

2a-1

*:96
Overheads
Part 2a: Encoding, ABNF
More about this course about Internet application
protocols can be found at URL:
http://dsv.su.se/jpalme/internet-course/Int-app-prot-kurs.html

Last update: 2005-02-09 2:42

2a-2
Example of data structure declarations in Pascal

flightpointer = ^flight;

flight = RECORD
 airline : String[2];
 flightnumber : Integer;
 nextflight : flightpointer;
END;

passenger = RECORD
 personalname : String [60];
 age : Integer;
 weight : Real;
 gender : Boolean;
 usertexts : ARRAY [1..5] OF

flightpointer;
END;

2a-3

Why encoding and encoding
syntax specification?
1. Syntax must be exact. Saying �Parameters are indicated with a parameter name

followed by a parameter value� does not specify whether to encode as �increment 5�
or �increment:5� or �increment=5� or �increment = 5�.

2. Computer-internal formats like 64-bit floating point are particular to one computer
architecture and not portable. Even the storage of octets in 32-bit words is different
in different architectures. Sending internal data would thus get �New York�
transformed to � weNkroY� when moved between computers with different �byte
order�.

3. A syntax specification language like ASN.1 ABNF or XML ensures that the syntax
specification is unambiguous.

(Or should be, but ABNF has a historical problem with not fully specifying where
white space is allowed, i.e. to distinguish between �From: Peter Paul� and
�From:Peter Paul�.)

4. Character set must be specified. Defaults are used, but have caused problems.

2a-4
5. Character set must be specified. Defaults are used, but have caused problems.

Character set Representation of “Ä”
(hexadecimal)

ISO Latin One C4

Unicode (ISO 10646), UCS-4 000000C4

Unicode, UTF-8 coding E2C4

CP850 (old MS-DOS) 8E

ISO 6937/1 C861

old Mac OS 80

2a-5 Character sets

A character set is a rule for encoding a certain set of glyphs onto one or
more octets. By a glyph is meant a kind of small picture and a kind of
syntactic description of the character. The same glyph need not look
exactly identical, different fonts can display the same glyph in somewhat
different ways.

Examples of characters and their encoding
Syntactic description Encoding in some common character sets

(hexadecimal representation)
Glyphs

 ISO 646 ISO646-SE ISO 8859-1 Unicode &
ISO 10646

latin capital letter A
with diaeresis

n.a. 5B C4 00C4 Ä

latin capital letter O
with diaeresis

n.a. 5C DC 00DC Ö

 latin capital letter O
with stroke

n.a. n.a. D8 00D8 Ø

Reverse Solidus 5C n.a 5C 005C \

2a-6 Swedish character encodings
Glyph å ä ö ü Å Ä Ö Ü

Two-char encoding aa a: oe u: AA A: O: U:

SEN_850200_B =
ISO646-SE

7D 7B 7C ?? 4D 5B 5C ??

ISO 646 glyph for
the encoding above

} { |] [\

ISO 10646 00E5 00E4 00F6 00FC 00C5 00C4 00D6 00DC

ISO 8859-1 E5 E4 F6 FC C5 C4 D6 DC

Macintosh 8C 8A 9A 9F 81 80 85 86

Old MS-DOS 86 84 94 91 8F 8E 99 9A

T.61=ISO 6937/1 CA61 C861 C86F C875 CA41 C861 C86F C855

2a-7 How can you put more than 255 different characters
into eight bit octets?

Method 1 ISO 6937 Use multiple characters for some encodings, for example é as
e´ or o as o¨.

Method 2 ISO 2022 Use several different 255 character sets, and special shift
sequences to shift from one set to another set.

Method 3 Unicode,
ISO 10646

Use two or four octets for each character, but provide
compression techniques to compress them during transmission.
UTF-8 is an example of a compression encoding scheme for ISO
10646, which has the property that the most common characters,
like a-z and A-Z, have the same one-octet encoding as in ISO 646
and ISO 8859-1.

Method 4 HTML,
MIME
Quoted-
Printable

Use special encodings for special characters, like
 for non-breaking space or

ö for ö.

