery/></D:prop>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D='DAV:'>

<D:response>
<D:href>http://www.foo.bar/container/</D:href>
<D:propstat>

<D:prop>
<D:lockdiscovery>
 <D:activelock>

<D:locktype><D:write/></D:locktype>
 <D:lockscope><D:exclusive/></D:lockscope>

<D:depth>0</D:depth>
<D:owner>Jane Smith</D:owner>
<D:timeout>Infinite</D:timeout>
<D:locktoken>

<D:href>
opaquelocktoken:f81de2ad-7f3d-a1b2-4f3c-00a0c91a9d76

</D:href>
</D:locktoken>

 </D:activelock>
</D:lockdiscovery>

</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>
</D:response>

</D:multistatus>

This resource has a single exclusive write lock on it, with an infinite timeout.

13.9 resourcetype Property

Name: resourcetype
Namespace: DAV:
Purpose: Specifies the nature of the resource.
Description: The resourcetype property MUST be defined on all DAV compliant resources. The

default value is empty.

<!ELEMENT resourcetype ANY >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 56]

13.10 source Property

Name: source
Namespace: DAV:
Purpose: The destination of the source link identifies the resource that contains the

unprocessed source of the link’s source.
Description: The source of the link (src) is typically the URI of the output resource on which the

link is defined, and there is typically only one destination (dst) of the link, which is
the URI where the unprocessed source of the resource may be accessed. When
more than one link destination exists, this specification asserts no policy on
ordering.

<!ELEMENT source (link)* >

13.10.1 Example - A source Prop erty

<?xml version="1.0" encoding="utf-8" ?>
<D:prop xmlns:D="DAV:" xmlns:F="http://www.foocorp.com/Project/">

<D:source>
<D:link>

<F:projfiles>Source</F:projfiles>
<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/main.c</D:dst>

</D:link>
<D:link>

<F:projfiles>Library</F:projfiles>
<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/main.lib</D:dst>

</D:link>
<D:link>

<F:projfiles>Makefile</F:projfiles>
<D:src>http://foo.bar/program</D:src>
<D:dst>http://foo.bar/src/makefile</D:dst>

</D:link>
</D:source>

</D:prop>

In this example the resource http://foo.bar/program has a source property that contains three links.
Each link contains three elements, two of which, src and dst, are part of the DAV schema defined in
this document, and one which is defined by the schema http://www.foocorp.com/project/ (Source,
Library, and Makefile). A client which only implements the elements in the DAV spec will not
understand the foocorp elements and will ignore them, thus seeing the expected source and
destination links. An enhanced client may know about the foocorp elements and be able to present
the user with additional information about the links. This example demonstrates the power of XML
markup, allowing element values to be enhanced without breaking older clients.

13.11 supportedlock Property

Name: supportedlock
Namespace: DAV:
Purpose: To provide a listing of the lock capabilities supported by the resource.
Description: The supportedlock property of a resource returns a listing of the combinations of

scope and access types which may be specified in a lock request on the resource.
Note that the actual contents are themselves controlled by access controls so a
server is not required to provide information the client is not authorized to see.

<!ELEMENT supportedlock (lockentry)* >

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 212

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 57]

13.11.1 Example - Retrieving the supportedlock Property

>>Request

PROPFIND /container/ HTTP/1.1
Host: www.foo.bar
Content-Length: xxxx
Content-Type: text/xml; charset="utf-8"

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:">

<D:prop><D:supportedlock/></D:prop>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:">

<D:response>
<D:href>http://www.foo.bar/container/</D:href>
<D:propstat>

<D:prop>
<D:supportedlock>
 <D:lockentry>
<D:lockscope><D:exclusive/></D:lockscope>

<D:locktype><D:write/></D:locktype>
 </D:lockentry>
 <D:lockentry>

<D:lockscope><D:shared/></D:lockscope>
<D:locktype><D:write/></D:locktype>

 </D:lockentry>
</D:supportedlock>

</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>
</D:response>

</D:multistatus>

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 58]

14 Instructions for Processing XML in DAV

All DAV compliant resources MUST ignore any unknown XML element and all its children
encountered while processing a DAV method that uses XML as its command language.

