
Aspect-Oriented
Programming

Johan Östlund

johano@dsv.su.se

mailto:johano@dsv.su.se
mailto:johano@dsv.su.se

Why AOP on this
Course?

❖ AOP sets out to manage complexity

~ Modularizing software

❖ AOP is being accepted/adopted in ever
increasing numbers both in academia and
industry

❖ Everyone in the industry is likely to meet
aspects at some point (at least in a couple of
years)

2

Separation of Concerns

❖ Subroutines

❖ Modules

❖ Object-orientation

~ Classes

~ Inheritance

~ Abstraction / Encapsulation

~ Polymorphism

3

Separation of Concerns
w/OO

❖ A concern is modeled as an object or a class
with slots/attributes and methods

❖ Well suited for many tasks because many
problems are easily modularized into objects

❖ OO handles “vertical” concerns well

4

Separation of Concerns
w/OO (cont’d)

A subset of the classes in the Apache Tomcat
Server. Each rectangle represents a class and the
red area represents lines of XML-parsing code.

Separation of Concerns
w/OO (cont’d)

❖ OO comes short when concerns are
“horizontal”, or cross-cutting.

6

Separation of Concerns
w/OO (cont’d)

Logging code in the Apache Tomcat Server.
Rectangles are classes and red lines represent

lines of logging code.

Cross-cutting Concerns

❖ A concern that affects several classes or
modules

❖ A concern that is not very well modularized

❖ Symptoms

~ Code tangling - when a code section or
module handles several concerns
simultaneously

~ Code scattering - when a concern is spread
over several modules and is not very well
localized and modularized

8

Code-tangling

9

def doX
 if session.isValid() and
 session.credentials > level
 actuallyPerformX()
 end
end

def doY
 if session.isValid() and
 session.credentials > level
 actuallyPerformY()
 end
end

def doZ
 if session.isValid() and
 session.credentials > level
 actuallyPerformZ()
 end
end

Cross-cutting Concerns
break Encapsulation

❖ Classes handle several concerns

❖ Decreased cohesion within classes

❖ Increased coupling between classes

10

Cross-cutting Concerns
decrease Reusability

❖ Because of the breaking of encapsulation

11

Code-tangling (cont’d)

12

public class Person
{

 private String name;

 ...

 public void setName(String name)

 {

 Logger.getLogger(...).log(Level.FINEST,

 “Name for “ + toString() +

 “ changed to: “ + name);

 this.name = name;

 }
}

public class Person
{
 private String name;
 ...
 public void setName(String name)
 {
 Logger.getLogger(...).log(Level.FINEST,

 “Name for “ + toString() +

 “ changed to: “ + name);
 this.name = name;
 }
}

Breaking of
Encapsulation

13

Code-scattering

❖ When a concern, and thus similar code, is
distributed throughout several program
modules

❖ Code duplication

14

Code-scattering

Logging code in the Apache Tomcat Server.
Rectangles are classes and red lines represent

lines of logging code.

What Concerns are
Cross-cutting?

❖ Logging/Tracing/Debugging

~ Perhaps the canonical applications of AOP

❖ Access Control

❖ Design by Contract (pre-/post-conditions)

❖ Transaction management

❖ Thread Synchronization

❖ Error Handling

❖ Caching of Data

❖ etc.

16

Managing
Cross-cutting Concerns
❖ Conventions - eliminate the bad effects of

cross-cutting concerns to the largest extent
possible through the use of conventions, etc.

17

18

public class Person
{
 private String name;
 ...
 public void setName(String name)
 {
 if (Logger.shouldLog(Level.FINEST))
 Logger.getLogger().log(Level.FINEST,

 “Name for “ + toString() +

 “ changed to: “ + name);
 this.name = name;
 }
}

Managing Cross-cutting
Concerns (cont’d)

❖ Accepting / Neglecting - simply accepting
cross-cutting concerns, and their effects

~ e.g., no code reuse

19

Managing Cross-cutting
Concerns (cont’d)

❖ Aspect-Oriented Programming

20

Aspect-Oriented
Programming

❖ AOP allows separate concerns to be separately
expressed but nevertheless be automatically
unified into working systems