2a-8 UTF-8 encoding of ISO 10646 and
Unicode
The UTF-8 (RFC 2044) is an encoding of Unicode with the very
important property that all US-ASCII characters have the same
coding in UTF-8 as in US-ASCII. This means that protocols, in
which special US-ASCII characters have special significance, will
work, also with UTF-8. They start with the two or four-octet
encodings of ISO 10646 (UCS-4):

UCS-4 range (hex.) UTF-8 octet sequence (binary)

0000 0000-0000 007F 0xxxxxxx

0000 0080-0000 07FF 110xxxxx 10xxxxxx

0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

0001 0000-001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0020 0000-03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0400 0000-7FFF FFFF 1111110x 10xxxxxx ... 10xxxxxx

2a-9
Subsets used in some standards

Name Subset description Where it is used

specials �(�, �)�, �<�, �>�,
�@�, �,�, �;�, �:�,
�\�, �"�, �.�, �[�, �]�

Must be coded when used in e-mail
addresses.

non-
specials

All printable US-ASCII characters
except specials and space

Can be used without special coding in
e-mail addresses.

Unsafe "{", "}", "|", "\", "^", "~",

 "[", "]" and "`"

Must be coded when used in URLs

Reserved �;�, �/�, �?�, �:�,
�@�, �=� and �&�

These characters have special meaning
in URLs, and must be coded if used
without the reserved meaning.

Safe All printable US-ASCII characters
except Unsafe and Reserved
characters and space.

Can be used without special coding in
URLs.

2a-10 Binary and textual data
Binary data
Examples: Data compressed with various compression algorithms, images in formats like GIF,
JPEG or TIFF, application data in a format particular to a certain application, such as Word,
Excel, Filemaker Pro, Adobe Acrobat, etc.

Textual data 41,3 951 EURT

Data which is textual in character, in that it consists of a sequence of �readable� characters,
sometimes organized into lines, such as plain text, HTML source, Postscript documents,
source code in a programming language, etc.

There is no sharp limit between binary and textual data. Some properties which sometimes
distinguishes textual data are:

� The character sequence to delimit line breaks differs between platforms, and is often
modified at transmission from one platform to another. Macintosh usually uses a single
Carriage Return (CR), Unix usually uses a single Line Feed (LF), MS Windows usually uses
the character sequence CRLF in file storage, but this is often transformed to only LF when
data is important into RAM by an application program.

� Sometimes, characters are encoded according to a character set, which is a rule deciding
which glyph to show for a certain bit combination. Sometimes, the character set is modified
when textual data is moved between computers or between applications.

2a-11 Marking the end of data
Internet protocols often need to transmit one or several objects of data. The data
transmitted is often formatted according to its own encoding rules.

Metho
d

Description Examples Used
in

Problems

CRLF.CRLF SMTP 1 Use a special
character sequence to
mark end of data

boundary: xyzabc
--xyzabc¶
--xyzabc--¶

MIME

What to do if this
sequence occurs in
the data you want
to transmit?

2 Indicate length in
advance

10*ABCDEFGHIJ HTTP You may not know
the length in
advance, for
example live
broadcasting

3 Chunked transmission 5*ABCDE5*FGHIJ HTTP

4 Encode in limited
character set

UuRrc232cmflcw Base64 Inefficient

2a-12
Encoding in more than one layer

Text shown
to the user

HTML text

Base64 text

Mail transport

HTML text

Base64 text

Mail transport

Text shown
to the user

HTML encoding HTML decoding

Base 64 encoding Base 64 decoding

Text shown
to the user

HTML text

Base64 text

Mail transport

HTML text

Base64 text

Mail transport

Text shown
to the user

HTML encoding HTML decoding

Base 64 encoding Base 64 decoding

2a-13

Base64 encoding of binary data into text

8 8 8

888 8
6 6 6 6
8 8 8

888 8
6 6 6 6

BASE64 is more reliable and
works as follows: Take three
octets (24 bits), split them into
four 6-bit bytes, and encode each
6-bit byte as one character. Since
6-bit bytes can have 64 different
values, 64 different characters are
needed. These have been chosen
to be those 64 ascii characters
which are known not to be
perverted in transport. Since
BASE64 requires 4 octets, 32 bits,
to encode 24 bits of binary data,
the overhead is 1/3 or 33 %.

2a-14

Encoding of protocol units

Binary encoding, often in the format: {identifier; length; value}

Primitive:

 I L C
(a string of octets)

Constructed:

 I L C
(A string of nested encodings)

I L C I L C I L C
I L C

I = Identifier octets
L = Length octets
C = Contents octets

Binary encodings are often

specified using the ASN.1

specification language.