This restriction also applies to the processing, by clients, of DAV property values where unknown
XML elements SHOULD be ignored unless the property's schema declares otherwise.

This restriction does not apply to setting dead DAV properties on the server where the server
MUST record unknown XML elements.

Additionally, this restriction does not apply to the use of XML where XML happens to be the
content type of the entity body, for example, when used as the body of a PUT.

Since XML can be transported as text/xml or application/xml, a DAV server MUST accept DAV
method requests with XML parameters transported as either text/xml or application/xml, and DAV
client MUST accept XML responses using either text/xml or application/xml.

15 DAV Compliance Classes

A DAV compliant resource can choose from two classes of compliance. A client can discover the
compliance classes of a resource by executing OPTIONS on the resource, and examining the
“DAV” header which is returned.

Since this document describes extensions to the HTTP/1.1 protocol, minimally all DAV compliant
resources, clients, and proxies MUST be compliant with [RFC2068].

Compliance classes are not necessarily sequential. A resource that is class 2 compliant must also be
class 1 compliant; but if additional compliance classes are defined later, a resource that is class 1, 2,
and 4 compliant might not be class 3 compliant. Also note that identifiers other than numbers may
be used as compliance class identifiers.

15.1 Class 1

A class 1 compliant resource MUST meet all “MUST” requirements in all sections of this
document.

Class 1 compliant resources MUST return, at minimum, the value “1” in the DAV header on all
responses to the OPTIONS method.

15.2 Class 2

A class 2 compliant resource MUST meet all class 1 requirements and support the LOCK method,
the supportedlock property, the lockdiscovery property, the Time-Out response header and the
Lock-Token request header. A class “2” compliant resource SHOULD also support the Time-Out
request header and the owner XML element.

Class 2 compliant resources MUST return, at minimum, the values “1” and “2” in the DAV header
on all responses to the OPTIONS method.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 213

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 59]

16 Internationalization Considerations

In the realm of internationalization, this specification complies with the IETF Character Set Policy
[RFC2277]. In this specification, human-readable fields can be found either in the value of a
property, or in an error message returned in a response entity body. In both cases, the human-
readable content is encoded using XML, which has explicit provisions for character set tagging and
encoding, and requires that XML processors read XML elements encoded, at minimum, using the
UTF-8 [UTF-8] encoding of the ISO 10646 multilingual plane. XML examples in this specification
demonstrate use of the charset parameter of the Content-Type header, as defined in [RFC2376], as
well as the XML “encoding” attribute, which together provide charset identification information for
MIME and XML processors.

XML also provides a language tagging capability for specifying the language of the contents of a
particular XML element. XML uses either IANA registered language tags (see [RFC1766]) or ISO
639 language tags [ISO-639] in the “xml:lang” attribute of an XML element to identify the
language of its content and attributes.

WebDAV applications MUST support the character set tagging, character set encoding, and the
language tagging functionality of the XML specification. Implementors of WebDAV applications
are strongly encouraged to read “XML Media Types” [RFC2376] for instruction on which MIME
media type to use for XML transport, and on use of the charset parameter of the Content-Type
header.

Names used within this specification fall into three categories: names of protocol elements such as
methods and headers, names of XML elements, and names of properties. Naming of protocol
elements follows the precedent of HTTP, using English names encoded in USASCII for methods
and headers. Since these protocol elements are not visible to users, and are in fact simply long
token identifiers, they do not need to support encoding in multiple character sets. Similarly, though
the names of XML elements used in this specification are English names encoded in UTF-8, these
names are not visible to the user, and hence do not need to support multiple character set encodings.

The name of a property defined on a resource is a URI. Although some applications (e.g., a generic
property viewer) will display property URIs directly to their users, it is expected that the typical
application will use a fixed set of properties, and will provide a mapping from the property name
URI to a human-readable field when displaying the property name to a user. It is only in the case
where the set of properties is not known ahead of time that an application need display a property
name URI to a user. We recommend that applications provide human-readable property names
wherever feasible.