❖ AOP enables modularization of cross-cutting
concerns

21

Defining AOP

❖ Each AOPL comes with its own
(unambiguous) formal description of what
AOP is but there’s

❖ No single definition that is

~ common to all AOPLs and

~ sufficiently distinguishes it from other, long
established programming concepts

❖ There is, though, a common understanding
what AOP is good for, namely modularizing
cross-cutting concerns

22

Defining AOP (cont’d)

❖ The (probably) best known definition AOP is

aspect-orientation = quantification +
obliviousness

23

Obliviousness

❖ Obliviousness means that a program has no
knowledge of which aspects modify it or when

❖ Some say that obliviousness is what
distinguishes AOP from event-driven systems

❖ Obliviousness as a defining characteristic of
AOP has been questioned by some in the AOP
community

❖ Obliviousness comes as a side-effect of
quantification

24

Quantification

❖ Quantification means that an aspect can affect
arbitrarily many different points in a program

❖ Quantification is widely accepted as a defining
characteristic of AOP

25

Defining AOP (cont’d)

❖ AOP enables programming statements such as

In a program P, whenever condition C arises,
perform action A.

❖ As there is no common definition we use the
de facto standard, AspectJ, to interpret P, C
and A

26

Defining AOP (cont’d)

❖ Translated in terms of AspectJ the parts of the
formula read

~ P is the execution of a program, which
includes the execution of advice

~ C is a set of pointcuts specifying the target
elements of the aspect in the program and
the context in which they occur (mostly
variables, but also stack content)

~ A is a piece of advice (code) that depends on
the context captured by C; and

~ the quantification is implicit in the
compiler/weaver

27

Defining AOP (cont’d)

❖ The sentence “In programs P, whenever
condition C arises perform action A” captures
how an aspect (C, A) affects a given program P,

❖ but says nothing about P’s knowledge of the
aspect (C, A), and thus nothing about
obliviousness

❖ However, the context provided to an action A
is provided by the aspect (C, A) and not by the
program P. Thus the program is oblivious to
which program elements an aspect relies on, as
opposed to a function call where arguments
are explicitly passed to the function

28

29

public class Person
{
 private String name;
 ...
 public void setName(String name)
 {
 this.name = name;
 }
}

public aspect LoggingAspect
{
 before(Person p, String s) :
 call(void Person.setName(String))
 && target(p)
 && args(s)
 {
 Logger.getLogger(...).log(Level.FINEST,

 “Name for “ + p +

 “ changed to: “ + name);
 }
}

public class Person
{
 private String name;
 ...
 public void setName(String name)
 {
 this.name = name;
 }
}

public aspect LoggingAspect
{
 before(Object c, Person p, String s) :
 call(void Person.setName(String))
 && this(c)
 && target(p)
 && args(s)
 {
 Logger.getLogger(...).log(Level.FINEST,

 “Name for “ + p +
 “ changed to: “ + s +

 “ (invoked by “ + c + “)”);

 }
}

q

30

What do we need?

❖ A programming language

❖ An aspect language

❖ A way to intermix the execution of the two
(weaving)

31

Programming Language

❖ Any programming language

~ Functional (AspectL)

~ Procedural (AspectC)

~ Object-oriented (AspectJ, AspectC++,
AspectCocoa, Aspect#)

❖ Most AOP implementations are for OOPLs
due to popularity of OO

❖ Dynamic languages, e.g. Ruby, typically have
extensive reflection and meta programming
support which in many cases presents
equivalents to AOP features, and thus AOP-
support for such languages makes less sense

32

Aspect Language

❖ Join points - defined points in the control flow
of the base program

~ Method call

~ Constructor call

~ Field access

~ etc.