Textual encoding, much like text in a programming language:

Example 1:

a002 OK [READ-WRITE] SELECT completed

Example 2:

EditReplace .Find = "^p ", .Replace = " "

Textual encodings are often

specified using the ABNF

specification language.

2a-15
Linear White Space

Character name Real rendering Notation on this page

Space A non-printing break with the same width as a
single letter.

Horizontal tab Moving the printing position to the next print
position, usually a wider break than for a space.

Line break Moving the printing position to the next line,
using CR, LF or CR+LF.

Acronym Term Description Examples

LWSP Linear White
Space

Sequence of one or more space and
horizontal tab characters.

FWSP Folding White
Space

Linear White Space which also can
include line breaks. Continuation
lines must begin with tab or space.

CFWSP Comment Folding
White Space

Folding White Space which can
contain comments in parenthesis.

(Rose)
(Tulip)

2a-16

Examples of identical code, in-spite-of

CLWSP, in e-mail headers:

In-Reply-To: <199807112000.WAA30049@mailbox.hogia.net>

In-Reply-To: (Your message of 11 July 1998)
 <199807112000.WAA30049@mailbox.hogia.net>

In-Reply-To: <199807112000.WAA30049@mailbox.hogia.net>
 (Your message of 11 July 1998)

2a-17

Inpreciseness of common usage of where

LWSP and CLWSP is allowed and not

allowed.

Many different Internet standards use ABNF, but all of them do not use
exactly the ABNF notation in the same way. In particular, many Internet
standards do not specify where LWSP (Linear White Space) is permitted
or required.

Thus, Internet standards often specify things like:

Subject = "Subject" ":" "sentence"

Is space allowed/required or not between elements here?

The above ABNF specification, when used in older standards, might not
clarify if spaces are allowed or required between the elements.

2a-18

ABNF syntax elements

A simple ABNF production with

an OR ("/") element:

answer = "Answer: " ("Yes" / "No")

This says that when you send an "answer" from one computer to
another, you send either the string "Answer: Yes" or the string
"Answer: No".

2a-19
A series of elements of the same kind

There is often a need to specify a series of elements of the same kind. For example, to
specify a series of "yes" and "no" we can specify:

yes-no-series = *("yes " / "no ")

This specifies that when we send a yes-no-series from one computer to another, we can
send for example one of the following strings (double-quote not included):

�yes � �yes no �

�� �yes yes yes �

The "*" symbol in ABNF means�repeat zero, one or more times�

So yes-no-series, as defined above, will also match an empty string.

A number can be written before the "*" to indicate a minimum, and a number after the
�*� to indicate a maximum.

Thus �1*2� means one or two ocurrences of the following construct,
�1*� means one or more, �*5� means between zero and five occurences.

If we want to specify a series of exactly five yes or no, we can thus specify:

five-yes-or-no = 5*5("yes " / "no ")

and if we want to specify a series of between one and five yes or no, we can specify:

one-to-five-yes-or-no = 1*5("yes " / "no ") ;Compare *5 1*

2a-20
Linear White SPace (LWSP)

There is often a need to specify that one or more characters which just show up as white
space (blanks) on the screen is allowed. In newer standards, this is done by defining
Linear White Space:

LWSP char = (SPACE / HTAB) ; either one space or one tab
LWSP = 1*LWSP-char ; one or more space

characters

LWSP, as defined above, is thus one or more SPACE and HTAB characters.

Using LWSP, we can specify for example:

yes-no-series = * (("yes" / "no") LWSP)

examples of a string of this format is:

�yes � �yes no �
�no � �yes yes yes �
�� �yes yes no �

2a-21
Comma-separated list

Older ABNF specifications often uses a construct "#" which means the same as "*" but with a
comma between the elements. Thus, in older ABNF specifications:

yes-no-series = *("yes" / "no")

is meant to match for example the strings

�yes� �yes no�
�no� �yes yes yes�

while

yes-no-series = #("yes" / "no")

is meant to match the strings

�yes� �yes, no�
�no� �yes, yes, yes�

The problem with this, however, is that neither of the notations above specify where LWSP is
allowed. Thus, newer ABNF specifications would instead use:

yes-or-no = ("yes" / "no")
yes-no-series = yes-or-no *(LWSP yes-or-no)

to indicate a series of �yes� or �no� separated by LWSP, or

yes-no-series = yes-or-no *("," LWSP yes-or-no)

to indicate a series of �yes� or �no� separated by �,� and LWSP.