For error reporting, we follow the convention of HTTP/1.1 status codes, including with each status
code a short, English description of the code (e.g., 423 (Locked)). While the possibility exists that a
poorly crafted user agent would display this message to a user, internationalized applications will
ignore this message, and display an appropriate message in the user's language and character set.

Since interoperation of clients and servers does not require locale information, this specification
does not specify any mechanism for transmission of this information.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 60]

17 Security Considerations

This section is provided to detail issues concerning security implications of which WebDAV
applications need to be aware.

All of the security considerations of HTTP/1.1 (discussed in [RFC2068]) and XML (discussed in
[RFC2376]) also apply to WebDAV. In addition, the security risks inherent in remote authoring
require stronger authentication technology, introduce several new privacy concerns, and may
increase the hazards from poor server design. These issues are detailed below.

17.1 Authentication of Clients

Due to their emphasis on authoring, WebDAV servers need to use authentication technology to
protect not just access to a network resource, but the integrity of the resource as well. Furthermore,
the introduction of locking functionality requires support for authentication.

A password sent in the clear over an insecure channel is an inadequate means for protecting the
accessibility and integrity of a resource as the password may be intercepted. Since Basic
authentication for HTTP/1.1 performs essentially clear text transmission of a password, Basic
authentication MUST NOT be used to authenticate a WebDAV client to a server unless the
connection is secure. Furthermore, a WebDAV server MUST NOT send Basic authentication
credentials in a WWW-Authenticate header unless the connection is secure. Examples of secure
connections include a Transport Layer Security (TLS) connection employing a strong cipher suite
with mutual authentication of client and server, or a connection over a network which is physically
secure, for example, an isolated network in a building with restricted access.

WebDAV applications MUST support the Digest authentication scheme [RFC2069]. Since Digest
authentication verifies that both parties to a communication know a shared secret, a password,
without having to send that secret in the clear, Digest authentication avoids the security problems
inherent in Basic authentication while providing a level of authentication which is useful in a wide
range of scenarios.

17.2 Denial of Service

Denial of service attacks are of special concern to WebDAV servers. WebDAV plus HTTP enables
denial of service attacks on every part of a system's resources.

The underlying storage can be attacked by PUTting extremely large files.

Asking for recursive operations on large collections can attack processing time.

Making multiple pipelined requests on multiple connections can attack network connections.

WebDAV servers need to be aware of the possibility of a denial of service attack at all levels.

17.3 Security through Obscurity

WebDAV provides, through the PROPFIND method, a mechanism for listing the member resources
of a collection. This greatly diminishes the effectiveness of security or privacy techniques that rely
only on the difficulty of discovering the names of network resources. Users of WebDAV servers
are encouraged to use access control techniques to prevent unwanted access to resources, rather
than depending on the relative obscurity of their resource names.

17.4 Privacy Issues Connected to Locks

When submitting a lock request a user agent may also submit an owner XML field giving contact
information for the person taking out the lock (for those cases where a person, rather than a robot, is
taking out the lock). This contact information is stored in a lockdiscovery property on the resource,

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 214

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 61]

and can be used by other collaborators to begin negotiation over access to the resource. However,
in many cases this contact information can be very private, and should not be widely disseminated.
Servers SHOULD limit read access to the lockdiscovery property as appropriate. Furthermore, user
agents SHOULD provide control over whether contact information is sent at all, and if contact
information is sent, control over exactly what information is sent.

17.5 Privacy Issues Connected to Properties

Since property values are typically used to hold information such as the author of a document, there
is the possibility that privacy concerns could arise stemming from widespread access to a resource's
property data. To reduce the risk of inadvertent release of private information via properties,
servers are encouraged to develop access control mechanisms that separate read access to the
resource body and read access to the resource's properties. This allows a user to control the
dissemination of their property data without overly restricting access to the resource's contents.