❖ Pointcuts - a set of join points

❖ Advice - code to execute when a pointcut
matches

33

Weaving

❖ Weaving is the intertwining of aspect code into
the base program

❖ Static weaving

~ Source code weaving

~ Byte or object code weaving

~ Load-time weaving

❖ Run-time

~ Dynamic weaving (VM-support)

34

Source Code Weaving

❖ Basically preprocessing

❖ Fairly easy to implement

❖ May require all code to be present at compile
time

❖ Costly for dynamic behavior

35

Byte Code Weaving

❖ Separate compilation

❖ Weaving of third-party classes

❖ May require all classes to be present at compile
time

❖ May be very time and memory consuming

~ Keep all classes in memory

~ Parse all instructions in the program

❖ May cause clashes when several instrumenting
tools are used

❖ Reflection calls cannot be handled in a good
way

❖ 64K limit on method byte code (JSP - Servlet)

36

Dynamic Weaving

❖ Run-time deployment of different aspects at
different times

❖ Efficient and flexible

❖ Works with VM-hooks and event-subscribe

❖ Current implementations have poor support
for obliviousness, and the concept of aspect is
blurry (JRockit - BEA Systems)

❖ Steamloom is better, but it’s only a research
implementation (IBM’s Jikes Research VM).
Uses HotSwap to dynamically recompile
methods in run-time

37

Aspects

❖ Modularize cross-cutting concerns

❖ Roughly equivalent to a class or module

❖ Defined in terms of

~ Join points (not really true)

~ Pointcuts

~ Advice

38

Join points

❖ Well defined execution points in the program
flow, e.g. method call, constructor call, object
instantiation, field access etc.

~ Their textual representation in the program
text are referred to as join point shadows,
e.g., a method declaration is a shadow of a
method execution join point

❖ The level of granularity or expressiveness is
dependent on the base language

39

public class MyClass
{
 private String myField;

 public void setFieldValue(String newValue)
 {
 myField = newValue;
 }
}

40

Pointcuts

❖ A pointcut is a defined set of join points

41

public class MyClass
{
 private String myField;

 public void setFieldValue(String newValue)
 {
 myField = newValue;
 }
}

public aspect LoggingAspect
{
 before(String s) :
 execution(
 void MyClass.setFieldValue(String))
 {
 System.out.println(“Method called”);
 }
}

42

Advice

❖ The code to be executed when a pointcut
matches

❖ Roughly equivalent to a method

43

public class MyClass
{
 private String myField;

 public void setFieldValue(String newValue)
 {
 myField = newValue;
 }
}

public aspect LoggingAspect
{
 before(String s) :
 execution(
 void MyClass.setFieldValue(String))
 {
 System.out.println(“Method called”);
 }
}

44

Static Join Points

❖ Join points which have a static representation

call(void MyClass.setFieldValue(String))

❖ These places can be found and instrumented
at compile-time

45

Dynamic Join Points

❖ Join points which don’t necessarily have a
static representation, or where it’s uncertain
whether an advice should apply

call(* *.*(..))
&& cflow(call(
 void MyClass.setFieldValue(String)))

call(* *.*(..)) && if (someVar == 0)

❖ May lead to insertion of dynamic checks at,
depending on the granularity of the join point
model, basically every instruction. Clearly a
performance issue.

46

VM Support for
Dynamic Join Points

❖ Structure preserving compilation

❖ Run-time (lazy) (re-)compilation of methods
to include aspect code, when some dynamic
join point has matched.

47

Examples

Lazy Initialization

❖ Avoid allocation of resources unless necessary

❖ Image processing software with thumbnails
and lazy loading of actual image files

49

50

public class Image
{

 private String filename;
 private Thumbnail thumb;
 private ImageBuffer img;

 public Image(String filename)
 {
 this.filename = filename;
 thumb = ImageLoader.getDefault()

 .loadThumb(filename);
 }

51

 public ImageBuffer getImageBuffer()
 {
 if (img == null)
 img = ImageLoader.getDefault()

 .loadImage(filename);
 return img;
 }

 public void displayImageOn(Canvas c)
 {
 if (img == null)
 img = ImageLoader.getDefault()

 .loadImage(filename);
 c.drawImage(img);
 }

 public void applyFilter(Filter f)
 {
 if (img == null)
 img = ImageLoader.getDefault()

 .loadImage(filename);
 // Apply filter on img
 }

} // Image

Aspectation

❖ Extract null check and method call and make
it an aspect executing whenever the field img is
read

52

53

public aspect LazyAspect
{

 pointcut lazyPointcut(Image i) :
 get(ImageBuffer Image.img)
 && target(i)
 && !within(LazyAspect);

 before(Image i) : lazyPointcut(i)
 {
 if (i.img == null)
 i.img = ImageLoader.getDefault()