2a-22
ABNF syntax rules, parentheses

Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo /
bar) elem)" allows the token sequences "elem foo elem" and "elem bar elem".

Example 1 (From RFC2822):

keywords = "Keywords:" phrase *("," phrase) CRLF
phrase = 1*word / obs-phrase
word = atom / quoted-string
atom = [CFWS] 1*atext [CFWS]

Example 1, value:

 Keywords: Orchids, Tropical flowers

Example 2 (from RFC822):

 authentic = "From" ":" mailbox ; Single author
 / ("Sender" ":" mailbox ; Actual submittor
 "From" ":" 1#mailbox) ; Multiple authors
 ; or not sender

Example 2, value a:

 From: Donald Duck <dduck@disney.com>

Example 2, value b:

 Sender: Walt Disney <walt@disney.com>
 From: Donald Duck <dduck@disney.com>

2a-23
Optional elements

There is often the need to specify that something can occur or can be omitted.

This is specified by square brackets. Example:

answer = ("yes" / "no") [", maybe"]

will match the strings

�yes�
�no�
�yes, maybe�
�no, maybe�

Square brackets is actually the same as "0*1, the ABNF production above could as well be
written as:

answer = ("yes" / "no") 0*1(", maybe")

or

answer = ("yes" / "no") *1(", maybe")

2a-24
Summary of ABNF notation

Notation Meaning Example Meaning

�/� either or Yes / No Either Yes or No

n*m(element) Repetition of between n
and m elements

1*2(DIGIT) One or two digits

n*n(element) Repetition exactly n
times

2*2(DIGIT) Exactly two digits

n*(element) Repetition n or more
times

1*(DIGIT) A series of at least
one digit

*n(element) Repetition not more
than n times

*4(DIGIT) Zero, one, two, three
or four digits

n#m(element) Same as n*m but
comma-separated

2#3("A") �A,A� or �A,A,A�

[element] Optional emenent, same
as *1(element)

[";" para] The parameter
string can be
included or omitted

2a-25

Exercise 1

Specify, using ABNF, the syntax for a directory path, like

users/smith/file or

users/smith/WWW/file

with none, one or more directory names, followed by a file name.

Exercise 2

SOLUTIONS TO

EXERCISES IN

COMPENDIUM 6

PAGES 57-66

Specify, using ABNF, the syntax for Folding Linear White Space, i.e. any sequences of spaces
or tabs or newlines, provided there is at least one space or tab after each newline.

Examples:

� �

�
�

�
�

Assume SP = Space, HT = Tab,
CR = Carriage Return, LF = Line Feed

Usage:

From: John Smith <jsmith@foo.bar>

From: John Smith
 <jsmith@foo.bar>
 (typed by Mary Smith)

2a-26
Examples of use of ABNF from RFC 2822

Example 1, ABNF (from RFC 2822):

LWSP-char = SPACE / HTAB ; semantics = SPACE

Example 2, ABNF (from RFC2822):

mailbox = name-addr / addr-spec
name-addr = [display-name] angle-addr
angle-addr = [CFWS] "<" addr-spec ">" [CFWS]
 / obs-angle-addr
display-name = phrase
addr-spec = local-part "@" domain

Example 2, value a:

jpalme@dsv.su.se

Example 2; value b:

Jacob Palme <jpalme@dsv.su.se>

2a-27

Example 3 (from RFC2822):

fields = *(trace
 *(resent-date /
 resent-from /
 resent-sender /
 resent-to /
 resent-cc /
 resent-bcc /
 resent-msg-id))
 *(orig-date /
 from /
 sender /
 reply-to /
 to /
 cc /
 bcc /
 message-id /
 in-reply-to /
 references /
 subject /
 comments /
 keywords /
 optional-field)

2a-28

Example 4 (from RFC2822)

in-reply-to = "In-Reply-To:" 1*msg-id CRLF
msg-id = [CFWS] "<" id-left "@" id-right ">" [CFWS]
id-left = dot-atom-text / no-fold-quote / obs-id-left
id-right = dot-atom-text / no-fold-literal /
 obs-id-right
no-fold-quote = DQUOTE *(qtext / quoted-pair) DQUOTE

Example 4, value a:

 In-Reply-To: <12345*jpalme@dsv.su.se>

Example 4, value b:

 In-Reply-To: <12345*jpalme@dsv.su.se> <5678*jpalme@dsv.su.se>

Example 4, value c:

 In-Reply-To: Your message of July 26 <12345*jpalme@dsv.su.se>

2a-29
Examples of use of square brackets ([) and (])

Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".