17.6 Reduction of Security due to Source Link

HTTP/1.1 warns against providing read access to script code because it may contain sensitive
information. Yet WebDAV, via its source link facility, can potentially provide a URI for script
resources so they may be authored. For HTTP/1.1, a server could reasonably prevent access to
source resources due to the predominance of read-only access. WebDAV, with its emphasis on
authoring, encourages read and write access to source resources, and provides the source link
facility to identify the source. This reduces the security benefits of eliminating access to source
resources. Users and administrators of WebDAV servers should be very cautious when allowing
remote authoring of scripts, limiting read and write access to the source resources to authorized
principals.

17.7 Implications of XML External Entities

XML supports a facility known as “external entities”, defined in section 4.2.2 of [REC-XML],
which instruct an XML processor to retrieve and perform an inline include of XML located at a
particular URI. An external XML entity can be used to append or modify the document type
declaration (DTD) associated with an XML document. An external XML entity can also be used to
include XML within the content of an XML document. For non-validating XML, such as the XML
used in this specification, including an external XML entity is not required by [REC-XML].
However, [REC-XML] does state that an XML processor may, at its discretion, include the external
XML entity.

External XML entities have no inherent trustworthiness and are subject to all the attacks that are
endemic to any HTTP GET request. Furthermore, it is possible for an external XML entity to
modify the DTD, and hence affect the final form of an XML document, in the worst case
significantly modifying its semantics, or exposing the XML processor to the security risks
discussed in [RFC2376]. Therefore, implementers must be aware that external XML entities should
be treated as untrustworthy.

There is also the scalability risk that would accompany a widely deployed application which made
use of external XML entities. In this situation, it is possible that there would be significant numbers
of requests for one external XML entity, potentially overloading any server which fields requests
for the resource containing the external XML entity.

17.8 Risks Connected with Lock Tokens

This specification, in section 6.4, requires the use of Universal Unique Identifiers (UUIDs) for lock
tokens, in order to guarantee their uniqueness across space and time. UUIDs, as defined in [ISO-
11578], contain a “node” field which “consists of the IEEE address, usually the host address. For
systems with multiple IEEE 802 nodes, any available node address can be used.” Since a WebDAV
server will issue many locks over its lifetime, the implication is that it will also be publicly
exposing its IEEE 802 address.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 62]

There are several risks associated with exposure of IEEE 802 addresses. Using the IEEE 802
address:

* It is possible to track the movement of hardware from subnet to subnet.

* It may be possible to identify the manufacturer of the hardware running a WebDAV server.

* It may be possible to determine the number of each type of computer running WebDAV.
Section 6.4.1 of this specification details an alternate mechanism for generating the “node” field of
a UUID without using an IEEE 802 address, which alleviates the risks associated with exposure of
IEEE 802 addresses by using an alternate source of uniqueness.

18 IANA Considerations

This document defines two namespaces, the namespace of property names, and the namespace of
WebDAV-specific XML elements used within property values.

URIs are used for both names, for several reasons. Assignment of a URI does not require a request
to a central naming authority, and hence allow WebDAV property names and XML elements to be
quickly defined by any WebDAV user or application. URIs also provide a unique address space,
ensuring that the distributed users of WebDAV will not have collisions among the property names
and XML elements they create.

This specification defines a distinguished set of property names and XML elements that are
understood by all WebDAV applications. The property names and XML elements in this
specification are all derived from the base URI DAV: by adding a suffix to this URI, for example,
DAV:creationdate for the “creationdate” property.

This specification also defines a URI scheme for the encoding of lock tokens, the opaquelocktoken
URI scheme described in section 6.4.

To ensure correct interoperation based on this specification, IANA must reserve the URI
namespaces starting with “DAV:” and with “opaquelocktoken:” for use by this specification, its
revisions, and related WebDAV specifications.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 215

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 63]

19 Intellectual Property

The following notice is copied from RFC 2026 [RFC2026], section 10.4, and describes the position
of the IETF concerning intellectual property claims made against this document.