 .loadImage(i.filename);
 }

}

54

public class Image
{

 protected String filename;
 private Thumbnail thumb;
 protected ImageBuffer img;

 public Image(String filename)
 {
 this.filename = filename;
 thumb = ImageLoader.getDefault()

 .loadThumb(filename);
 }

55

 public ImageBuffer getImageBuffer()
 {
 return img;
 }

 public void displayImageOn(Canvas c)
 {
 c.drawImage(img);
 }

 public void applyFilter(Filter f)
 {
 // Apply filter on img
 }

} // Image

public aspect LazyAspect
{

 pointcut lazyPointcut(Image i) :
 get(ImageBuffer Image.img)
 && target(i)
 && !within(LazyAspect);

 before(Image i) : lazyPointcut(i)
 {
 if (i.img == null)
 i.img = ImageLoader.getDefault()

 .loadImageFromDB(i.filename);
 }

}

56

public aspect LazyAspect
{

 declare warning : // or error
 call(ImageBuffer
 ImageLoader.loadImage(String))
 && within(Image);

 pointcut lazyPointcut(Image i) :
 get(ImageBuffer Image.img)
 && target(i)
 && !within(LazyAspect)

 before(Image i) : lazyPointcut(i)
 {
 if (i.img == null)
 i.img = ImageLoader.getDefault()

 .loadImage(i.filename);
 }

}

57

Default Interface
Implementation

❖ Provide a default implementation of interface
methods

❖ In some sense multiple inheritance, but
without conflicts

❖ Somewhat like traits in Scala or categories in
Objective-C

58

59

public interface Sortable
{

 public int compare(Object other);

 public boolean equalTo(Object other);

 public boolean greaterThan(Object other);

 public boolean lessThan(Object other);

}

60

public aspect DefaultSortableAspect
{

 public boolean Sortable.equalTo(
 Object other)
 {
 return compare(other) == 0;
 }

 public boolean Sortable.greaterThan(

 Object other)
 {
 return compare(other) > 0;
 }

 public boolean Sortable.lessThan(

 Object other)
 {
 return compare(other) < 0;
 }
}

61

public class AClass implements Sortable
{
 private int number;
 ...

 public int compare(Object other)
 {
 return number - ((AClass) other).number;
 }

 public static void main(String[] args)
 {
 Sortable c1 = new AClass();
 Sortable c2 = new AClass();
 boolean b = c1.greaterThan(c2);
 }

}

Listener Control

❖ We want to make sure that listeners on UI-
components are unique and only added once

62

63

public class Main extends JFrame
 implements ActionListener
{
 private JButton b = new JButton("Button");
 public void actionPerformed(ActionEvent a)
 {
 JOptionPane.showMessageDialog(this,
 "Some message");
 }

 public Main()
 {
 JPanel p = new JPanel();
 p.add(b);
 b.addActionListener(this);
 b.addActionListener(this);
 getContentPane().add(p);
 // display the frame
 }

 public static void main(String[] args)
 {
 new Main();
 }
}

64

public aspect ListenerAddChecker
{

 private HashSet comps = new HashSet();

 pointcut listenerAdd(Object o) :
 call(void *.add*Listener(..))
 && target(o);

 void around(Object o) : listenerAdd(o)
 {
 if (comps.contains(o) == false)
 {
 comps.add(o);
 proceed(o);
 }
 }

65

 pointcut listenerRemove(Object o) :
 call(void *.remove*Listener(..))
 && target(o);

 before(Object o) : listenerRemove(o)
 {
 comps.remove(o);
 }

} // ListenerAddChecker

Synchronization

❖ We want to add synchronization of a system
using aspects

❖ We start with a single-threaded system

66

67

class Data
{

 public void method()

 {

 // Perform some action

 }
}

public class Main
{

 public static void main(String[] args)

 {

 Data d = new Data();

 d.method();

 }
}

Synchronization

❖ We add our locking scheme with an aspect

68

69

public interface Shared
{}

public aspect SynchAspect
{

 private LockMap locks = new LockMap();

 declare parents : Data implements Shared;

 after(Object s) :

 execution(Object+.new(..))