Example 5 (from RFC822):

received = "Received" ":" ; one per relay
 ["from" domain] ; sending host
 ["by" domain] ; receiving host
 ["via" atom] ; physical path
 *("with" atom) ; link/mail protocol
 ["id" msg-id] ; receiver msg id
 ["for" addr-spec] ; initial form

Example 5, value a:

Received: from mars.dsv.su.se (root@mars.dsv.su.se
 [130.237.158.10])
 by zaphod.sisu.se (8.6.10/8.6.9) with ESMTP
 id MAA29032 for <cecilia@sisu.se>

2a-30

ABNF syntax rules, comments

A semi-colon, set off some distance to the right of rule text, starts a comment that
continues to the end of line.

Example 6 (from RFC2822):

specials = "(" / ")" / ; Special characters used in
 "<" / ">" / ; other parts of the syntax
 "[" / "]" /
 ":" / ";" /
 "@" / "\" /
 "," / "." /
 DQUOTE

2a-31

Example 7 (from RFC822):

obs-zone = "UT" / "GMT" / ; Universal Time
 ; North American UT
 ; offsets
 "EST" / "EDT" / ; Eastern: - 5/ - 4
 "CST" / "CDT" / ; Central: - 6/ - 5
 "MST" / "MDT" / ; Mountain: - 7/ - 6
 "PST" / "PDT" / ; Pacific: - 8/ - 7

 %d65-73 / ; Military zones - "A"
 %d75-90 / ; through "I" and "K"
 %d97-105 / ; through "Z", both
 %d107-122 ; upper and lower case

2a-32

Exercise 3

Specify the syntax of a new e-mail header field with the following
properties:

Name: �Weather�

Values: �Sunny� or �Cloudy� or �Raining� or �Snowing�

Optional parameters: ";" followed by parameter, "=" and integer
value

Parameters: �temperature� and �humidity�

Examples:
Weather: Sunny ; temperature=20; humidity=50
Weather: Cloudy

2a-33

Exercise 4

An identifier in a programming language is allowed to contain
between 1 and 6 letters and digits, the first character must be a
letter. Only upper case character are used. Write an ABNF
specification for the syntax of such an identifier.

2a-34
RFC 822 lexical scanner 1

CHAR = <any ASCII character> ; (0-177, 0.-127.)

ALPHA = <any ASCII alphabetic character>

 ; (101-132, 65.- 90.)

 ; (141-172, 97.-122.)

DIGIT = <any ASCII decimal digit> ; (60- 71, 48.- 57.)

CTL = <any ASCII control ; (0- 37, 0.- 31.)

 character and DEL> ; (177, 127.)

CR = <ASCII CR, carriage return> ; (15, 13.)

LF = <ASCII LF, linefeed> ; (12, 10.)

SPACE = <ASCII SP, space> ; (40, 32.)

HTAB = <ASCII HT, horizontal-tab> ; (11, 9.)

<"> = <ASCII quote mark> ; (42, 34.)

CRLF = CR LF

2a-35
The same with the 1994 version of ABNF

LWSP-char = SPACE / HTAB ; semantics = SPACE
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
BIT = "0" / "1"
CHAR = %x01-7F ; any 7-bit US-ASCII character, excluding NUL
CR = %x0D ; carriage return
CRLF = CR LF ; Internet standard newline
CTL = %x00-1F / %x7F ; controls
DIGIT = %x30-39 ; 0-9
DQUOTE = %x22 ; " (Double Quote)
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HTAB = %x09 ; horizontal tab
LF = %x0A ; linefeed
LWSP = *(WSP / CRLF WSP) ; linear white space (past newline)
OCTET = %x00-FF ; 8 bits of data
SP = %x20

2a-36

%d13 is the character with decimal value 13, which is carriage return.
%x0D is the character with hexadecimal value 0D, which is another way of specifying the

carriage return character.
b1101 is the character with binary value 1101, which is a third way of specifying the

carriage return character.
%x30-39 means all characters with hexadecimal values from 30 to 39, which is the digits 0-9 in

the ASCII character set.
%d13.10 is a short form for %d13 %d10, which is carriage return followed by line feed.