The IETF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use other technology described in
this document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and standards-related documentation can
be found in BCP-11. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this standard. Please address the information to the IETF Executive Director.

20 Acknowledgements

A specification such as this thrives on piercing critical review and withers from apathetic neglect.
The authors gratefully acknowledge the contributions of the following people, whose insights were
so valuable at every stage of our work.

Terry Allen, Harald Alvestrand, Jim Amsden, Becky Anderson, Alan Babich, Sanford Barr, Dylan
Barrell, Bernard Chester, Tim Berners-Lee, Dan Connolly, Jim Cunningham, Ron Daniel, Jr., Jim
Davis, Keith Dawson, Mark Day, Brian Deen, Martin Duerst, David Durand, Lee Farrell, Chuck
Fay, Wesley Felter, Roy Fielding, Mark Fisher, Alan Freier, George Florentine, Jim Gettys, Phill
Hallam-Baker, Dennis Hamilton, Steve Henning, Mead Himelstein, Alex Hopmann, Andre van der
Hoek, Ben Laurie, Paul Leach, Ora Lassila, Karen MacArthur, Steven Martin, Larry Masinter,
Michael Mealling, Keith Moore, Thomas Narten, Henrik Nielsen, Kenji Ota, Bob Parker, Glenn
Peterson, Jon Radoff, Saveen Reddy, Henry Sanders, Christopher Seiwald, Judith Slein, Mike
Spreitzer, Einar Stefferud, Greg Stein, Ralph Swick, Kenji Takahashi, Richard N. Taylor, Robert
Thau, John Turner, Sankar Virdhagriswaran, Fabio Vitali, Gregory Woodhouse, and Lauren Wood.

Two from this list deserve special mention. The contributions by Larry Masinter have been
invaluable, both in helping the formation of the working group and in patiently coaching the authors
along the way. In so many ways he has set high standards we have toiled to meet. The
contributions of Judith Slein in clarifying the requirements, and in patiently reviewing draft after
draft, both improved this specification and expanded our minds on document management.

We would also like to thank John Turner for developing the XML DTD.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 64]

21 References

21.1 Normative References

[RFC1766] H. T. Alvestrand, “Tags for the Identification of Languages.” RFC 1766. Uninett.
March, 1995.

[RFC2277] H. T. Alvestrand, “IETF Policy on Character Sets and Languages.” RFC 2277, BCP
18. Uninett. January, 1998.

[RFC2119] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels.” RFC 2119,
BCP 14. Harvard University. March, 1997.

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax.” RFC 2396. MIT/LCS, U.C. Irvine, Xerox. August, 1998.

[REC-XML]T. Bray, J. Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML).”
World Wide Web Consortium Recommendation REC-xml-19980210.
http://www.w3.org/TR/1998/REC-xml-19980210.

[REC-XML-NAMES] T. Bray, D. Hollander, A. Layman, “Name Spaces in XML” World Wide
Web Consortium Recommendation REC-xml-names. http://www.w3.org/TR/REC-
xml-names-19990114/

[RFC2069] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L.
Stewart. “An Extension to HTTP : Digest Access Authentication” RFC 2069.
Northwestern University, CERN, Spyglass Inc., Microsoft Corp., Netscape
Communications Corp., Spyglass Inc., Open Market Inc. January 1997.

[RFC2068] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, “Hypertext Transfer
Protocol -- HTTP/1.1.” RFC 2068. U.C. Irvine, DEC, MIT/LCS. January, 1997.

[ISO-639] ISO (International Organization for Standardization). ISO 639:1988. “Code for the
representation of names of languages.”

[ISO-8601] ISO (International Organization for Standardization). ISO 8601:1988. “Data elements
and interchange formats - Information interchange - Representation of dates and
times.”

[ISO-11578] ISO (International Organization for Standardization). ISO/IEC 11578:1996.
“Information technology - Open Systems Interconnection - Remote Procedure Call
(RPC)”

[RFC2141] R. Moats, “URN Syntax.” RFC 2141. AT&T. May, 1997.