 && this(s)

 && if (s instanceof Shared)

 && !within(SynchAspect)

 {

 locks.add(s);

 }

70

 pointcut sharedCall(Object s) :

 call(* Object+.*(..))

 && target(s)

 && if (s instanceof Shared)

 && !within(SynchAspect);

 before(Object s) : sharedCall(s)

 {

 locks.acquire(s);

 }

 after(Object s) : sharedCall(s)

 {

 locks.release(s);

 }
}

AspectJ,
an aspect-oriented

programming language

History

❖ Developed at XEROX PARC

❖ Emerged from research on OO, reflection and
meta-programming

❖ In 2002 AspectJ was transferred to an openly-
developed eclipse.org project

72

Pointcuts

❖ call(MethodPattern) - captures the call of any
method matching MethodPattern

❖ execution(MethodPattern) - captures the
execution of any method matching
MethodPattern

❖ handler(TypePattern) - captures the catching of
an exception matching TypePattern

❖ this(Type | Identifier) - captures all join points
where the object bound to this is an instance of
Type or has the type of Identifier

❖ target(Type | Identifier) - captures all join
points where the target of a method call or
field access is an instance of Type or has the
type of Identifier

73

Pointcuts, cont’d

❖ args([Types | Identifiers]) - captures all join
points where the arguments are instances of
Types or of the type of Identifiers

❖ get(FieldPattern) - captures all join points
where a field is accessed that has a signature
that matches FieldPattern

❖ set(FieldPattern) - captures all join points
where a field is updated that has a signature
that matches FieldPattern

❖ within(TypePattern) - captures all join points
where the executing code is defined in a type
matched by TypePattern

❖ cflow(Pointcut) - captures all join points in the
control flow of any join point P picked out by
Pointcut, including P itself

74

Pointcuts, cont’d

❖ Pointcuts may be combined with the logical
operators && and || and negated by !

call(String Object+.toString())
&& within(org.myproject..*)

call(String Object+.toString())
|| call(boolean Object+.equals(Object))
&& !within(java..*)

75

Pointcut Definition

❖ pointcut pointcutName(<params>) : pointcuts

pointcut allMethodCalls() :
 call(* *.*(..));

pointcut allMethodCalls2(Object o) :
 call(* Object+.*(..)) && target(o);

pointcut captureAllMyClass(MyClass o) :
 call(* MyClass.*(..)) && target(o);

pointcut captureAllListInPackage() :
 call(* List+.add*(..))
 && within(mypackage..*);

76

Advice

❖ The “methods” of aspects

~ before - executes its code before a matching
join point

~ after - executes its code after a matching join
point

~ around - wraps a matching join point,
depending on an invocation of the special
method proceed() to proceed to executing
the wrapped join point. As the around
advice runs in place of the join point it
operates over (rather than before or after it)
it may return a value, which in turn
demands that it be declared with a return
type.

77

Advice Declaration

❖ advice(<params>) : pointcuts { stmts }

before() : call(* Object+.*toString())
{
 System.out.println(“Logging:”);
}

after() : call(* Object+.*toString())
{
 System.out.println(“Done logging”);
}

boolean around(Object o) :
 call(boolean List+.add*(Object))
 && args(o)
{
 if (o == null) return false;
 else return proceed(o);
}

78

Inter-type Declarations

❖ Add state or functionality to existing classes

public aspect ITDAspect
{
 private String AClass.newField = null;

 public String AClass.getField()
 {
 return newField;
 }

 public void AClass.setField(String s)
 {
 newField = s;
 }

}

79

80

public aspect DeclAspect
{

 declare parents: SomeClass implements
 Comparable;

 public int SomeClass.compareTo(Object o)
 {
 return 0;
 }

}

Exercise

❖ The exercise is to implement access control in
a very simple HRM system using AspectJ

❖ The system consists of three classes Coder,
Manager and Employee, which is the common
superclass of Coder and Manager

❖ There is a JUnit test case; all tests should pass

❖ No altering of the base code

❖ http://dsv.su.se/~johano/ericsson/

81

http://dsv.su.se/~johano/ericsson/
http://dsv.su.se/~johano/ericsson/