[UTF-8] F. Yergeau, “UTF-8, a transformation format of Unicode and ISO 10646.” RFC 2279.
Alis Technologies. January, 1998.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 216

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 65]

21.2 Informational References

[RFC2026] S. Bradner, “The Internet Standards Process - Revision 3.” RFC 2026, BCP 9. Harvard
University. October, 1996.

[RFC1807] R. Lasher, D. Cohen, “A Format for Bibliographic Records,” RFC 1807. Stanford,
Myricom. June, 1995.

[WF] C. Lagoze, “The Warwick Framework: A Container Architecture for Diverse Sets of
Metadata”, D-Lib Magazine, July/August 1996.
http://www.dlib.org/dlib/july96/lagoze/07lagoze.html

[USMARC] Network Development and MARC Standards, Office, ed. 1994. “USMARC Format for
Bibliographic Data”, 1994. Washington, DC: Cataloging Distribution Service, Library
of Congress.

[REC-PICS] J. Miller, T. Krauskopf, P. Resnick, W. Treese, “PICS Label Distribution Label
Syntax and Communication Protocols” Version 1.1, World Wide Web Consortium
Recommendation REC-PICS-labels-961031. http://www.w3.org/pub/WWW/TR/REC-
PICS-labels-961031.html.

[RFC2291] J. A. Slein, F. Vitali, E. J. Whitehead, Jr., D. Durand, “Requirements for Distributed
Authoring and Versioning Protocol for the World Wide Web.” RFC 2291. Xerox,
Univ. of Bologna, U.C. Irvine, Boston Univ. February, 1998.

[RFC2413] S. Weibel, J. Kunze, C. Lagoze, M. Wolf, “Dublin Core Metadata for Resource
Discovery.” RFC 2413. OCLC, UCSF, Cornell, Reuters. September, 1998.

[RFC2376] E. Whitehead, M. Murata, “XML Media Types.” RFC 2376. U.C. Irvine, Fuji Xerox
Info. Systems. July 1998.

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 66]

22 Authors' Addresses

Y. Y. Goland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Email: yarong@microsoft.com

E. J. Whitehead, Jr.
Dept. Of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
Email: ejw@ics.uci.edu

A. Faizi
Netscape
685 East Middlefield Road
Mountain View, CA 94043
Email: asad@netscape.com

S. R. Carter
Novell
1555 N. Technology Way
M/S ORM F111
Orem, UT 84097-2399
Email: srcarter@novell.com

D. Jensen
Novell
1555 N. Technology Way
M/S ORM F111
Orem, UT 84097-2399
Email: dcjensen@novell.com

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 217

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 67]

23 Appendices

23.1 Appendix 1 - WebDAV Document Type Definition

This section provides a document type definition, following the rules in [REC-XML], for the XML
elements used in the protocol stream and in the values of properties. It collects the element
definitions given in sections 12 and 13.

<!DOCTYPE webdav-1.0 [

<!--============ XML Elements from Section 12 ==================-->

<!ELEMENT activelock (lockscope, locktype, depth, owner?, timeout?,
locktoken?) >

<!ELEMENT lockentry (lockscope, locktype) >
<!ELEMENT lockinfo (lockscope, locktype, owner?) >

<!ELEMENT locktype (write) >
<!ELEMENT write EMPTY >

<!ELEMENT lockscope (exclusive | shared) >
<!ELEMENT exclusive EMPTY >
<!ELEMENT shared EMPTY >

<!ELEMENT depth (#PCDATA) >

<!ELEMENT owner ANY >

<!ELEMENT timeout (#PCDATA) >

<!ELEMENT locktoken (href+) >

<!ELEMENT href (#PCDATA) >

<!ELEMENT link (src+, dst+) >
<!ELEMENT dst (#PCDATA) >
<!ELEMENT src (#PCDATA) >

<!ELEMENT multistatus (response+, responsedescription?) >

<!ELEMENT response (href, ((href*, status)|(propstat+)),
responsedescription?) >
<!ELEMENT status (#PCDATA) >
<!ELEMENT propstat (prop, status, responsedescription?) >
<!ELEMENT responsedescription (#PCDATA) >

<!ELEMENT prop ANY >

<!ELEMENT propertybehavior (omit | keepalive) >
<!ELEMENT omit EMPTY >
<!ELEMENT keepalive (#PCDATA | href+) >

<!ELEMENT propertyupdate (remove | set)+ >
<!ELEMENT remove (prop) >
<!ELEMENT set (prop) >

<!ELEMENT propfind (allprop | propname | prop) >
<!ELEMENT allprop EMPTY >
<!ELEMENT propname EMPTY >

<!ELEMENT collection EMPTY >

<!--=========== Property Elements from Section 13 ===============-->
<!ELEMENT creationdate (#PCDATA) >
<!ELEMENT displayname (#PCDATA) >

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 68]

<!ELEMENT getcontentlanguage (#PCDATA) >
<!ELEMENT getcontentlength (#PCDATA) >
<!ELEMENT getcontenttype (#PCDATA) >
<!ELEMENT getetag (#PCDATA) >
<!ELEMENT getlastmodified (#PCDATA) >
<!ELEMENT lockdiscovery (activelock)* >
<!ELEMENT resourcetype ANY >
<!ELEMENT source (link)* >
<!ELEMENT supportedlock (lockentry)* >
]>

23.2 Appendix 2 - ISO 8601 Date and Time Profile

The creationdate property specifies the use of the ISO 8601 date format [ISO-8601]. This section
defines a profile of the ISO 8601 date format for use with this specification. This profile is quoted
from an Internet-Draft by Chris Newman, and is mentioned here to properly attribute his work.

date-time = full-date "T" full-time

full-date = date-fullyear "-" date-month "-" date-mday
full-time = partial-time time-offset

date-fullyear = 4DIGIT
date-month = 2DIGIT ; 01-12
date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
time-hour = 2DIGIT ; 00-23
time-minute = 2DIGIT ; 00-59
time-second = 2DIGIT ; 00-59, 00-60 based on leap second rules
time-secfrac = "." 1*DIGIT
time-numoffset = ("+" / "-") time-hour ":" time-minute
time-offset = "Z" / time-numoffset

partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]

Numeric offsets are calculated as local time minus UTC (Coordinated Universal Time). So the
equivalent time in UTC can be determined by subtracting the offset from the local time. For
example, 18:50:00-04:00 is the same time as 22:58:00Z.

If the time in UTC is known, but the offset to local time is unknown, this can be represented with an
offset of “-00:00”. This differs from an offset of “Z” which implies that UTC is the preferred
reference point for the specified time.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 218

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 69]

23.3 Appendix 3 - Notes on Processing XML Elements

23.3.1 Notes on Empty XML Elements

XML supports two mechanisms for indicating that an XML element does not have any content.
The first is to declare an XML element of the form <A>. The second is to declare an XML
element of the form <A/>. The two XML elements are semantically identical.

It is a violation of the XML specification to use the <A> form if the associated DTD declares
the element to be EMPTY (e.g., <!ELEMENT A EMPTY>). If such a statement is included, then the
empty element format, <A/> must be used. If the element is not declared to be EMPTY, then either
form <A> or <A/> may be used for empty elements.

23.3.2 Notes on Illegal XML Pr ocessing

XML is a flexible data format that makes it easy to submit data that appears legal but in fact is not.
The philosophy of “Be flexible in what you accept and strict in what you send” still applies, but it
must not be applied inappropriately. XML is extremely flexible in dealing with issues of white
space, element ordering, inserting new elements, etc. This flexibility does not require extension,
especially not in the area of the meaning of elements.

There is no kindness in accepting illegal combinations of XML elements. At best it will cause an
unwanted result and at worst it can cause real damage.

23.3.2.1 Example - XML Syntax Error

The following request body for a PROPFIND method is illegal.

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:">

<D:allprop/>
<D:propname/>

</D:propfind>

The definition of the propfind element only allows for the allprop or the propname element, not
both. Thus the above is an error and must be responded to with a 400 (Bad Request).

Imagine, however, that a server wanted to be “kind” and decided to pick the allprop element as the
true element and respond to it. A client running over a bandwidth limited line who intended to
execute a propname would be in for a big surprise if the server treated the command as an allprop.

Additionally, if a server were lenient and decided to reply to this request, the results would vary
randomly from server to server, with some servers executing the allprop directive, and others
executing the propname directive. This reduces interoperability rather than increasing it.

23.3.2.2 Example - Unknown XML Element

The previous example was illegal because it contained two elements that were explicitly banned
from appearing together in the propfind element. However, XML is an extensible language, so one
can imagine new elements being defined for use with propfind. Below is the request body of a
PROPFIND and, like the previous example, must be rejected with a 400 (Bad Request) by a server
that does not understand the expired-props element.

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:"
xmlns:E="http://www.foo.bar/standards/props/">

<E:expired-props/>
</D:propfind>

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 70]

To understand why a 400 (Bad Request) is returned let us look at the request body as the server
unfamiliar with expired-props sees it.

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:"
 xmlns:E="http://www.foo.bar/standards/props/">
</D:propfind>

As the server does not understand the expired-props element, according to the WebDAV-specific
XML processing rules specified in section 14, it must ignore it. Thus the server sees an empty
propfind, which by the definition of the propfind element is illegal.

Please note that had the extension been additive it would not necessarily have resulted in a 400
(Bad Request). For example, imagine the following request body for a PROPFIND:

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:"
 xmlns:E="http://www.foo.bar/standards/props/">

<D:propname/>
<E:leave-out>*boss*</E:leave-out>

</D:propfind>

The previous example contains the fictitious element leave-out. Its purpose is to prevent the return
of any property whose name matches the submitted pattern. If the previous example were
submitted to a server unfamiliar with leave-out, the only result would be that the leave-out element
would be ignored and a propname would be executed.

23.4 Appendix 4 -- XML Namespaces for WebDAV

23.4.1 Introduction

All DAV compliant systems MUST support the XML namespace extension as specified in [REC-
XML-NAMES].

23.4.2 Meaning of Qualified Na mes

[Note to the reader: This section does not appear in [REC-XML-NAMES], but is necessary to avoid
ambiguity for WebDAV XML processors.]

WebDAV compliant XML processors MUST interpret a qualified name as a URI constructed by
appending the LocalPart to the namespace name URI.

Example

<del:glider xmlns:del="http://www.del.jensen.org/">
<del:glidername>

Johnny Updraft
</del:glidername>
<del:glideraccidents/>

</del:glider>

In this example, the qualified element name “del:glider” is interpreted as the URL
“http://www.del.jensen.org/glider”.

<bar:glider xmlns:del="http://www.del.jensen.org/">
<bar:glidername>

Johnny Updraft
</bar:glidername>
<bar:glideraccidents/>

</bar:glider>

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 219

RFC 2518 WEBDAV February 1999

Goland, et al. Standards Track [Page 71]

Even though this example is syntactically different from the previous example, it is semantically
identical. Each instance of the namespace name “bar” is replaced with
“http://www.del.jensen.org/” and then appended to the local name for each element tag. The
resulting tag names in this example are exactly the same as for the previous example.

<foo:r xmlns:foo="http://www.del.jensen.org/glide">
<foo:rname>

Johnny Updraft
</foo:rname>
<foo:raccidents/>

</foo:r>

This example is semantically identical to the two previous ones. Each instance of the namespace
name “foo” is replaced with “http://www.del.jensen.org/glide” which is then appended to the local
name for each element tag, the resulting tag names are identical to those in the previous examples.

24 Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the Internet Society or other Internet organizations, except as needed for the
purpose of developing Internet standards in which case the procedures for copyrights defined in the
Internet Standards process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society
or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

C
o
m

p
e
n
d
iu

m
 nine

 p
a
g
e
 220

